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Abstract. Breast cancer is the most prevalent cancer in 
women worldwide and is classified into ductal and lobular 
carcinoma. Breast cancer as well as lobular carcinoma is asso-
ciated with various risk factors such as gender, age, female 
hormone exposure, ethnicity, family history and genetic risk 
factor-associated genes. Genes associated with a high risk of 
developing breast cancer include BRCA1, BRCA2, p53, PTEN, 
CHEK2 and ATM. Surgery, chemotherapy, radiotherapy and 
hormone therapy are used to treat breast cancer but these 
therapies, except for surgery, have many side-effects such as 
alopecia, anesthesia, diarrhea and arthralgia. Gene-directed 
enzyme/prodrug therapy (GEPT) or suicide gene therapy, may 
improve the therapeutic efficacy of conventional cancer radio-
therapy and chemotherapy without side-effects. GEPT most 
often involves the use of a viral vector to deliver a gene not 
found in mammalian cells and that produces enzymes which 
can convert a relatively non-toxic prodrug into a toxic agent. 
Examples of these systems include cytosine deaminase/5-
fluorocytosine (CD/5-FC), carboxyl esterase/irinotecan 
(CE/CPT-11), and thymidine kinase/ganciclovir (TK/GCV). 
Recently, therapies based on genetically engineered stem 
cells (GESTECs) using a GEPT system have received a great 
deal of attention for their clinical and therapeutic potential to 
treat breast cancer. In this review, we discuss the potential of 
GESTECs via tumor tropism effects and therapeutic efficacy 
against several different types of cancer cells. GESTECs 
represent a useful tool for treating breast cancer without 
inducing injuries associated with conventional therapeutic 
modalities. 
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1. Breast cancer

Overview. Breast cancer is the most frequently diagnosed 
cancer and the leading cause of cancer mortality in women, 
accounting for 23% of all cancer cases and 14% of all cases 
of cancer mortality (1). The breasts are composed of fat, 
glandular, and connective (fibrous) tissues, and contain several 
lobes which are divided into lobules that end in milk glands. 
Tiny ducts run from the glands, converge, and end in the nipple. 
Breast cancer changes the size or shape of the breast and can 
be separated into two histopathological categories: ductal and 
lobular carcinoma  (2). Additionally, these carcinomas are 
further divided into in situ and invasive carcinomas according 
to whether the tumor is confined to the glandular component 
of the organ or whether it has invaded the stroma (3). Ductal 
carcinoma represents 80% of breast cancer cases and presum-
ably originates from malignant epithelial cells within the 
ducts or tubes that carry milk to the nipple from the breast (4). 
Lobular carcinoma is a less common form of breast cancer that 
commences in the milk-producing lobules of the breast (5). 
This type of carcinoma is composed of acini filled with a 
small, round, polygonal or cuboidal cells (6). 

Breast cancer progression includes five stages defined 
according to tumor size, spread to the lymph nodes, and metas-
tasis (spread to a more distant part of the body) (7). Stage 0 is 
a pre-cancerous state in which the cancerous cells have not 
spread outside of the milk-producing lobules or ducts. Lesions 
in this stage are also referred to as ductal carcinoma in situ 
(DCIS) and lobular carcinoma in situ (LCIS) (8). DCIS is 
generally categorized into the five most common architectural 
subtypes, including papillary, micropapillary, cribriform solid, 
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and comedo (9). Stages I to III are characterized by lesions 
within the breast or regional lymph nodes; these stages are 
based on the size of the tumor and the spread to the lymph 
nodes  (10). Finally, stage IV is metastatic cancer that has 
spread to other organs of the body (i.e., lungs, bones, liver, 
or brain) (11). Although breast cancer is the most frequently 
diagnosed cancer and the leading cause of cancer mortality 
in women, if detected during the early stages it can be treated 
successfully by surgery or chemotherapy (12). 

Causes. Variable risk factors for breast cancer include gender, 
age, female hormone exposure, ethnicity, obesity, family 
history of breast cancer, genetic risk factors, and many 
abnormal conditions of the breast (13,14). Being female is the 
main risk factor for developing breast cancer since women 
have significantly more breast cells than men. Nevertheless, 
men can also develop breast cancer but they account for <1% 
of all breast cancer cases (15). Clinically, breast cancer in men 
is similar to that in women and is also affected by hormonal, 
genetic, and environmental factors (16). 

In women, cells in the breast are exposed to growth-
stimulating female hormones including estrogen (E2) and 
progesterone (P4) (17). E2 stimulates breast cell division 
which can increase the risk of permanent DNA damage (18). 
The growth factor transforming growth factor-α (TGF-α) can 
also affect cell division, and overexpression of this factor is 
associated with increased cell division in breast cancer (19). 

