STAT3 inhibition, a novel approach to enhancing targeted therapy in human cancers (Review)

XIAOCHUN WANG^{1,2}, PHILIP J. CROWE², DAVID GOLDSTEIN³ and JIA-LIN YANG^{1,2}

¹Sarcoma Research Group, Adult Cancer Program, Lowy Cancer Research Centre, Departments of ²Surgery and ³Medical Oncology, Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Randwick, NSW, Australia

Received December 2, 2011; Accepted February 10, 2012

DOI: 10.3892/ijo.2012.1568

Abstract. Signal transducer and activator of transcription 3 (STAT3) regulates many critical functions in human normal and malignant tissues, such as differentiation, proliferation, survival, angiogenesis and immune function. Constitutive activation of STAT3 is implicated in a wide range of human cancers. As such, STAT3 has been studied as a tumour therapeutic target. This review aimed principally to summarise the updated research on STAT3 inhibition studies and their therapeutic potential in solid tumours. Recent literature associated with STAT3 inhibition was reviewed through PubMed and Medline database, followed by critical comparison and analysis. Constitutive activation of STAT3 has been identified as abnormal and oncogenic. The pathway of STAT3 activation and signal transduction identifies 3 approaches for inhibition: modulating upstream positive or negative regulators, regulating RNA (DN-STAT3, anti-sense RNA, siRNA and microRNA) or targeting STAT3 protein at different domains. The last approach using small molecule STAT3 inhibitors has been the most examined so far with both preclinical and clinical studies. Targeting STAT3 using a specific inhibitor may be a useful cancer treatment approach, with the potential for a broad clinical impact.

Contents

- 1. Introduction
- 2. Biology of STAT3
- 3. STAT3 inhibition and preclinical studies
- 4. Inhibiting STAT3 in clinical studies
- 5. Conclusions

Correspondence to: Dr Jia-Lin Yang, Adult Cancer Program, Level 2 Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2052, Australia E-mail: j.yang@unsw.edu.au

Key words: STAT3 inhibition, constitutive activation of STAT3, cancer therapy, STAT3-related microRNA, STAT3 inhibitor clinical trials

1. Introduction

Signal transducer and activator of transcription 3 (STAT3) is a transcription factor which in humans is encoded by the STAT3 gene. The protein is a latent cytoplasm transcription factor that relays signals of cytokines and growth factors from the cell membrane to the nucleus to regulate gene expression critical to normal cellular processes, including cell development, differentiation, proliferation, survival, angiogenesis and immune function (1-5). Constitutive STAT3 activation is associated with various human cancers and commonly suggests poor prognosis (6-9). Thus STAT3 has been studied as a tumour therapeutic target. Very recently a tumour suppressor role of STAT3 in a few tumours has also been reported (10,11), but this is not the focus of the present review.

In mammals, the STAT family consists of seven protein members: STAT1, STAT2, STAT3, STAT4, STAT5a, STAT5b and STAT6, which are mapped to different human chromosomal regions (12). STAT2, STAT4 and STAT6 are only activated in normal human function, while STAT1, STAT3 and STAT5 play an important role in cancer development (STAT1 as tumour suppressor, STAT3 and STAT5 as oncogenes) (13,14). STAT3 appears to be a critical regulator and is therefore the focus of this review. All of the STAT family comprise 750-850 amino acids and 6 conserved domains: the NH2-terminal, coiled-coil, DNA binding, linker, SH2, and C-terminal transactivation domains (15,16). The C-terminal transactivation domain of STAT3 plays an important role in activation through a tyrosine residue at position 705 and a serine residue at position 727 (17). The SH2 region, a wellcharacterized small protein module of approximately 100 amino acids (18), is responsible for the binding of STAT3 to the tyrosine-phosphorylated receptors and also the homodimerization or heterodimerization of two STAT monomers that is necessary for DNA binding and gene expression (19). SH2 region, NH2-terminal and DNA-binding domain became the targets for development of STAT3 inhibitors.

This review aimed principally to summarise the therapeutic potential of STAT3 inhibitors, specifically STAT3 inhibition and preclinical studies, as well as inhibiting STAT3 in clinical trials.

Cancer type	Constitutively activated STAT3	Mediators (or regulators)	Down-stream regulation and target genes	(Refs.)	
Breast cancer	cancer Human cell lines EGF/EGFR, JAK		Src, or Cell cycle progression		
Endometrial and cervical cancer	Human cell lines		Anti-apoptois by caspase-3 Genes: Bcl-X _L , survivin and Mcl-1	(49)	
Lung cancer	ung cancer Human cell lines I		Anti-apoptosis prolifreration	(110-113)	
Multiple myeloma	Human cell lines	IL-6/JAK Anti-apoptosis Gene: Bcl-X _L cyclin D1 and p-STAT3: mutually exclusive events		(69,114)	
Ovarian cancer	Human cell lines		Genes: Bcl-X _L , cyclin D1	(47)	
Sarcomas	Human cell lines		Proliferation and anti-apoptosis by caspases	(115)	
Head and neck cancer	Human HNSCC cell lines, <i>in vivo</i> mouse models, primary cultures of oral keratinocytes	IL-6/gp130, TGF-α or EGFR	Proliferation, tumour growth, anti-apoptosis, and cell cycle progression (G ₂ -M phase accumulation) Genes: cyclin D1, Bcl-2 and Bcl-X _L	(42,43,45, 46,116-118)	
Prostate cancer	Human cell lines, rat cell lines, <i>in vivo</i> mouse models	JAK1 or JAK2	Proliferation, tumour growth, anti-apoptosis by caspase-3	(25,119-122)	
Melanoma	Mouse cell lines, human cell lines, <i>in vivo</i> mouse models	Src, but not EGFR or JAK	not EGFR Proliferation and anti-apoptosis Genes: Bcl-X _L , Mcl-1		
Hepatocellular carcinoma	Human celll lines, <i>in vivo</i> mouse models	TGF- α , orProliferationdysfunctionalGenes: cyclin A, c-jun, c-fos,TGF- β signalingand c-myc		(103,123)	
Pancreatic cancer	Human cell lines, <i>in vivo</i> mouse models		Tumour growth, angiogenesis and metastasis Gene: VEGF	(53)	

Ta	ble	I.	Constitut	ive STA	Г3	activation	and	oncogenesis.
----	-----	----	-----------	---------	----	------------	-----	--------------

2. Biology of STAT3

Normal function of the STAT3 pathways. The STAT3 signalling pathways regulate the gene expression of proliferation, survival, migration and invasion, as well as angiogenesis (2,20) in human. Furthermore, STAT3 is essential at early stages of embryo development (21) and modulates embryonic stem cell differentiation such as TH17 helper T cells (22). In benign cells, the signalling by STAT3 is under tight regulation so that the signal is transient in accordance with physiological responses.

Activation of STAT family and associated pathways. The process of STAT activation commences with the Janus kinases (JAKs) which bind to and are phosphorylated by cytokine or growth factor receptors in response to external signals such as interleukin-6 (IL-6), interferon- α , tumour necrosis factor (TNF),

epidermal growth factor (EGF), platelet-derived growth factor (PDGF), transforming growth factor-alpha (TGF- α) and TGF- β 1 (17,23-25). Subsequently, phosphorylated JAKs in turn cause multiple phosphorylations of tyrosine residues within the cytoplasmic domain of the cytokine receptor (26-28). Monomeric unphosphorylated STAT is recruited to these activated receptors through an interaction between the STAT SH2 domain and phosphotyrosine docking sites on the receptors. JAKs then phosporylate the critical tyrosine on C-terminal domain of STAT, which causes dissociation of STAT from the receptor, this then leads to dimerization of two STAT monomers through reciprocal interaction (2,29,30). Dimeric STAT complexes translocate to the nucleus where they bind to specific DNA response elements in the promoters of target genes (31).

The non-receptor tyrosine kinases such as Src can activate the STAT signalling pathway in the absence of receptor engagement (32-34). In some cases, JAKs as intermediaries are simultaneously involved in activation of STAT by non-receptor tyrosine kinases (35).

