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Abstract. Inhibitors of casein kinase 2 (CK2), a regulator of cell 
proliferation and mediator of the DNA damage response, are 
being evaluated in clinical trials for the treatment of cancers. 
Apigenin was capable of inhibiting the activation of CK2 
following γ irradiation in LN18 and U87 malignant glioma cells. 
Apigenin and siRNA-mediated CK2 protein depletion further 
inhibited NF-κB activation and altered the Tyr68 phosphoryla-
tion of Chk2 kinase, a DNA damage response checkpoint kinase, 
following irradiation. However, CK2 inhibition did not decrease 
the ability of these glioma cells to repair double-strand DNA 
breaks, as assessed by COMET assays and γ-H2Ax staining. 
Likewise, apigenin and siRNA-induced depletion of CK2 failed 
to sensitize glioma cells to the cytotoxic effect of 2 to 10 G-rays 
of γ irradiation, as assessed by clonogenic assays. These results 
contrast with those found in other cancer types, and urge to 
prudence regarding the inclusion of malignant glioma patients 
in clinical trials that assess the radiosensitizing role of CK2 
inhibitors in solid cancers.

Introduction

Malignant astrocytomas represent the most frequent type of 
malignant brain tumors and are characterized by a strong resis-
tance to therapies and a dismal prognosis (1). Among the factors 
that determine this resistance to treatment, anti-apoptotic 
signaling, for instance through constitutive NF-κB pathway acti-
vation (2,3), and altered DNA-damage response (4), are believed 
to play major roles.

Casein kinase 2 (CK2), an ubiquitous serine threonine 
kinase, consists of tetramers of 2 catalytic and 2 regulatory 
subunits. It has recently gained interest in the field of cancer 
research as both a regulator of proliferation and survival path-
ways and a modulator of the DNA-repair machinery (5,6). CK2 
was thus shown to regulate NF-κB and STAT3 activation, P53 
function (7), PTEN activity, Akt-dependant signaling, mTOR 
stability and SIRT-dependent protein acetylation (6,8-13). CK2 
also regulates the function of several enzymes of the DNA-repair 
and DNA-damage sensing machinery, such as XRCC1 and 4, 
Rad9 and DNA-PK (14-16). As a corollary, pre-clinical studies 
have shown that CK2 inhibitors elicit anti-tumoral effects 
against leukemias, prostate carcinomas, breast cancers, and 
some PTEN or TP53 mutated malignant gliomas (17,18). Based 
on these reports, CK2 inhibitors entered the field of clinical 
trials (8,19-22). Among them, apigenin is a naturally occurring 
plant flavonoid and a specific inhibitor of the catalytic subunits 
of CK2 (8,23,24). It was shown to reduce the proliferation and 
to induce apoptosis in several carcinoma cells (25-27) as well 
as in some human glioma cell lines (28), and has recently been 
used in a phase II trial for the prevention of colorectal cancer 
recurrence (NCT00609310).

Given this growing interest of clinicians and the industry 
for CK2 inhibitors, and in view of the fundamental yet disap-
pointing role of radiation therapy for the treatment of malignant 
gliomas (1), we investigated whether CK2 inhibition would 
alter the radiation-induced DNA repair response and whether  
these tumors could be radiosensitized.

Materials and methods

Cell cultures, reagents and siRNA. Cell lines U87 and LN18 were 
obtained from the American Type Culture Collection (ATCC) 
and grown in DMEM (Dulbecco's modified Eagle's medium, 
Gibco, Gent, Belgium) containing 10% of fetal bovine serum 
(FBS, Gibco) and penicillin. Cultures were maintained at 37˚C 
under a humidified atmosphere containing 5% carbon dioxide.

Apigenin was purchased from Sigma (Bornem, Belgium), 
dissolved in dimethylsulfoxide (DMSO) and used at final 
concentration of 40 µM (stock solution, 100 mM). Control cells 
were treated with a similar final concentration of DMSO as the 
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apigenin-treated cells. Irradiations of cell lines were conducted 
with a research irradiator (Gammacell 40 Exactor, Theratronics, 
Stockley Park, UK).