The risk of developing breast cancer increases with age and 
doubles every 10 years until menopause (20). Age is the stron-
gest risk factor for breast cancer after gender (21). There are 
also numerous genetic risk factors for breast cancer. Numerous 
cases of cancer begin when one or more genes in a cell mutate, 
thereby producing an abnormal protein or no protein at all 
(22). Production of an abnormal protein and lack of protein 
production may cause cells to divide uncontrollably and 
become cancerous (23). The normal function of genetic risk 
factor-associated genes is the suppression of tumorigenesis. 
Genes associated with a high risk of developing breast cancer 
include BRCA1, BRCA2, p53, PTEN, STK11, CHEK2, and ATM 
(24,25). Finally, various other factors such as medical history, 
life style, dense breast tissue, alcohol intake, and smoking can 
promote the development of breast cancer (26).

BRCA1 and BRCA2. Mutation of breast cancer type 1 and 
2 susceptibility proteins (BRCA1 and BRCA2) cause most 
hereditary breast or ovarian cancer syndromes. BRCA gene-
associated mutations might also be caused by Li-Fraumeni-like 
syndrome (LFS) (27,28). Mutation of these genes confers a 
43-84% risk of breast cancer by the age of 50-70 in women 
(29,30). It is now clear that the normal protein products of 
BRCA1 and BRCA2 are tumor suppressors (31). BRCA1 is 
located on chromosome 17. The BRCA1 protein acts as a hub 
protein that promotes genomic stability and DNA repair by 
its involvement in homologous recombination and nucleotide 
excision repair, DNA damage response and cell cycle check 
point control, chromatin remodeling, transcriptional regula-
tion, and protein ubiquitylation (32). BRCA2 is located on 
chromosome 13. The BRCA2 protein plays an important role 
in maintaining genomic stability via homologous recombina-
tion, both during meiosis and repair of double-strand breaks 
(33). Both BRCA1 and BRCA2 mutations have been found 

more often in patients with high grade breast cancer compared 
to age-matched control patients (34). However, tumors with 
BRCA1 mutations have high mitotic counts and ones with 
BRCA2 mutations mostly contain less tubular structures. 
Furthermore, BRCA2 mutations are associated with a more 
extensive intraductal component than BRCA1 mutations, and 
increase the risks for certain childhood tumors (35). 

p53. p53 is a known tumor suppressor gene encoding a 
sequence-specific transcriptional regulator which controls 
cell cycle progression, senescence, differentiation, DNA 
repair, and apoptosis (36). This gene has a major function in 
responding to cellular stress factors, such as DNA damage and 
hypoxia, resulting in a cascade of events that reduces the risk 
of cancer and prevents tumor development (37). Moreover, 
p53 mutations have been observed in all the major histoge-
netic groups, including cancer of the colon, stomach, breast, 
ovary, and esophagus, and account for >50% of all cancer 
cases (38). A point mutation in the p53 gene has been found 
between exon 4 and 10 that is located within the DNA binding 
domain of the p53 protein (39). A somatic mutation in the p53 
gene is the most common genetic change found in 20-35% of 
breast cancers and is associated with poor prognosis (40,41). 
A significant number of breast cancer cases is linked with 
BRCA1 mutations that may affect p53 function, and activates 
a p53-dependent response (42). Furthermore, high expression 
of p53 is more frequently found in estrogen and progesterone 
receptor-negative breast cancers (43,44) and is also associated 
with a high proliferation rate, high histological grade, aneu-
ploidy, and decreased survival rates (45). 

PTEN. Phosphatase and tensin homolog (PTEN) encoded 
by the PTEN gene in humans has been identified as a tumor 
suppressor in many types of cancer (46). This lipid phospha-
tase is involved in cell cycle regulation and prevents cells from 
growing and dividing too rapidly (47). The phosphatidylino-
sitol (3,4,5)-trisphosphate (PIP3) kinase-protein kinase B 
(PI3K-AKT) pathway is activated in human cancers. Activated 
PI3K is phosphorylated phosphatidylinositol-4,5-bisphosphate 
(PIP2) to generate PIP3 (48,49). PIP3 activates Akt and is an 
important lipid second messenger that has a role in tumori-
genesis (50). On the other hand, the PTEN protein, the key 
agonist of PI3K-AKT signaling, is inactivated in a broad 
spectrum of human cancers (51). However, somatic PTEN 
deletions and mutations have been observed in breast, brain, 
prostate, and kidney cancer cell lines as well as in several 
primary tumors such as endometrial carcinomas, malignant 
gliomas, melanomas, and thyroid tumors (52,53). In particular, 
Cowden syndrome patients have a germ line PTEN mutation, 
and an increasing amount of data have associated PTEN loss 
with breast cancer (5-21%) (54). It has also been reported 
that suppression of PTEN function increases breast cancer 
chemotherapeutic drug resistance (55,56). Some cell lines 
with mutated PTEN have an abnormal cell cycle and defective 
apoptotic responses (57). 