Cross-talk with other signalling. In a hepatocellular carcinoma cell (HCC) study, JAK/STAT activated by interferon- α inhibited MAPK signalling by cross-talking with MEK/ERK pathway (36). Our results in sarcoma suggest this may be due to IFN α induced alteration of the balance between STAT1 and STAT3/STAT5 favouring inhibition of proliferation and subsequent apoptosis (37). Cross-talking among the signalling pathways is complicated and requires further investigations. Increased understanding of cross-talking may provide the rationale for combination therapy using STAT3 inhibitor and other drugs.

Constitutive activation of STAT3 and oncogenesis. Constitutive activation of STAT3 has been reported at high frequency in large numbers of malignant cell lines, *in vivo* animal experiments and human tumours (35,38,39). Table I includes a broad range of pre-clinical studies, which show that (activated) phosphorylated-STAT3 (pSTAT3) is a common characteristic of many cancers. Constitutive activation of STAT3 involves multiple signalling pathways in both a cell- and tissue-specific manner, making single upstream pathway treatment difficult. So far, there has been no STAT3 gene mutation detected in any cancer. Persistent activation of STAT3 has been attributed to dysregulation of upstream tyrosine kinases and negative regulators in the STAT3 signalling pathway (20,40).

Activated STAT3 regulates many genes whose expression is required in aspects of cancer initiation, development and progression, including uncontrollable proliferation, anti-apoptosis, invasion, angiogenesis and immune surveillance evasion. STAT3 signalling has been implicated in the up-regulation of cell proliferation by cylin D2 and c-Myc (20,34,41-43). In addition, pSTAT3 contributes to malignancy by preventing apoptosis, allowing accumulation of long-lived tumour cells and mediating chemoresistance via increased expression of anti-apoptotic genes such as Bcl-2 family member Bcl-X_L and Mcl-2 as well as survivin (43-49). Recently, miRNA-21 has been proved to be STAT3 target gene, which functions as an inhibitor of apoptosis in multiple myeloma and Sézary cells (50,51). Increased VEGF expression in cultured cell lines, animal models and patient cancer specimens, as well as tumour angiogenesis in vivo is also induced via STAT3 pathway in diverse human cancers from head, neck, breast, pancreas, cervix as well as melanoma (27,52-54). Over-expression of matrix metalloproteinase-2 (MMP-2) in melanoma and MMP-9 in breast cancer is attributed to elevated STAT3 activity (55,56). STAT3, which may also be activated in tumour-infiltrating immune cells, can inhibit tumour immune function by promoting the expression of immune suppressive factors and inhibiting the product of pro-inflammatory mediators (39,57-60).

Over-expression of pSTAT3 occurs in a wide range of tumours (25,61,62), suggesting STAT3 may be both a therapeutic target and a clinical prognosticator. Table II outlines clinical studies of pSTAT3 expression in various human tumours. There was a significant correlation between higher pSTAT3 and worse outcomes of tumours, such as breast cancers exhibiting invasiveness, head and neck as well as gastric cancers with nodal metastasis and/or in late clinical stage, as well as prostate cancers displaying high Gleason score (25,43,63,64).

The role of STAT3 as a resistance pathway to targeted therapy. As a class the targeted therapies that inhibit specific biologic pathways represent a novel therapeutic strategy either as single agents or in combination with conventional chemotherapeutics in treating a variety of malignancies. However, patient response has been less than expected and early development of resistance has been a major issue (65). The identification of novel alternative signalling pathways represents one resistance mechanism. For example one recent study demonstrated that EGFR and IGFR signal through JAK/STAT pathway, in addition to the two classical pathways of ras-raf-MEK-ERK and PI3K-Akt (66). Indeed STAT3 is a common alternative pathway for many growth promoting factors effectively bypassing a single tyrosine kinase inhibitor acting at an early point in the receptor activation pathway. For example, owing to the high level of IL-6 in NSCLC, EGFR inhibitor was ineffective due to ongoing STAT3 activation (13). STAT3 is a more downstream point of convergence in many ligand/receptor pathways (such as growth factor and cytokine receptors) and non-receptor tyrosine kinase pathways (such as Src) and consequently cross-talk among these signalling pathways may contribute to resistance to EGFR inhibitors. In addition STAT3 acts as a nuclear transcription factor (41) upregulating genes of cell survival and proliferation. Its inhibition represents a promising target for improving targeted cancer treatment in a number of preclinical studies. Furthermore, considering its late position in activation pathways, its inhibition may be less likely to be overcome through an alternative pathway.

3. STAT3 inhibition and preclinical studies

Since STAT3 is involved in regulating fundamental biological processes and pSTAT3 contributes to malignant transformation and progression, targeting STAT3 signalling appears to be a novel approach to preventing and treating cancers. Several strategies are being developed to target the STAT3 signalling pathway.

Modulating upstream positive or negative regulators. Inhibiting the upstream signals or enhancing negative regulators of STAT3 signalling pathway is one possible strategy.

i) Inhibition of STAT3 signalling via targeting the activation of cytokine and growth factor receptors with monoclonal antibodies or receptor antagonists: for example, the use of

Tumour type	Expression of constitutively activated STAT3	Correlation with clinical prognosis and parameters	(Refs.)	
Breast cancer	15 of 16 (94%) invasive cancers, 1 of 8 (12.5%) <i>in situ</i> carcinomas	Advanced breast cancer	(64)	
	18 of 23 (78%) breast tumour specimens		(61)	
	57% primary breast cancer specimens		(56)	
Head and neck cancer	10.6-fold higher in tumours and 8.8-fold higher in normal mucosa from cancer patients compared with normal mucosa from non- cancer patients	Early event in head and neck carcinogenesis	(45)	
	74 of 90 (82%) tumour specimens 1 of 8 (12.5%) premalignant lesions	High expression in early tumour stage, subsequent degradation in late stage	(62)	
	19 of 51 (37%) SCCHN tumour specimens with strong expression	Existence of nodal metastasis, late clinical stage and poor prognosis	(43)	
	7 of 10 (70%) poorly differentiated tumours	STAT1 vs STAT3 balance affects the pathogenesis of tumours	(42)	
Prostate cancer (PC)	44 of 45 (98%) tumour specimens, 13 of 45 (29%) adjacent nonjuror tissues	High gleason score	(25)	
	All 24 tumours and adjacent non-tumour tissues		(124)	
	All 15 tumour specimens	Severity of the malignancy	(122)	
Gastric cancer	26 of 53 (49%) tumour specimens	Lymph node metastasis and overall survival	(63)	
Melanoma	A majority of tumour specimens examined		(48)	
Endometrial and cervical cancer	24 of 115 (21%) endometrial cancer specimens, 25 of 104 (24%) cervical cancer specimens	Activation in early stage and throughout all stages	(49)	
Hepatocellular carcinoma	All 9 HCC tissues		(103)	
Lung cancer	95 of 176 (54%) NSCLC specimens	Limited smoking history and adenocarcinoma	(111)	
	56 of 92 (61%) NSCLC	Smaller tumours	(125)	
	46 of 92 (50%) adenocarcinomas specimens		(112)	
	All 10 SCLC specimens		(113)	
Colorectal cancer	131 of 724 (18%): hight-level pSTAT3 244 of 724 (34%): low-level pSTAT3	Adverse clinical outcome (higher mortality, peritumoural lymphocytic reaction)	(9)	
Sarcomas	21 of 113 (19%) osteosarcoma, 27 of 64 (42%) rhabdomyosarcoma, 22 of 151 (15%) of other soft tissue sarcoma		(115)	
	28 of 82 (34.1%) soft tissue sarcoma	Tumour grade, location, plane and necrosis	(126)	
Multiple myeloma (MM)	All 24 bone marrow specimens of MM 23 of 48 (48%) tissue specimens of MM		(69) (114)	

Table II. Constitutive STAT3 activation in clinical studies using human tumour specimens.