Subconfluent cultured cells were transfected with 50 nmol/l 
ON-TARGETplus non-targeting pool or SMARTpool human 
CSNK2A1 siRNA from Dharmacon (Fisher Scientific, Tournai, 
Belgium) using oligofectamine (Invitrogen, Gent, Belgium) 
according to the manufacturer's instructions. Cells were harvested 
and assayed 48 h after transfection. CK2 depletion was controlled 
using western blot analysis of the expression of CK2-α.

CK2 and IKK-β kinase assays. Cells were lysed using RIPA buffer 
extraction kit (Santa Cruz Biotechnology) and 300 µg of protein 
were taken for immunoprecipitation. After a pre-cleared step, 
supernatant were incubated with an anti-CK2 antibody (clone 
1AD9, Millipore, Overijse, Belgium) under rotary agitation for 
4 h at 4˚C. GammaBind G Sephorase beads (25 µl/samples, GE 
Healthcare, Diegem, Belgium) were then added to the sample 
and incubated on a rotating system overnight at 4˚C. After three 
washes, immunoprecipitated proteins were processed with the 
CK2 assay kit (Upstate, Millipore) or the IKK-β kinase assay kit 
(Cell Signaling, Bioke, Leiden, The Netherlands), according to 
the manufacturer's instructions.

NF-κB transcription assay. Cells were co-transfected by using 
TransIT-2020 transfection reagent (Mirus, Eke, Belgium) with: 
i) a luciferase-coupled reporter gene for NF-κB and ii) a Renilla 
luciferase reporter driven by a constitutive promoter. Radiation 
(10 Gy) and apigenin treatment (40 µM) effects on NF-κB 
transcriptional activity were assessed 24 h later. Briefly, cells 
were lysed and luciferase activities were measured according 
to the manufacturer's instructions for the Dual Luciferase 
Assay System (Promega, Leiden, The Netherlands) and using 
a Victor luminometer (PerkinElmer, Zaventem, Belgium). 
The relative NF-κB luciferase activity was normalized to the 
one of the Renilla.

Western blot analysis. 10% polyacrylamide precast gels (Mini 
Protean TGX, Bio-Rad, Nazareth Eke, Belgium) were run for 
30 min at 200 volts with nuclear extract (20 µg/well) obtained 
from irradiated and previously apigenin or DMSO treated cells. 
Protein extracts were obtained using conventional RIPA buffer 
and phosphatase inhibitors. After transfer to a PVDF membrane 
(Roche, Vilvoorde, Belgium) for 2 h at 300 mA and blocking 
with Tris buffered saline containing 0.2% Tween plus 5% dry 
milk powder, membranes were incubated overnight at 4˚C in the 
presence of primary antibody directed against phospho(Thr68)-
Chk2 (Cell Signaling, Bioké, Leiden, The Netherlands). A 
horseradish peroxidase-coupled secondary antibody was then 
incubated, and peroxidase activity was evidenced with the Super 
Signal West Pico Chemiluminescent substrate (Thermo Fisher 
Scientific, Aalst, Belgium) and the ImageQuant LAS 4000 Mini 
Biomolecular Imager (GE Healthcare).

Cell survival assays. Cell survival in response to apigenin treat-
ment and radiation was assayed using clonogenic assays and 
MTS tests (One Solution Cell Proliferation Assay, Promega). 
Clonogenic assays were performed on cells plated at low-density 
as described previously (29) and as recommended by the manu-
facturer's protocol for MTS assays.

DNA repair assays. Single-cell gel electrophoresis under 
alkaline conditions and flow cytometry measurement of 
phosphorylated γ-histone 2Ax (γ-H2Ax) foci were used to 
identify ds-DNA breaks and associated repair mechanisms, 
respectively.

ds-DNA breaks following apigenin (or DMSO) treatment 
and radiation were detected by using the CometAssay HT kit 
(Trevigen, Sanbio, Uden, The Netherlands). Briefly, single cells 
embedded in agarose were lysed to remove proteins and where 
then submitted to electrophorese. Staining was performed with 
SYBR green I (Trevigen) for 15 min. The slides were examined 
under a fluorescent microscope (Zeiss Axiovert 10 microscope, 
Carl Zeiss) and DNA tail lengths were quantified in a blinded 
manner by counting a minimum of 50 cells per condition in 
independent experiments.