CHEK2 and ATM. The product of the cell cycle checkpoint 
kinase 2 (CHEK2) gene responds to DNA damage (double-
strand breaks) in a dynamic, multistep process and protects 
genomic integrity (58). CHEK2 is a serine/threonine protein 
kinase found in humans and yeast. Activation of CHEK2 is 
regulated through phosphorylation by ataxia telangiectasia 
mutated (ATM) in both yeast and humans (59). ATM belongs 
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to the PI3K-related protein kinase (PIKK) family and is 
responsible for the immediate and rapid response to double-
strand breaks (60,61). However, mutation of this gene causes 
the development of ataxia-telangiectasia (AT), a neurodegen-
erative disease (62). The relationship between AT and breast 
cancer was first reported 20 years ago with the observation 
that relatives of AT patients have an increased risk of breast 
cancer (63).

Activated CHEK2 phosphorylates critical cell cycle 
proteins that results in the stabilization of p53 and the inhibi-
tion of Cdc25C phosphatase, leading to G1 cell-cycle arrest 
along with the prevention of entry into mitosis and the acti-
vation of DNA repair (64). This kinase also phosphorylates 
BRCA1, resulting in get back DNA damage (65). Mutations in 
the CHEK2 gene, including truncation variant 1100delC, have 
been reported to increase breast cancer risk by up to two-fold 
and may vary according to the Li-Fraumeni syndrome as well 
as breast cancer (66). Susceptibility to cancer due to this gene 
variation was first described in 1999, and the products of the 
CHEK2 and ATM genes are now known to be involved in p53 
inactivation (67).

Breast cancer treatments. Breast cancer is almost always 
treated with surgery, chemotherapy, radiotherapy, and 
hormone therapy. Surgical procedures, called mastectomy or 
lumpectomy, have a role in treating most patients with breast 
cancer (68). During these procedures, the cancerous lesions are 
removed from the breast along with some of the surrounding 
tissue. For this reason, the number of patients who receive 
breast implants after undergoing a mastectomy has increased 
(69). After performing surgery to treat breast cancer, radia-
tion is used as an adjuvant treatment depending on the disease 
stage (70). 

Hormonal therapy, including administration of tamoxifen, 
raloxifene (a selective estrogen receptor modulator, SERM), 
and aromatase inhibitors (AIs), increases the survival rate of 
hormone-sensitive breast cancer patients (71). Treatment of 
breast cancer patients with AIs is more effective than tamoxifen 
although patients receiving AIs have a higher prevalence of 
osteoporosis, bone fractures, and musculoskeletal symptoms, 
particularly joint pain and stiffness (72). 

Chemotherapy is given to slow or stop the growth of cancer 
cells. For this, 5-fluorouracil (5-FU), cyclophosphamide, 
methotrexate, anthracyclines, trastuzumab, and taxanes are 
primarily used (73). If the breast cancer is positive for human 
epidermal growth factor receptor 2 (HER-2), it is treated with 
trastuzumab (herceptin) which targets the HER-2 oncogene 
(74). 5-FU has also been the preferred chemotherapeutic 
agent for treating a majority of solid tumors, including gastric 
and colon cancers (75). However, serious side-effects such as 
alopecia, anesthesia, diarrhea, and arthralgia, as well as high 
dose requirements have limited the use of these chemothera-
peutic agents (76).

2. GEPT using various prodrug/enzymes

Gene-direct enzyme/prodrug therapy (GEPT), or suicide gene 
therapy, aims to improve the therapeutic efficacy of conven-
tional cancer radio- and chemo-therapy without side-effects 
(77,78). This system is a novel approach with the potential to 

selectively eradicate tumor cells (79). For this, an exogenous 
suicide enzyme gene is delivered to tumor cells (80). GEPT 
systems most often involve the use of a viral vector (adeno-, 
lenti-, or retroviral vectors) to deliver a gene not normally 
found in mammalian cells that produces enzymes which, 
when expressed, can convert a relatively non-toxic prodrug 
into a toxic agent (81,82). 