Treatment type Methods		Results	(Refs.)	
Dominant - negative mutant STAT3	<i>In vitro</i> : SCCHN, melanoma, sarcoma, mammary carcinoma, prostate cancer, breast cancer, endometrial and cervical cancer, non-small cell lung cancer cell lines	Cell death ↑, apoptosis ↑, cell proliferation ↓, VEGF ↓, cell cycle arrest, cyclin D1↓, Bcl-2 ↓, Bcl-X _L ↓	(27,43,49,54,61,94, 95,110,115-117, 119,122,127)	
	<i>In vivo</i> : mouse melanoma and human prostate cancer xenografts in mice	Tumourigenicity↓, tumour growth↓, tumour regression↑, apoptosis↑		
Antisense	<i>In vitro</i> : SCCHN, melanoma, mammary carcinoma, prostate cancer, non-small cell lung cancer, breast cancer cell lines	Apoptosis ↑, cell proliferation ↓, VEGF ↓, survivin ↓	(25,45,110,116, 117,122,127,128)	
	In vivo: SCCHN xenogragts in mice	Apoptosis \uparrow , Bcl-X _L \downarrow		
siRNA	<i>In vitro</i> : breast cancer, melanoma, glioma and prostate cancer cell lines	VEGF ↓, cell growth ↓, apoptosis ↑, Bcl-2 ↓, cyclin D1 ↓, c-Myc ↓	(15,54,129)	
	<i>In vivo</i> : glioma and prostate cancer xenografts in mice	Tumour growth ↓, apoptosis ↑		
MicroRNA				
Anti-let-7a	In vitro: malignant cholangiocytes	p-STAT3 ↓	(93)	
	<i>In vivo</i> : malignant cholangiocytes xenograft in mice	p-STAT3 ↓, chemotherapy toxicity ↑, tumour growth ↓		
miR-17 family mimic	In vitro: human breast cancer cells	STAT3 protein ↓	(91)	

Table III. Preclinical treatment of cancer by interfering STAT3 mRNA.

IL-6 receptor super-antagonists, such as Sant7, inhibited IL-6dependent human myeloma cell growth ($IC_{50} = 0.16$ nM), as well as induced cell death as a pro-apoptotic factor via STAT3 signalling (67,68).

ii) Inhibition of upstream tyrosine kinases JAK or Src with small molecule inhibitors such as AG490, INCB20, PD180970 and Dasatinib: for example AG490, a JAK2-specific inhibitor, blocked constitutive activation of STAT3 causing a significant reduction of Bcl-X_L mRNA expression and induced cell apoptosis in certain human myeloma and prostate cancer cell lines (69). Pan-JAK inhibitor INCB20 was demonstrated to block STAT3 phosphorylation, induce apoptosis and inhibit human multiple myeloma cell growth with an IC₅₀ of less than 1 μ M, as well as dramatically delay tumour growth in subcutaneous xenograft model in mice (26). Dasatinib (BMS-354825), which inhibits Src tyrosine kinase activity, has shown an anti-tumour effect on head and neck squamous cell carcinoma and nonsmall cell lung cancer cells with low IC₅₀ values *in vitro* (70).

iii) Enhancement of negative regulators: a number of pathways that negatively regulate STAT3 have been identified. These include suppressors of cytokine signalling (SOCS) family proteins which are transcriptionally regulated by activated STAT and form a negative feedback loop to suppress STAT signal by binding to or inhibiting JAKs or by targeting bound proteins to the proteasome degradation pathway. Other negative regulators

include: protein inhibitor of activated STAT (PIAS), various tyrosine phosphatises (SHP1, SHP2, CD45), phosphatase and tensin homolog (PTEN), GRIM-19 (gene associated with retinoid IFN induced mortality-19) as well as the ubiquitin-proteasome degradation pathway involved in negative regulation of STAT signalling (71-81). Recently, neurofibromatosis 2 (NF2) tumour suppressor, schwannomin was also demonstrated to inhibit STAT3 phosphorylation (82).

However, although these are all theoretically attractive, any attempt to activate these pathways as a means of downregulating activated STAT3 is problematic owing to redundancy of upstream proteins, meaning that the STAT3 pathway might not be effectively blocked by a single compound. Furthermore, these compounds might inhibit other downstream targets, which the STAT3 signalling are cross-talking with (39,83) and consequently cause undesirable side effects.

RNA interference. Another approach for STAT3 inhibition is to affect translation of STAT3 mRNA by coding RNA interference, such as domain-negative (DN) STAT3 mutants (STAT3 β , STAT3D or STAT3F), anti-sense STAT3 oligonucleotides or small interfering RNA (siRNA). Several groups reported that this strategy can inhibit cellular growth and induce apoptosis in multiple human cancer cells *in vitro* and *in vivo*, accompanied with down-regulation of STAT3 target genes. Table III lists

Figure 1. MicroRNAs associated with STAT3 regulation in cancer. Briefly, Mir-let-7a indirectly enhances STAT3 activation through inhibiting NF2 (negative regulator to STAT3), whilst Mir-17 directly downregulates STAT3 protein expression. In addition, mir-21 is a target gene of STAT3. Activated STAT3 binds to mir-21 gene, sequently downregulates the gene expression, and eventually leads to antiapoptosis (RISC, RNA induced silencing complex).

some RNAs used in preclinical studies, which target STAT3 mRNA.

Recently, microRNAs, small non-coding RNA molecules, which act as post-transcriptional regulators have also become the focus of research on regulation of gene activity. MicroRNA binds to the 3' untranslated regions (3' UTRs) of target mRNA in RNA induced silencing complexes (RISC), and negatively regulates gene expression through transcript destabilization and translational attenuation (84). A variety of microRNAs are linked with cancer initiation and development as tumour suppressors or oncogenes (also called oncomirs) (85-90). Several microRNAs can regulate STAT3 protein expression in embryonic development and cellular differentiation (91,92). However, in tumour-related studies, only two microRNAs, mir-17 and mir-let-7a are identified to regulate STAT3 to date (Fig. 1). The Mir-17 family, as a tumour suppressor, directly regulates STAT3 mRNA expression through binding to and silencing STAT3 3' UTRs in a breast cancer cell line (MDA-MB-231) (91). Mir-let-7a, as an oncogene, indirectly modulates STAT3 phosphorylation in malignant human cholangiocytes (93). Neurofibromatosis 2 (NF2), a negative regulator of STAT3 phosphorylation, is a direct target gene of mir-let-7a. As such, let-7a microRNA contributes to elevated STAT3 phosphorylation. Thus, microRNA (anti-let 7a and Mir-17 mimic) which blocks the oncogene or replace the lost suppressor function have the potential for an anti-tumour effect.

Importantly, such gene therapy displayed anti-tumour bystander effects, in which adjacent tumour cells that did not receive the gene therapy also underwent apoptosis (94,95). For example, gene therapy using STAT3 β RNA blockade caused the tumour regression seen with massive apoptosis of both transfected and bystander tumour cells.

However, more new techniques will be needed to overcome the small RNA delivery limitations and subsequent immune response in patients (84,96). Some other major problems of RNA delivery include rapid excretion by kidney, degradation in extracellular fluid and permeability to the cell membrane. Nevertheless, approaches using different delivery agents (liposome, nanoparticle and LNA oligonucleotide) have entered preclinical and phase I clinical trials (97,98).