Treated cells were harvested at different times and 
were prepared for flow cytometer analysis. Approximately 
2.5x106 cells/ml were resuspended in 250 µl of PBS and fixed 
by adding the same amount of 4% paraformaldehyde (PFA, 
Merck, Overijse, Belgium). After permeabilization and blocking 
with PBS containing 0.5% Triton X-100 (Acros Organics, Geel, 
Belgium) and 5% donkey serum (Jackson Immunoresearch 
Laboratories, Newmarket, UK) for 20 min, an anti-phosphor-
ylated Ser139 γ-H2Ax mouse monoclonal antibody (1:500, 
Millipore) was incubated for 90 min at room temperature. 
Three PBS washes later, we incubated cells with an FITC-
conjugated secondary antibody (1:500, Jackson Immunoresearch 
Laboratories). Indirect immunofluorescence staining was imme-
diately analyzed after three more PBS washes (FACS Calibur, 
BD Biosciences, Erembodegem, Belgium).

Statistical analysis. Statistical analyses were performed using 
the Prism 5.0c for Mac software (Graphpad Inc., La Jolla, CA). 
One-way ANOVA and Mann-Whitney U tests were performed 
when appropriate and as described in the results section.

Results

Irradiation-induced CK2 kinase activity in malignant glioma 
cells. Exposure of LN18 and U87 cells to ionizing radiations 
(γ rays, 4 Gy) increased the catalytic activity of CK2 within 
30 min, by respectively 25±5% and 45±2.5%. Both the basal and 
radiation-induced CK2 activities were significantly abolished by 
pretreatment of the cell cultures with 40 µM Apigenin for 1 h 
(mean ± SD, n=3, P<0.05 for both, ANOVA with Tukey's post 
tests; Fig. 1).

Irradiation-induced NF-κB activation in malignant glioma 
cells. Ionizing radiation activates NF-κB in tumors and glio-
blastomas via an ATM-NEMO-IKK-kinase dependent pathway 
(30). UV-induced DNA damage, however, also activates CK2 
(31), leading to an IKK-kinase-independent C-terminal phos-
phorylation and degradation of I-κBα, and NF-κB activation 
(32). In LN18 and in U87 cells, ionizing irradiation (10 Gy) 
increased within 1 h the activity of an NF-κB-driven lucif-
erase reporter gene by 31±6.6% and 66±34%, respectively, 
(mean ± SD, n=3, P<0.05, one-way ANOVA with Tukey's post 
tests). The baseline activity of the reporter gene was inhibited 
following apigenin treatment and remained significantly reduced 
in these cells despite irradiation (P<0.05, 40 µM, Fig. 2).
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CK2 inhibition and DNA-repair in malignant glioma cells. CK2 
has recently emerged as a regulator of the DNA damage response 
machinery (33). We thus performed COMET assays to measure 
the influence of CK2 inhibition on ds-DNA break formation in 
U87 and LN18 cells following γ irradiation (10 Gy). As shown in 
Fig. 3A, si-mediated CK2 depletion slightly decreased the peak 
amplitude of COMET tails in LN18 cells 3 h following a 10 Gy 
irradiation (P<0.05, Mann-Witney U test). It however had the 
opposite effect in U87 cells (P<0.05, Mann-Witney U test). The 
mean tail amplitude returned to baseline in mock-treated and 
siCK2-treated LN18 cells after 24 h. Tail size also returned to 
baseline in siCK2-treated U87 cells, in sharp contrast to mock-
transfected cells where tails still remained significantly longer 
than at baseline at this time point (P<0.0001, Mann-Witney 
U test).

We also assessed the kinetics of γ-H2Ax foci formation 
in LN18 and U87 cells treated with apigenin (40 µM) using 

FACS cytometry. In both cell types, radiation treatment (10 Gy) 
increased the amount of γ-H2Ax immunoreactivity with respect 
to baseline conditions, with a peak within 1 to 3 h. γ-H2Ax 
signal returned towards baseline in control and apigenin-treated 
in both cell types within 24 h. Apigenin treatment did not alter 
these post-irradiation kinetics of γ-H2Ax immunoreactivity 
(data not shown).

CK2 is also known to inhibit the DNA-repair kinase 
DNA-PK (15), and the Chk2 checkpoint kinase is phosphory-
lated on tyrosine 68 by DNA-PK following irradiation (34). 
Tyr68 phosphorylation of Chk2 was induced in LN18 and U87 
within 15 min after irradiation (4 Gy). This event was potenti-
ated and more durable in both cell types by a pre-treatment with 
40 µM apigenin (Fig. 3B).