GEPT systems involve two separate events: direct cell 
death and cell death via the bystander effect (83). The viral 
vectors transfected into the target tumor cells induced cell 
death (84). Direct cell death is caused by expression of the 
viral DNA in the targeted tumor cells (85). Next, cell death via 
the bystander effect is induced by the gene transfer of a viral 
or bacterial enzyme into targeted tumor cells. The enzymes 
convert an inactive prodrug into a short-lived toxic metabolite, 
leading to the death of cells surrounding the targeted tumor 
cells (86). Prodrugs can be defined as pharmacologically 
inactive derivatives which require chemical transformation for 
the release or conversion into the active drug (87). A suicide 
enzyme converts the administered non-toxic prodrug into 
an active drug which subsequently kills tumor cells but not 
normal tissues (88). Several types of suicidal genes have been 
studied and used for therapeutic purposes (82).

An advantage of these GEPT systems derives from the 
local bystander effect through which more wide-spread cell 
death is achieved without the need to express the gene in all 
cells (89). This is due to the ability of the toxic metabolite to 
diffuse freely across cells membranes or via gap junctions 
(90). Currently, a large number of enzyme/prodrug systems 
have been developed for GEPT. These include the cytosine 
deaminase/5-fluorocytosine (CD/5-FC), carboxyl esterase/
irinotecan (CE/CPT-11), and thymidine kinase/ganciclovir 
(TK/GCV) systems (91).

Cytosine deaminase/5-fluorocytosine (CD/5-FC). One of 
the most widely used suicidal genes is bacterial or yeast CD 
(from Escherichia coli or Saccharomyces cerevisiae) (92). 
Both bacterial and yeast CD have been shown to inhibit tumor 
growth (93). The enzyme encoded by the CD gene catalyzes 
the conversion of cytosine into uracil; it is an important 
member of the pyrimidine salvage pathway in prokaryotes and 
fungi, but is not present in multicellular eukaryotes (mamma-
lian cells) (94,95). 5-FC is a hydrophilic antifungal drug with 
low toxicity in humans (96). CD catalyzes the conversion of 
the non-cytotoxic prodrug 5-fluorocytosine (5-FC) into the 
cytotoxic chemotherapeutic agent 5-FU, resulting in anti-
tumor activity (97). CD is currently being explored for use 
in gene therapy applications against solid tumors due to this 
activity (98). 

The CD/5-FC system is very effective for treating human 
cancers as non-toxic 5-FC systemically administered can 
be converted into the cytotoxic agent 5-FU by the CD gene 
product located in the vicinity of the cancer (99). Deamination 
of the 5-FC prodrug by CD results in the formation of two 
toxic metabolites: 5-fluorodeoxyuridine monophosphate 
(FdUMP) and 5-fluorouridine triphosphate (FURTP). FdUMP 
is a potent inhibitor of thymidylate synthetase (TS) which is an 
enzyme essential for DNA synthesis. This compound impairs 
DNA synthesis and promotes apoptosis in bacteria and tumor 
cells (100,101).
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Carboxyl esterase/irinotecan (CE/CPT-11). CE enzyme is a 
serine esterase found in a variety of tissues from numerous 
mammalian species (102). This enzyme plays a critical role 
in increasing the solubility and bio-availability of therapeutic 
agents  (103,104). It is cleaved into the bulky piperidino 
sidechain of 7-ethyl-10-[4-(1-piperidino)-1-piperidino]
carbonyl-oxycamptothecin (irinotecan or CPT-11). The anti-
cancer agent CPT-11 is a prodrug that is activated by CE to 
generate the active form 7-ethyl-10-hydroxycamptothecin 
(SN-38) (105,106). SN-38 is a strong mammalian topoisom-
erase I inhibitor that is 1,000-fold more potent than CPT-11. 
This agent induces the accumulation of double-strand DNA 
breaks in actively dividing cancer cells (107). 

Thymidine kinase/ganciclovir (TK/GCV). The most common 
GEPT uses the herpes simplex type-1 thymidine kinase 
enzyme (HSV-TK) in conjunction with a variety of guanosine-
based prodrugs, compounds originally developed as antiviral 
agents (108). The HSV-TK enzyme converts to the prodrug 
into its monophosphate form, GCV, which is then further 
converted into the toxic triphosphates form, an intermediary 
metabolite, by cellular enzymes (109,110). These actions cause 
cell death by inhibiting the incorporation of dGTP into DNA 
without preventing progression through the S-phase; chain 
elongation is also inhibited (111). 