Targeting STAT3 protein directly. The best approach may be to inhibit STAT3 protein directly. The three domains of STAT3: NH2-terminal, DNA-binding and SH2 were identified as selective targets for development of STAT3 inhibitors based on the understanding of the structure and function of STAT3 (99). The most popular target is the SH2 domain, since it is necessary for STAT3 recruiting to any activated receptor. In addition, inhibition of this target can block STAT3 dimerization and consequently inhibit nuclear translocation and STAT3-dependent gene regulation. So far, three categories of STAT3 SH2 inhibitors have been developed including peptides, peptidomimics and small molecule inhibitors. Several phosphotyrosyl peptides (PpYLKTK), tripeptides (PpYL, ApYL) and peptidomimetics (ISS610) were demonstrated to inhibit STAT3 dimerization, cell proliferation and gene regulation in vitro. PpYLKTK, PpYL and ApYL, which are STAT3 SH2 domain-binding peptides, blocked STAT3 DNA-binding activity with an IC₅₀ of 235, 182 and 217 μ M, respectively (100). The most effective yet reported ISS610 disrupted STAT3 dimerization, inhibited cell growth and induced apoptosis, as well as reduced DNA-binding activity with an IC₅₀ of 42 μ M in cells with pSTAT3 (101). However, poor cell permeability and in vivo stability is the limitation to applying peptide-based inhibitors to clinical trials (83).

Multiple novel small molecular inhibitors targeting STAT3 SH2 domain were identified and designed through structurebased high-throughout virtual screening and have been demonstrated to inhibit STAT3 dimerization and DNA-binding activity, as well as inhibit cell proliferation and tumour growth in cultured cancer cell lines and in animal models respectively. Table IV summarizes the inhibitors reported to target SH2 domain, as well as the related mechanism studies, including STA-21 and analogue, Stattic, S3I-201 (NSC 74859) and analogue, S3I-M2001, 5,15-DPP, LLL12 and STX-0119. S3I-201 selectively inhibited STAT3 DNA-binding activity, STAT3

Name	Studies	Discoveries	(Refs.)	
STA 21 Human breast cancer cells, human ovarian carcinoma cells Osteosarcoma and rhabdomyosarcoma		STAT3 DNA-binding activity ↓, STAT3 dimerization ↓, STAT3-dependent luciferase activity ↓ Cells with pSTAT3: survival ↓, viability ↓, growth ↓ apoptosis ↓	(115,130)	
STA-21 analogue: LLL-3	Human glioblastoma	glioblastoma STAT3 DNA-binding activity +, STAT3- dependent transcriptional activity + Cells viability +, apoptosis ↑ In vivo: survival +, intracranial tumours +, contralateral invasion (-)		
Stattic	Human breast cancer cell lines	STAT3 DNA-binding activity ↓, STAT3 dimerization ↓, Cell apoptosis↑	(132)	
S3I-201 (NSC 74859)	Human breast cancer and hepatocellular carcinoma	STAT3 DNA-binding activity +, STAT3 dimerization +, STAT3-dependent transcriptional activity + Cells growth +, apoptosis +, cyclin D1 +, Bcl-X _L +, survivin + <i>In vivo</i> : tumour growth +	(102,103)	
S3I-201 analogue: S3I-201.1066	Human breast, pancreatic and ovarian cancer cells, normal human pancreatic duct epithelial cells	STAT3 DNA-binding activity ↓, STAT3- dependent transcriptional activity ↓ Cell viability ↓, survival ↓, malignant transformation ↓, c-Myc↓, Bcl-X _L ↓, survivin↓, MMP-9↓, VEGF↓ <i>In vivo</i> : tumour growth ↓	(133,134)	
S3I-M2001	IHuman breast and pancreatic cancer cells, immortalized humanSTAT3 dimerization $+$, Cells malignant transformation $+$, survival $+$, migration $+$, invasion $+$, Bcl-X _L $+$ In vivo: tumour growth $+$		(135)	
5,15-DPP	-DPP Human breast cell and human embryonic STAT3 DNA-binding activity ↓, STAT3 translocation ↓, STAT3 translocation ↓, STAT3 dimerization ↓, c-myc promoter binding ↓, c-myc protein expression ↓, STAT3 and pSTAT3 unchang		(136)	
LLL12	Human breast and pancreatic cancer cells, glioblastoma cells, hepatocytes, normal lung fibroblasts, medulloblastoma cells and human hepatocytes	reast andSTAT3 DNA-binding activity \downarrow , STAT3- dependent transcriptional activity \downarrow , STAT3 phosphorylation \downarrow , ces, normalcells,phosphorylation \downarrow , Cell viability \downarrow , colony formation \downarrow , migration \downarrow , apoptosis \uparrow , cyclin D1 \downarrow , Bcl-2 \downarrow , lastoma cellsun hepatocytesIn vivo: tumour growth \downarrow		
STX-0119	Human breast cancer cells, and human lymphoma SCC-3 xenografts in mice	STAT3 DNA-binding activity \downarrow , STAT3 dimerization \downarrow , apoptosis \uparrow , c-Myc \downarrow , survivin \downarrow , cyclin D1 \downarrow , Bcl-X _B \downarrow , <i>In vivo</i> : tumour growth \downarrow		

Table IV. Preclinical studies of small molecular inhibitors targeting STAT3 SH2 domain.

Trial identifier	Country	Drug administration	Study duration	Phase	Patients
NCT00511082	Hong Kong	OPB-31121 oral	12/2007-09/2009	Ι	Relapsed or refractory non-Hodgkin's lymphoma or multiple myeloma
NCT00657176	Korea	OPB-31121 oral	03/2008-06/2009	Ι	Advanced solid tumours
NCT00955812	USA	OPB-31121 oral	06/2009-02/2012	Ι	Advanced solid tumours
NCT01029509	USA	OPB-31121 oral	07/2008-07/2011	Ι	Advanced leukemias or myelodysplastic syndromes
NCT00696176	USA	STAT3 Decoy intra-tumoural	08/2008-07/2011	0	Surgically resectable head and neck squamous cell carcinoma

Table V. STAT3 inhibition in clinical trials.

dimerization and transcriptional activity, as well as induced growth inhibition and apoptosis in cells with persistent pSTAT3 (102,103). Moreover, in both human breast and hepatocellular cancer xenografts in nude mouse model, S3I-201 significantly inhibited the tumour growth with a dose of 5 mg/kg. OPB-31121, another small molecule inhibitor, inhibits cell proliferation with low IC₅₀ in a number of hematopoietic malignancy cell lines through direct blockage of STAT3 phosphorylation in preclinical studies (104). OPB-31121 has been used in clinical trials and is introduced below in the clinical study section.

Collectively, small molecule inhibitors targeting STAT3 directly are the most promising of the possible therapeutic strategies because: i) modulation of upstream regulators by single targeted therapy may not completely block the STAT3 pathway due to multiple regulators and cross-talking among pathways; ii) RNA inhibition requires yet to be identified improved techniques to deal with the delivery issues; iii) the preclinical studies demonstrate that small molecule inhibitors strongly inhibited the growth both of tumour cells *in vitro* and xenografts in animal models with a low IC₅₀ encouraging clinical development and reducing the risk of development of resistance.

STAT3 inhibition combined with other targeted therapy or chemotherapy. In addition, synergy may be expected with many other inhibitors, since STAT3 is a complementary pathway for many growth factor pathways. The combination therapy of STAT3 and EGFR inhibitors synergistically and significantly suppressed cancer cell growth and down-regulated activated STAT3 expression in high-grade gliomas and pancreatic cancers (41,105). Furthermore, STAT3 inhibition increased the sensitivity of cancer cells to chemotherapeutic agents such as taxol and cisplatin (105,106). Therefore, STAT3 is an attractive target and some new studies on STAT3 mono-therapy and combination therapy are ongoing.

4. Inhibiting STAT3 in clinical studies

There are several phase 0/I clinical trials of STAT3 inhibition ongoing or not yet reported (Table V). OPB-31121, which inhibits

STAT3 phosphorylation, but did not affect JAK kinase, displayed strong anti-proliferation effect in cancer cell lines and in mouse model *in vivo* studies (104). Preliminary data are currently only available from one Korean study reported in the Annual Meeting of the American Society of Clinical Oncology (107) in 21 patients with advanced refractory solid tumours treated by OPB-31121. This showed that toxicities were predominantly grade 1 or 2, with the dose-limiting toxicities (DLT) of grade 3 vomiting and diarrhoea. The MTD has not been determined within the designated dose range. Eight out of 17 patients had the stable disease, with one case more than 12 months. It seems that this oral STAT3 inhibitor is safe and tolerable. More data from different clinical trials of different phases using this kind of drug are required before a clear conclusion can be made.