CK2 inhibition and cell survival following γ irradiation. Both 
U87 and LN18 cells displayed a moderate but significant reduc-
tion in viability following 4 G-rays of γ irradiation (25.5±13.2% 
and 27±19.5%, respectively, P<0.05, one-way ANOVA) as 
assessed using an MTS test (Fig. 4A). This viability was not 
further reduced following co-treatment with 40 µM apigenin. At 
this concentration, apigenin treatment also failed to radiosensi-
tize U87 and LN18 cells in clonogenic assays (Fig. 4B, upper 
pannel).

As CK2-independent effects of apigenin have been reported 
(35), we also assessed the effect of siRNA-mediated CK2 
kinase depletion on the radiosensitization of malignant glioma 
cells. The clonogenic survival of U87 and LN18 cells treated 
with CK2-targetting siRNA prior to irradiation did not differ 
from scramble siRNA treated controls (Fig. 4B, lower pannel).

Discussion

CK2 has recently appeared as a regulator of ds-DNA break 
(DSB)-triggered signaling cascades in normal, carcinoma and 
even in some malignant glioma cells (36).

Figure 1. CK2 kinase assays following irradiation. LN18 and U87 cells were 
irradiated (4 Gy), homogenized and assessed for CK2 kinase activity following 
immunoprecipitation of the CK2 complex, as explained in the Μaterials 
and methods section. CTRL, cells are treated with DMSO only; API, cells 
are treated with 40 µM apigenin in DMSO, for 1 h prior to the irradiation. 
Experiments are represented as percents of control, non-irradiated cells (T0), 
and as the mean ± SD of 3 independent experiments. (*P<0.05; ***P<0.001, 
ANOVA with Tukey's post tests). 

Figure 2. NF-κB reporter gene assays. NF-κB-driven luciferase activity was 
measured 1 h after irradiation (10 Gy) prior and after irradiation of LN18 and 
U87 cells in control (DMSO) conditions and following apigenin treatment. 
Activities are represented in percents of control, non-irradiated cells, and are 
shown as the mean ± SD of 3 independent experiments (*P<0.05, ANOVA with 
Tukey's post tests). 
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Accordingly, CK2-α, the active kinase subunit of CK2, was 
activated within minutes of radiation treatment in our malig-
nant glioma cells. siRNA-mediated CK2 depletion significantly 
increased the maximal peak of DSB in LN18 cells, but not in 
U87 cells. However, CK2 knock-down did not inhibit the repair 
of ds-DNA breaks in our cell lines, but even slightly improved 
it, as evidenced by the normalization of COMET assays within 
24 h after irradiation in both cell lines and the faster return of 
γ-H2Ax immunoreactivity towards the baseline in U87 cells 
following apigenin treatment.

In standard conditions, homologous recombination (HR) 
only plays an accessory role in ds-DNA repair following 
ionizing radiation in gliomas, and these tumors rather proceed 
via non-homologous end joining (NHEJ) (37). During NHEJ, 
CK2 phosphorylates XRCC4 and helps recruit repair enzymes 
like PNKP and APLF to this scaffold protein (13,15,36,38,39). 
According to this, and in contrast to our COMET and γ-H2Ax 
findings, CK2 inhibition should thus inhibit DNA repair. In 
better agreement with our results however, CK2 inhibition did 
not impair ds-DNA rejoining in fibroblasts or colon carcinoma 
cells (40). As a tentative explanation, CK2 also inhibits the 
DNA-dependent protein kinase subunit DNA-PKcs in glio-
blastomas (15). DNA-PK is itself a key inhibitor of HR (41), 
and gliomas might thus escape CK2 inhibition-induced NHEJ 
inhibition via an increase in homologous recombination. In 
agreement with this hypothesis, apigenin treatment of glioma 
cells increased the radiation-induced phosphorylation of the 
DNA-PK target Chk2 (34,42) in our experiments.