3. Genetically engineered stem cell (GESTEC)-based 
therapy for treating breast cancer

Toxicity of anticancer agents to normal cells is a major limita-
tion of breast cancer therapy (112). Therefore, stem cells have 
recently received a great deal of attention for their clinical 
and therapeutic potential to treat breast cancer. Stem cells 
are capable of continuous self-renewal and differentiation 
(113,114). A variety of stem cells, such as neural stem cells 
(NSCs), neural progenitor cells, and mesenchymal stem cells 
(MSCs) from bone marrow or adipose tissue, have been 
found to exert tumor-tropism effects (115). This ability makes 
these cells attractive for use as targeted delivery vectors for 
antitumor therapies (87,88,99,116-117). The tumor-tropism 
effects of stem cells are mediated by multiple cell-surface and 

secreted proteins, and candidate cytokines/receptors including 
stromal cell-derived factor-1 (SDF-1)/CXCR4, stem cell factor 
(SCF)/c-Kit, hepatocyte growth factor (HGF)/Met, vascular 
endothelial growth factor (VEGF)/VEGF receptor (VEGFR), 
monocyte chemoattractant protein-1 (MCP-1)/CCP, and high-
mobility group box1 (HMGB1)/RAGE (87,88,99,117,118). 
In addition, NSCs appear to migrate to cancer cells more 
efficiently compared to MSCs. Although both NSCs and 
MSCs have a tumor tropic effect, NSCs (50-100% of total cell 
number) were proven to display greater tropism towards tumor 
cells than MSCs (40-75% of total cell number) (119).

The field of NSC research in recent years has seen major 
advances and efforts have been made to develop their use 
in potential stem cell-based transplantation therapies (120). 
NSCs can be used to generate all major mature neural cell 
types such as neurons, oligodendrocytes, glial cells and cells 
of neuronal lineages (121). The fetal brain, characterized by 
active neurogenesis, is thought to be a promising source of 
therapeutic NSCs (122). Previous studies have shown that 
NSCs derived from human fetal telencephalon can be used 
for GESTEC-based therapy for treating several different 
cancers as well as brain diseases (87,88,99). As this is based 
on a GEPT system, it involves the expression of several 
suicide enzymes (Fig. 1). In previous studies, GESTECs 
were immortalized by using retrovirus v-myc and suicide 
genes such as CD, CE, and TK. Therapeutic efficacy has 
been assessed by monitoring tumor-tropism in a brain cancer 
animal model (123). 

In other studies, NSCs expressing CD or CE genes in an 
animal model of breast cancer brain metastasis were found 
to significantly reduce breast tumor mass in the brain (124). 
This demonstrated the therapeutic efficacy of GESTECs in the 
presence of a prodrug (114). Brain metastases originate from 
cells that do not reside in the brain. This suggests that breast 
tumor metastases in the brain attract GESTECs as well as the 
original brain tumor. The therapeutic efficacy of GESTECs 
for treating several other types of cancer cells (i.e., ovarian, 
endometrial, and lung cancer cells) as well as brain tumors, 
including medulloblastomas and gliomas has also been 
demonstrated in vitro. Furthermore, therapies using GESTECs 
may use as breast cancer treatment in vitro and in vivo.

Figure 1. Schematic of genetically engineered stem cell (GESTEC)-based therapy. GESTECs are immortalized by retroviral vectors and contain suicide genes 
such as ones encoding cytosine deaminase (CD), carboxyl esterase (CE), and thymidine kinase (TK). CD converts the prodrug 5-fluorocytosine (5-FC) into a 
toxic agent, 5-fluorouracil (5-FU), which inhibits RNA and DNA synthesis. CPT-11 is a prodrug converted by CE into its active form, SN-38, which is a potent 
mammalian topoisomerase I inhibitor. Finally, the TK gene is found in herpes simplex virus (HSV). The product of this gene converts non-toxic ganciclovir 
into its toxic active form. These GESTECs exert tumor-tropism effects and may be used to treat several types of tumors.
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4. Conclusions

Breast cancer is the leading cause of cancer related mortality 
among women worldwide. Several gene mutations lead to the 
development of breast cancer including ductal and lobular 
breast carcinoma. Chemo-, hormone-, and radio-therapies are 
used to treat breast cancer but these therapies are associated 
with many side-effects. For this reason, GEPT systems have 
been examined as a novel anticancer therapeutic approach with 
the potential to selectively eradicate tumor cells. Prodrugs used 
for GEPT are primarily antimetabolites that require cell cycling 
(S phase) to induce cytotoxicity and are not active against 
normal cells. These systems may involve the use of NSCs which 
express suicide genes and have the ability to selectively migrate 
to tumors. In summary, GESTECs using GEPT systems may 
be an effective new modality for treating breast cancer as well 
as brain tumors without inducing injurious effects commonly 
associated with more conventional anticancer therapies.
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