5. Conclusions

STAT3 play a pivotal role in the initiation, development and progression of cancers, including proliferation, anti-apoptosis, invasion, angiogenesis and immune surveillance evasion. Constitutively activated STAT3 is associated with a wide range of human cancers. As such, STAT3 has been identified as a novel target to treat and prevent cancers with a broad potential application. Several STAT3 inhibitors display anti-tumour effectiveness in preclinical studies. The data for clinical trials using STAT3 inhibitors are emerging. Targeting STAT3 using a specific inhibitor may be a useful cancer treatment approach, with the potential for a broad clinical impact.

References

- Darnell JE: Transcription factors as targets for cancer therapy. Nat Rev Cancer 2: 740-749, 2002.
- 2. Darnell JE: STATs and gene regulation. Science 277: 1630-1635, 1997.
- 3. Bromberg J and Darnell JE: The role of STATs in transcriptional control and their impact on cellular function. Oncogene 19: 2468-2473, 2000.
- Ihle JN: STATs: signal transducers and activators of transcription. Cell 84: 331-334, 1996.
- 5. Herrington J, Smit LS, Schwartz J and Carter-Su C: The role of STAT proteins in growth hormone signaling. Oncogene 19: 2585-2597, 2000.

- Alvarez JV, Greulich H, Sellers WR, Meyerson M and Frank DA: Signal transducer and activator of transcription 3 is required for the oncogenic effects of non-small-cell lung cancer-associated mutations of the epidermal growth factor receptor. Cancer Res 66: 3162-3168, 2006.
- 7. Yin W, Cheepala S, Roberts JN, Syson-Chan K, DiGiovanni J and Clifford JL: Active Stat3 is required for survival of human squamous cell carcimoma cells in serum-free conditions. Mol Cancer 5: 15, 2006.
- 8. Kusaba T, Nakayama T, Yamazumi K, *et al*: Activation of STAT3 is a marker of poor prognosis in human colorectal cancer. Oncol Rep 15: 1445-1451, 2006.
- 9. Morikawa T, Baba Y, Yamauchi M, *et al*: STAT3 expression, molecular features, inflammation patterns, and prognosis in a database of 724 colorectal cancers. Clin Cancer Res 17: 1452-1462, 2011.
- de la Iglesia N, Konopka G, Lim KL, *et al*: Deregulation of a STAT3-interleukin 8 signaling pathway promotes human glioblastoma cell proliferation and invasiveness. J Neurosci 28: 5870-5878, 2008.
- de la Iglesia N, Konopka G, Puram SV, *et al*: Identification of a PTEN-regulated STAT3 brain tumor suppressor pathway. Genes Dev 22: 449-462, 2008.
- Copeland NG, Gilbert DJ, Schindler C, *et al*: Distribution of the mammalian Stat gene family in mouse chromosomes. Genomics 29: 225-228, 1995.
- 13. Lai SY and Johnson FM: Defining the role of the JAK-STAT pathway in head and neck and thoracic malignancies: implications for future therapeutic approaches. Drug Resist Updat 13: 67-78, 2010.
- 14. Quesnelle KM, Boehm AL and Grandis JR: STAT-mediated EGFR signaling in cancer. J Cell Biochem 102: 311-319, 2007.
- 15. Gao L, Zhang L, Hu J, et al: Down-regulation of signal transducer and activator of transcription 3 expression using vector-based small interfering RNAs suppresses growth of human prostate tumor in vivo. Clin Cancer Res 11: 6333-6341, 2005.
- Kisseleva T, Bhattacharya S, Braunstein J and Schindler CW: Sigaling through the JAK-STAT pathway, recent advances and future challenges. Gene 285: 1-24, 2002.
- Aggarwal BB, Kunnumakkara AB, Harikumar KB, *et al*: Signal tansducer and activator of transcription-3, inflammation, and cancer. Ann NY Acad Sci 1171: 59-76, 2009.
- Pawson T, Gish GD and Nash P: SH2 domains, interaction modules and cellular wiring. Trends Cell Biol 11: 504-511, 2001.
- Zhong Z, Wen Z and Darnell JE: Stat3, a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science 264: 95-98, 1994.
- Leeman R, Lui VWY and Grandis JR: STAT3 as a therapeutic target in head and neck cancer. Expert Opin Biol Ther 6: 231-241, 2006.
- Takeda K, Noguchi K, Shi W, *et al*: Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. Proc Natl Acad Sci USA 94: 3801-3804, 1997.
- Yang XO, Panopoulos AD, Nurieva R, *et al*: STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J Biol Chem 282: 9358-9363, 2007.
- 23. Miyoshi K, Takaishi M, Nakajima K, *et al*: Stat3 as a therapeutic target for the treatment of psoriasis: a clinical feasibility study with STA-21, a Stat3 inhibitor. J Invest Dermatol 131: 108-117, 2011.
- 24. Zhang HY, Zhang Q, Zhang X, et al: Cancer-related inflammation and Barrett's carcinogenesis: interleukin-6 and STAT3 mediate apoptotic resistance in transformed Barrett's cells. Am J Physiol Gastrointest Liver Physiol 300: G454-G460, 2011.
- 25. Mora LB, Buettner R, Seigne J, *et al*: Constitutive activation of Atat3 in human prostate tumors and cell lines: direct inhibition of Stat3 signaling induces apoptosis of prostate cancer cells. Cancer Res 62: 6659-6666, 2002.
- Burger R, Le Gouill S, Tai Y-T, et al: Janus kinase inhibitor INCB20 has antiproliferative and apoptotic effects on human myeloma cells in vitro and in vivo. Mol Cancer Ther 8: 26-35, 2009.
- Wei L-H, Kuo M-L, Chen C-A, *et al*: Interleukin-6 promotes cervical tumor growth by VEGF-dependent angiogenesis via a STAT3 pathway. Oncogene 22: 1517-1527, 2003.
 Lopiccolo J, Blumenthal G, Bernstein WB and Dennis PA: DEVELOPMENT (2014)
- Lopiccolo J, Blumenthal G, Bernstein WB and Dennis PA: Targeting the PI3K/Akt/mTOR pathway: effective combinations and clinical considerations. Drug Resist Updat 11: 32-50, 2008.
- Sasse J, Hemmann U, Schwartz C, *et al*: Mutational analysis of acute-phase response factor/Stat3 activation and dimerization. Mol Cell Biol 17: 4677-4686, 1997.