In colon carcinoma cells and fibroblasts, although CK2 
inhibition does not alter the rejoining of DSB, it does slow down 

 A

Figure 3. CK2 inhibition and DSB-repair. (A) COMET assays were performed on glioma cells transfected with siRNA to CK2 or control scramble siRNAs, and then 
irradiated (10 Gy). ds-DNA break formation was determined 3 h and 24 h after the irradiation. COMET tail/head ratios are shown as the means ± SD of a minimum 
of 50 cells (*P<0.05; ****P<0.0001, Mann-Witney U test). (Inserts): Western blot analysis of the inhibition of CK2-α expression 48 h after the siRNA transfection. (B) 
Western blot analysis of Tyr68 phosphorylation of CK2 in U87 and LN18 cells following irradiation (4 Gy) and apigenin treatment (40 µM). 

 B
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the dephosphorylation of γ-H2Ax and its dissociation from 
the DNA after repair (40). Such a lengthened γ-H2Ax decay 
is believed to amplify checkpoint signaling in the presence of 
minimal residual DNA damage and lead to cell death (43). We 
did not observe this phenomenon in our experiments.

In our experiments and in agreement with previous 
reports (44,45), CK2 inhibition also reduced the constitutive 
level of NF-κB reporter activity in both cell lines. The post-
radiation transcriptional activity of this factor also remained 
significantly lower in apigenin-treated irradiated cells than 
in the control, non-irradiated cells. Apigenin-treated cells, 
however, still responded to irradiation with a minimal induc-
tion of NF-κB (data not shown), and our results thus do not 
contradict the paradigm that CK2 triggers NF-κB activation in 

response to UV-induced DNA damage but not following expo-
sure to ionizing radiation (46-49).

Pharmacological NF-κB inhibitors are nonetheless known 
to modulate the fate of tumor cells following irradiation. They 
were reported to radiosensitize glioblastomas (50,51), but NF-κB 
was also, on the contrary, recently reported to mediate apoptosis 
following the irradiation of primary cultures and progenitor 
cells of gliomas lines (52). In line with these contrasting reports 
and its favorable effect on DSB-repair in our experiments, CK2 
inhibition did not radiosensitize our glioma cells. This neutrality 
seems to be independent of TP53 mutational status, as we 
confirmed by exon sequencing that LN18 and U87 cells express, 
respectively mutant and wild-type variants of this CK2 target 
(data not shown) (53-55). Aspecific effects of apigenin were 

 A

 B

Figure 4. CK2 inhibition and survival of glioma cells following irradiation. (A) MTS proliferation assays were performed 5 days after a 4 Gy irradiation (XRT) 
following a 1 h pre-treatment with 40 µM apigenin. Experiments are represented in percents of control, non-irradiated cells, and as the mean ± SD of 3 independent 
experiments (*P<0.05, ANOVA with Newman-Keuls post tests). (B) Clonogenic assays of LN18 And U87 cell survival 9 days after irradiation (2, 4, 6 and 10 Gy) in 
the presence or not of apigenin (upper panel) or after CK2-α depletion (lower pannel). Results are expressed in percents of controls, non-irradiated cells and as the 
mean ± SD of 4 independent experiments.
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also ruled out by repeating clonogenic assays following siRNA 
mediated depletion of CK2-α.

Although we cannot rule out that CK2 inhibition could radio-
sensitize glioblastoma cells with defective DNA-PK, the lack of 
radiosensitization of gliomas that we have observed contrasts 
with that of non-small cell lung carcinomas, fibroblasts and 
colon carcinomas cells following CK2 inhibition (6,40). Since 
DNA-PK mutations occur in only 3% of glioblastomas (TCGA 
data portal, accessed January 16th, 2011; the TCGA research 
network) (56) we believe that glioma patients should not be 
included in clinical trials that assess the radiosensitizing role of 
CK2 inhibitors. Further studies of DNA repair mechanisms in 
primary brain tumors and a preclinical evaluation of therapies 
combining CK2 inhibitor with other DNA-damaging agents 
with DNA-PK inhibitors are required to improve the therapeutic 
options for these tumors.

In spite of its modulation of DNA-damage signaling cascades, 
CK2 inhibition fails to inhibit DNA repair following ionizing 
radiation and to radiosensitize glioma cells, independently of 
their TP53 status. This contrasts with other tumor types, urging 
caution regarding the inclusion of malignant glioma patients in 
clinical studies that will assess the radiosensitizing role of CK2 
inhibitors in solid cancers.
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