- Shuai K, Horvath CM, Huang LHT, Qureshi S, Cowburn D and Darnell JE: Interferon activation of the transcription factor Stat91 involves dimerization through SH2-phosphotyrosyl peptide interactions. Cell 76: 821-828, 1994.
- Fletcher S and Gunning PT: Mild, efficient and rapid O-debenzylation of ortho-substituted phenols with trifluoroacetic acid. Tetrahedron Lett 49: 4817-4819, 2008.
- Yu C-L, Meyer DJ, Campbell GS, *et al*: Enhanced DNA-binding activity of a Stat3-related protein in cells transformed by the Src oncoprotein. Science 269: 81-83, 1995.
- Smithgall TE, Briggs SD, Schreiner S, Lerner EC, Cheng H and Wilson MB: Control of myeloid differentiation and survial by Stats. Oncogene 19: 2612-2618, 2000.
- Bowman T, Garcia R, Turkson J and Jove R: STATs in oncogenesis. Oncogene 19: 2474-2488, 2000.
- Catlett-Falcone R, Dalton WS and Jove R: STAT proteins as novel targets for cancer therapy. Curr Opin Oncol 11: 490-496, 1999.
 Inamura K, Matsuzaki Y, Uematsu N, Hondab A, Tanaka N
- 36. Inamura K, Matsuzaki Y, Uematsu N, Hondab A, Tanaka N and Uchida K: Rapid inhibition of MAPK signaling and antiproliferation effect via JAK/STAT signaling by interferon-alpha in hepatocellular carcinoma cell lines. Biochim Biophys Acta 1745: 401-410, 2005.
- 37. Yang JL, Zahorowska B, Kasim Y, Goldstein D and Crowe P: Mechanism of the synergistic antiproliferative effect of gefitinib and interferon-alpha in sarcoma cell lines. Proc 101st Ann Meet AACR 398-399 (abs. 1655), 2010.
- Turkson J and Jove R: STAT proteins: novel molecular targets for cancer drug discovery. Oncogene 19: 6613-6626, 2000.
- 39. Yu H and Jove R: The STATs of cancer new molecular targets come of age. Nat Rev Cancer 4: 97-105, 2004.
- Aggarwal BB, Sethi G, Ahn KS, *et al*: Targeting signal-transducer-and-activator-of-transcription-3 for prevention and therapy of cancer. Ann NY Acad Sci 1091: 151-169, 2006.
- 41. Jaganathan S, Yue P, Paladino DC, Bogdanovic J, Huo Q and Turkson J: A functional nuclear epidermal growth factor receptor, Src and Stat3 heteromeric complex in pancreatic cancer cells. PLoS One 6: e19605, 2011.
- 42. Arany I, Chen S-H, Megyesi JK, *et al*: Differentiation-dependent expression of signal transducers and activators of transcription (STATs) might modify responses to growth factors in the cancers of the head and neck. Cancer Lett 199: 83-89, 2003.
- 43. Masuda M, Suzui M, Yasumatu R, *et al*: Constitutive activation of signal transducers and activators of transcription 3 correlates with cyclin D1 overexpression and may provide a novel prognostic marker in head and neck squamous cell carcinoma. Cancer Res 62: 3351-3355, 2002.
- 44. Chun K-S and Langenbach R: The prostaglandin E2 receptor, EP2, regulates survivin expression via an EGFR/STAT3 pathway in UVB-exposed mouse skin. Mol Carcinog 50: 439-448, 2011.
- 45. Grandis JR, Drenning SD, Zeng Q, et al: Contitutive activation of Stat3 signaling abrogates apoptosis in squamous cell carcinogenesis in vivo. Proc Natl Acad Sci USA 97: 4227-4232, 2000.
- 46. Kijima T, Niwa H, Steinman RA, et al: STAT3 activation abrogates growth factor dependence and contributes to head and neck squamous cell carcinoma tumor growth in vivo. Cell Growth Differ 13: 355-362, 2002.
- 47. Huang M, Page C, Reynolds K and Lin J: Constitutive activation of Stat 3 oncogene product in human ovarian carcinoma cells. Gynecol Oncol 79: 67-73, 2000.
- Niu G, Bowman T, HUang M, *et al*: Roles of activated Src and Stat3 signaling in melanoma tumor cell growth. Oncogene 21: 7001-7010, 2002.
- 49. Chen CL, Hsieh FC, Lieblein JC, *et al*: Stat3 activation in human endometrial and cervical cancers. Br J Cancer 96: 591-599, 2007.
- Van der Fits L, van Kester MS, Qin Y, *et al*: MicroRNA-21 expression in CD4⁺ T cells is regulated by STAT3 and is pathologically involved in Sézary Syndrome. J Invest Dermatol 131: 762-768, 2010.
- 51. Loffler D, Brocke-Heidrich K, Pfeifer G, *et al*: Interleukin-6 dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer. Blood 110: 1330-1333, 2007.
- 52. Ahluwalia A, Busse BA, Thiruvengadam SS and Tarnawski AS: Importins are critical for colorectal cancer (CRC) growth a nd are novel biomarkers of CRC. Underlying mechanisms include: increased nuclear transport of P-CREB and p-STAT3, VEGF gene promoter activation and aberrant VEGF expression. Gastroenterology 140: S184, 2011.
- Wei D, Le X, Zheng L, *et al*: Stat3 activation regulates the expression of vascular endothelial growth factor and human pancreatic cancer angiogenesis and metastasis. Oncogene 22: 319-329, 2003.

- 54. Xu Q, Briggs J, Park S, *et al*: Targeting Stat3 blocks both HIF-1 and VEGF expression induced by multiple oncogenic growth signaling pathways. Oncogene 24: 5552-5560, 2005.
- 55. Xie T-X, Wei D, Liu M, et al: Stat3 activation regulates the expression of matrix metalloproteinase-2 and tumor invasion and metastasis. Oncogene 23: 3550-3560, 2004.
- 56. Dechow TN, Pedranzini L, Leitch A, et al: Requirement of matrix metalloproteinase-9 for the transformation of human mammary epithelial cells by Stat3-C. Proc Natl Acad Sci USA 101: 10602-10607, 2004.
- Yu H, Kortylewski M and Pardoll D: Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Immunology 7: 41-51, 2007.
- Kortylewski M, Kujawski M, Wang T, et al: Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat Med 11: 1314-1321, 2005.
- Kortylewski M and Yu H: Role of Stat3 in suppressing anti-tumor immunity. Curr Opin Immunol 20: 228-233, 2008.
- Wang T, Niu G, Kortylewski M, *et al*: Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med 10: 48-54, 2004.
- 61. Garcia R, Bowman TL, Niu G, *et al*: Constitutive activation of STAT3 by the Src and JAK tyrosine kinases participates in growth regulation of human breast carcinoma cells. Oncogene 20: 2499-2513, 2001.
- 62. Nagpal JK, Mishra R and Das BR: Activation of Stat-3 as one of the early events in tobacco chewing-mediated oral carcinogenesis. Cancer 94: 2393-2400, 2002.
- Deng J-Y, Sun D, Liu X-Y, Pan Y and Liang H: STAT-3 correlates with lymph node metastasis and cell survival in gastric cancer. World J Gastroenterol 16: 5380-5387, 2010.
- 64. Watson CJ and Miller WR: Elevated levels of members of the STAT family of transcription factors in breast carcinoma nuclear extracts. Br J Cancer 71: 840-844, 1995.
- 65. Kosaka T, Yamaki E, Mogi A and Kuwano H: Mechanisms of resistance to EGFR TKIs and development of a new generation of drugs in non-small-cell lung cancer. J Biomed Biotechnol 2011: 1-7, 2011.
- 66. Himpe E and Kooijman R: Insulin-like growth factor-I receptor signal transduction and the Janus kinase/signal transducer and activator of transcription (JAK-STAT) pathway. Biofactors 35: 76-81, 2009.
- 67. Sporeno E, Savino R, Ciapponi L, *et al*: Human interleukin-6 receptor super-antagonists with high potency and wide spectrum on multiple myeloma cells. Blood 87: 4510-4519, 1996.
- Demartis A, Bernassola F, Savino R, Melino G and Ciliberto G: Interleukin 6 receptor superantagonists are potent inducers of human multiple. Cancer Res 56: 4213-4218, 1996.
- Catlett-Falcone R, Landowski TH, Oshiro MM, et al: Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 10: 105-115, 1999.
- Johnson FM, Saigal B, Talpaz M and Donato NJ: Dasatinib (BMS-354825) tyrosine kinase inhibitor suppresses invasion and induces cell cycle arrest and apoptosis of head and neck squamous cell carcinoma and non-small cell lung cancer cells. Clin Cancer Res 11: 6924-6932, 2005.
- Perry E, Tsruya R, Levitsky P, et al: TMF/ARA160 is a BC-boxcontaining protein that mediates the degradation of Stat3. Oncogene 23: 8908-8919, 2004.
- 72. Gu Q, Kong Y, Yu Z-B, Bai L and Xiao Y-B: Hypoxia-induced SOCS3 is limiting STAT3 phosphorylation and NF-κB activation in congenital heart disease. Biochimie 93: 909-920, 2011.
- 73. Ulane CM, Kentsis A, Cruz CD, Parisien J-P, Schneider KL and Horvath CM: Composition and assembly of STAT-targeting ubiquitin ligase complexes: paramyxovirus V protein carboxyl terminus is an oligomerization domain. J Virol 79: 10180-10189, 2005.
- 74. Lesina M, Kurkowski Magdalena U, Ludes K, et al: Stat3/Socs3 activation by IL-6 transsignaling promotes progression of pancreatic intraepithelial neoplasia and development of pancreatic Cancer. Cancer Cell 19: 456-469, 2011.
- 75. Lindemann C, Hackmann O, Delic S, Schmidt N, Reifenberger G and Riemenschneider MJ: SOCS3 promoter methylation methylation is mutually exclusive to EGFR amplification in gliomas and promotes glioma cell invasion through STAT3 and FAK activation. Acta Neuropathol 122: 241-251, 2011.
- Kluge A, Dabir S, Vlassenbroeck I, Eisenberg R and Dowlati A: Protein inhibitor of activated STAT3 expression in lung cancer. Mol Oncol 5: 256-264, 2011.

- 77. Migone T-S, Cacalano NA, Taylor N, Yi T, Waldmann TA and Johnston JA: Recruitment of SH2-containing protein tyrosine phosphatase SHP-1 to the interleukin 2 recepto; loss of SHP-1 expression in human T-lymphotropic virus type I-transformed T cells. Proc Natl Acad Sci USA 95: 3845-3850, 1998.
- 78. Schaper F, Gendo C, ECK M, et al: Activation of the protein tyrosine phosphatease SHP2 via the interleukin-6 signal transducing receptor protein gp130 requires tyrosine Jak1 and limits acute-phase protein expression. Biochem J 355: 557-565, 1998.
- Irie-Sasaki J, Sasaki T, Matsumoto W, et al: CD45 is a JAK phosphatase and negatively regulates cytokine recptor signalling. Nature 409: 349-354, 2001.
- Sun S and Steinberg BM: PTEN is a negative regualtor of STAT3 activation in human papillomavirus-infected cells. J Gen Virol 83: 1651-1658, 2002.
- 81. Desrivières S, Kunz C, Barash I, Vafaizadeh V, Borghouts C and Groner B: The biological functions of the versatile transcription factors STAT3 and STAT5 and new strategies for their targeted inhibition. J Mammary Gland Biol Neoplasia 11: 75-87, 2006.
- 82. Scoles DR, Nguyen VD, Qin Y, *et al*: Neurofibromatosis 2 (NF2) tumor suppressor schwannomin and its interacting protein HRS regulate STAT singling. Hum Mol Genet 11: 3179-3189, 2002.
- Bhasin D, Cisek K, Pandharkar T, *et al*: Design, synthesis, and studies of small molecule STAT3 inhibitors. Bioorg Med Chem Lett 18: 391-395, 2008.
- 84. Esquela-Kerscher A and Slack FJ: Oncomirs microRNAs with a role in cancer. Nat Rev Cancer 6: 259-269, 2006.
- 85. Akao Y, Nakagawa Y and Naoe T: let-7 MicroRNA functions as a potential grwoth suppressor in human colon cancer cells. Biol Pharm Bull 29: 903-906, 2006.
- 86. Chan JA, Krichevsky AM and Kosik KS: MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65: 6029-6033, 2005.
- 87. Takamizawa J, Konishi H, Yanagisawa K, *et al*: Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64: 3753-3756, 2004.
- Yanaihara N, Caplen N, Bowman E, et al: Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9: 189-198, 2006.
- Johnson SM, Grosshans H, Shingara J, et al: RAS is regulated by the let-7 microRNA family. Cell 120: 635-647, 2005.
- 90. He L, Thomson JM, Hemann MT, *et al*: A microRNA polycistron as a potential human oncogene. Nature 435: 828-833, 2005.
- Foshay KM and Gallicano GI: miR-17 family miRNAs are expressed during early mammalian development and regulate stem cell differentiation. Dev Biol 326: 431-443, 2009.
- Krichevsky AM, Sonntag K-C, Isacson O and Kosik KS: Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells 24: 857-864, 2006.
- 93. Meng F, Henson R, Wehbe-Janek H, Smith H, Ueno Y and Patel T: The microRNA let-7a modulates interleukin-6-dependent STAT-3 survival signaling in malignant human cholangiocytes. J Biol Chem 282: 8256-8264, 2007.
- 94. Niu G, Heller R, Catlett-Falcone R, *et al*: Gene therapy with dominant-negative Stat3 supresses growth of the murine melanoma B16 tumor in vivo. Cancer Res 59: 5059-5063, 1999.
- 95. Niu G, Shain KH, Huang M, et al: Overexpression of a dominantnegative signal transducer and activator of transcription 3 varian in tumor cells leads to production of soluble factors that induce apoptosis and cell cycle arrest. Cancer Res 61: 3276-3280, 2001.
- Mishra PJ and Merlino G: MicroRNA reexpression as differentiation therapy in cancer. J Clin Invest 119: 2119-2123, 2009.
- 97. Liang Z-W, Guo B-F, Li Y, et al: Plasmid-based Stat3 siRNA delivered by hydroxyapatite nanoparticles suppresses mouse prostate tumour growth in vivo. Asian J Androl 13: 481-486, 2011.
- Petrocca F and Lieberman J: Promise and chanllenge of RNA interference-based therapy for cancer. J Clin Oncol 29: 747-754, 2011.
- 99. Fletcher S, Drewry JA, Shahani VM, Page BDG and Gunning PT: Molecular disruption of oncogenic signal transducer and activator of transcription 3 (STAT3) protein. Biochem Cell Biol 87: 825-833, 2009.
- 100. Turkson J, Ryan D, Kim JS, *et al*: Phosphotyrosyl peptides block Stat3-mediated DNA binding activity, gene regulation, and cell transformation. J Biol Chem 276: 45443-45455, 2001.
- 101. Turkson J, Kim JS, Zhang S, *et al*: Novel peptidomimetic inhibitors of signal transducer and activator of transcription 3 dimerization and biological activity. Mol Cancer Ther 3: 261-269, 2004.

- 102. Siddiquee K, Zhang S, Guida WC, *et al*: Selective chemical probe inhibitor of Stat3, identified through structure-based virtual screening, induces antitumor activity. Proc Natl Acad Sci USA 104: 7391-7396, 2007.
- 103. Lin L, Amin R, Gallicano GI, *et al*: The STAT3 inhibitor NSC 74859 is effective in hepatocellular cancers with disrupted TGF-β signaling. Oncogene 28: 961-972, 2009.
- 104. Hayakawa F, Sugimoto K, Kurahashi S, et al: A novel direct STAT3 inhibitor OPB-31121 induces tumor-specific growth inhibition in a wide4 range of hematopoietic malignacies and effectively suppresses the chemotherapy resistant quiescent cell in vivo. 52nd ASH Ann Meet & Expo III-56, 2010.
- 105. Lo H-W, Cao X, Zhu H and Ali-Ôsman F: Constitutively activated STAT3 frequently coexpresses with epidermal growth factor receptor in high-grade gliomas and targeting STAT3 sensitizes them to Iressa and akylators. Clin Cancer Res 14: 6042-6054, 2008.
- 106. Real PJ, Sierra A, De Juan A, Segovia JC, Lopez-Vega JM and Fernandez-Luna JL: Resistance to chemotherapy via Stat3dependent overexpression of Bcl-2 in metastatic breast cancer cells. Oncogene 21: 7611-7618, 2002.
 107. Oh D, Han S, Kim TM, *et al*: A phase I, open-label, nonran-
- 107. Oh D, Han S, Kim TM, et al: A phase I, open-label, nonrandomized trial of OPB-31121, a STAT3 inhibitor, in patients with advanced solid tumors. J Clin Oncol 28: e13056, 2010.
- 108. Sartor CI, Dziubinski ML, Yu C-L, Jove R and Ethier SP: Role of epidermal growth factor receptor and STAT-3 activation in autonomous proliferation of SUM-102PT human breast cancer cells. Cancer Res 57: 978-987, 1997.
- 109. Garcia R, Yu C-L, Hudnall A, *et al*: Constitutive activation of Stat3 in fibroblasts transformed by diverse oncoproteins and in breast carcinoma cells. Cell Growth Differ 8: 1267-1276, 1997.
- 110. Song L, Turkson J, Karras JG, Jove R and Haura EB: Activation of Stat3 by receptor tyrosine kinases and cytokines regulates survival in human non-small cell carcinoma cells. Oncogene 22: 4150-4165, 2003.
- 4150-4165, 2003.
 111. Haura EB, Zheng Z, Song L, Cantor A and Bepler G: Activated epidermal growth factor receptor-Stat-3 signaling promotes tumor survival in vivo in non-small cell lung cancer. Clin Cancer Res 11: 8288-8294, 2005.
- 112. Gao SP, Mark KG, Leslie K, *et al*: Mutations in the EGFR kinase domain mediate STAT3 activation via IL-6 production in human lung adenocarcinomas. J Clin Invest 117: 3846-3856, 2007.
- 113. Pfeiffer M, Hartmann T, Leick M, Catusse J, Schmitt-Graeff A and Burger M: Alternative implication of CXCR4 in JAK2/STAT3 activation in small cell lung cancer. Br J Cancer 100: 1949-1956, 2009.
- 114. Quintanilla-Martinez L, Kremer M, Specht K, *et al*: Analysis of signal transducer and activator of transcription 3 (Stat3) pathway in multiple myeloma, Stat3 activation and cyclin D1 dysregulation are mutually exclusive events. Am J Pathol 162: 1449-1461, 2003.
- 115. Chen C-L, Loy A, Cen L, *et al*: Signal transducer and activator of transcription 3 is involved in cell growth and survival of human rhabdomyosarcoma and osteosarcoma cells. BMC Cancer 7: 111, 2007.
- 116. Grandis JR, Drenning SD, Chakraborty A, et al: Requirement of Stat3 but not Stat1 activation for epidermal growth factor receptormediated cell growth in vitro. J Clin Invest 102: 1385-1392, 1998.
- 117. Grandis JR, Zeng Q and Drenning SD: Epidermal growth factor receptor-mediated Stat3 singaling blocks apoptosis in head and neck cancer. Laryngoscope 110: 868-874, 2000.
- 118. Sriuranpong V, Park JI, Amornphimoltham P, Patel V, Nelkin BD and Gutkind JS: Epidermal growth factor receptor-independent constitutive activation of STAT3 in head and neck squamous cell carcimoma is mediated by the autocrine/paracrine stimulation of the interleukin 6/gp130. Cancer Res 63: 2948-2956, 2003.
- 119. Ni Z, Lou W, Leman ES and Gao AC: Inhibition of constitutively activated Stat3 signaling pathway suppresses growth of prostate cancer cells. Cancer Res 60: 1225-1228, 2000.
- 120. Barton BE, Murphy TF, Adem P, Watson RA, Irwin RJ and Huang HF: IL-6 signaling by STAT3 participates in the change from hyperplasia to neoplasia in NRP-152 and NRP-154 rat prostatic epithelial cells. BMC Cancer 1: 19, 2001.

- 121. DeMiguel F, Lee SO, Lou W, et al: Stat3 enhances the growth of LNCaP human prostate cancer cells in intact and castrated male nude mice. Prostate 52: 123-129, 2002.
- 122. Barton BE, Karras JG, Murphy TF, Barton A and Huang HF-S: Signal transducer and activator of transcription 3 (STAT3) activation in prostate cancer: direct STAT3 inhibition induces apoptosis in prostate cancer lines. Mol Cancer Ther 3: 11-20, 2004.
- 123. Sanchez A, Nagy P and Thorgeirsson SS: STAT-3 activity in chemically-induced hepatocellular carcinoma. Eur J Cancer 39: 2093-2098, 2003.
- 124. Dhir R, Ni Z, Lou W, De Miguel F, Grandis JR and Gao AC: Stat3 activation in prostatic carcinomas. Prostate 51: 241-246, 2002.
- 125. Sachez-Ceja SG, Reyes-Maldonado E, Vazquez-Manriquez ME, Lopez-Luna JJ, Belmont A and Gutierrez-Castellanos S: Differential expression of STAT5 and Bcl-x_L, and high expression of Neu and STAT3 in non-small-cell lung carcinoma. Lung Cancer 54: 163-168, 2006.
- 126. David D, Rajappan LM, Balachandran K, Thulaseedharan JV, Nair AS and Pillai RM: Prognostic significance of STAT3 and phosphorylated STAT3 in human soft tissue tumors - a clinicopathological analysis. J Exp Clin Cancer Res 30: 56, 2011.
- 127. Niu G, Wright KL, Huang M, et al: Constitutive STAT3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene 21: 2000-2008, 2002.
- 128. Gritsko T, Williams A, Turkson J, et al: Persistent activation of Stat3 signaling induces survivin gene expression and confers resistance to apoptosis in human breast cancer cells. Clin Cancer Res 12: 11-19, 2006.
- 129. Gao L, Li F, Dong B, *et al*: Inhibition of STAT3 and ErbB2 suppresses tumor growth, enhances radiosensitivity, and induces mitochondria-dependent apoptosis in glioma cells. Intl J Radiat Oncol Biol Phys 77: 1223-1231, 2010.
- 130. Song H, Wang R, Wang S and Lin J: A low-molecular-weight compound discovered through virtual database screening inhibits Stat3 function in breast cancer cells. Proc Natl Acad Sci USA 102: 4700-4705, 2005.
- 131. Fuh B, Sobo M, Cen L, *et al*: LLL-3 inhibits STAT3 activity, suppresses glioblastoma cell growth and prolongs survival in a mouse glioblastoma model. Br J Cancer 100: 106-112, 2009.
- 132. Schust J, Sperl B, Hollis A, Mayer TU and Berg T: Stattic: a small-molecule inhibitor of STAT3 activation and dimerization. Chem Biol 13: 1235-1242, 2006.
- 133. Zhang X, Yue P, Fletcher S, Zhao W, Gunning PT and Turkson J: A novel small-molecule disrupts Stat3 SH2 domain-phosphotyrosine interactions and Stat3-dependent tumor processes. Biochem Pharmacol 79: 1398-1409, 2010.
- 134. Fletcher S, Singh J, Zhang X, *et al*: Disruption of transcriptionally active Stat3 dimers with non-phosphorylated, salicylic acid-based small molecules: potent in vitro and tumor cell activities. Chem Biol Chem 10: 1959-1964, 2009.
- 135. Siddiquee KAZ, Gunning PT, Glenn M, et al: An oxazole-based small-molecule Stat3 inhibitor modulates Stat3 stability and processing and incuces antitumor cell effects. ACS Chem Biol 2: 787-798, 2007.
- 136. Uehara Y, Mochizuki M, Matsuno K, Haino T and Asai A: Novel high-throughput screening system for identifying STAT3-SH2 antagonists. Biochem Biophys Res Commun 380: 627-631, 2009.
- 137. Ball S, Li C, Li P-K and Lin J: The small molecule, LLL12, inhibits STAT3 phosphorylation and induces apoptosis in medulloblastoma and glioblastoma cells. PLoS One 6: e18820, 2011.
- 138. Lin L, Hutzen B, Li P-K, et al: A novel small molecule, LLL12, inhibits STAT3 phosphorylation and activites and exhibits potent growth-suppressive activity in human cancer cells. Neoplasia 12: 39-50, 2010.
- 139. Matsuno K, Masuda Y, Uehara Y, *et al*: Identification of a new series of STAT3 inhibitors by virtual screening. ACS Med Chem Lett 1: 371-375, 2010.
- 140. Ashizawa T, Miyata H, Ishii H, et al: Antitumor activity of a novel small molecule STAT3 inhibitor against a human lymphoma cell line with high STAT3 activation. Int J Oncol 38: 1245-1252, 2011.