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Abstract. In the present study, the expression of human 
γ-aminobutyrate type A (GABAA) receptor-binding protein 
(GABARBP) is downregulated in ovarian cancer cell lines 
and tissues. We also found that the specific function of 
GABAPBP was that of a novel pro-apoptotic protein. Both 
GABARBP and cisplatin suppressed cancer cell proliferation 
in a concentration-dependent manner. The combined treatment 
of GABARBP and cisplatin was more effective in inhibiting 
cell growth, as well as cell migration, than with either drug 
treatment alone. At the same time, the treatment combina-
tion is correlated with the downregulation of cyclin D1 and 
CDK4, arrested cell cycle progression in the G0-G1 phase 
and enhancing p53 expression, while also reducing Bcl-2 
and Bcl-xL expression. The p53 and p21 promoter luciferase 
activities were induced by GABARBP, whereas there was no 
effect on the p53-/- and p21-/- system. In addition, p53 activity 
was validated with UV irradiation and siGABARBP. Taken 
together, our results indicate that GABARBP can regulate the 

pro-apoptotic activity of cisplatin via the upregulation of p53 
expression.

Introduction

Anticancer drugs are mainly used to treat malignancies, such 
as cancer cell growths. In most cases, chemotherapy generally 
can be used in addition to other cancer treatments, such as 
surgery and radiation therapy. Cancer occurs when a damaged 
cell produces a mutant of the oncogenes and when tumor 
suppressor genes and the mutant produce more mutants, which 
is then commonly defined as the uncontrolled growth of cells.

Cisplatin (cis-diamminedichloro platinum) is a well-
known platinum-based chemotherapeutic agent, which acts 
as an activator of apoptosis and an inducer of DNA strand 
breaking through damage (1,2). It is extensively used to 
treat various types of cancers, including metastatic ovarian, 
cervical, sarcoma, head and neck, advanced bladder, thyroid, 
lymph nodes, skin, colorectal, gastric, pancreatic, metastatic 
testicular and small-cell lung tumors, either alone or in combi-
nation with other anticancer drugs (3-9). Unfortunately, the 
use of this compound is generally limited by its side effects. 
Therefore, the goal of this therapy is to improve the quality 
of life and possibly, to extend the quantity of life while mini-
mizing the side effects (10). On the other hand, multidrug 
resistance (MDR) is one of the major obstacles responsible for 
the failure in the treatments using chemotherapy for cancer 
(11-13). Therefore, treatment strategies to overcome chemo-
resistance are needed in the treatment of ovarian cancers.

Human γ-aminobutyrate type A (GABAA) receptor-binding 
protein (GABARBP) plays an important role in the regulation 
of GABAA-receptor activity. It is a key player in the intracel-
lular trafficking of these receptors (14-16). GABARBP binds 
to various intracellular proteins, which are all associated with 
vesicle transport processes, autophagy and apoptosis, which 
include the cytoskeleton, tubulin (17,18), gephyrin (19,20), 
the clathrin heavy chain (21), p130/phospholipase C-related 
inactive protein (PRIP) (22), transferrin receptor (23), 
Unc-51-like kinase (24), Ras-related protein 24 (25), DEAD 
(Asp-Glu-Ala-Asp/His) box polypeptide 47 (DDX47) (26), 
glutamate receptor-interacting protein 1 (GRIP1) (27), calre-
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ticulin (28), angiotensin II type 1 (AT1) receptor (29) and 
transient receptor potential vanilloid (TRPV1) (30). Recently, 
Schwarten et al (31) identified the proapoptotic protein Nix/
Bnip3L to be a potential GABARBP ligand. Also, Alam et al 
(32) reported that C-terminal processing of GABARBP is 
not required for the trafficking of the angiotensin II type 1A 
receptor. GABARBP is downregulated in different breast 
cancer cell lines, including tumor tissues and is suggested as 
playing a potential role in GABARBP, acting through a vesicle 
transport mechanism as a tumor suppressor in breast tumors 
(33). In contrast, GABARBPs are enhanced in adenomas and 
thyroid tumors and are also frequently expressed in colorectal 
cancer (34,35). However, important roles of the GABARBP 
physiological functions and regulation remain unclear.

In the present study, we examined whether GABARBP 
is generally upregulated or downregulated in ovarian cancer 
cells and patient tissues. Also, this study was designed to 
assess the role in regards to the inhibition of the PI3k/Akt 
signaling regulators, as well as the susceptibility to the effects 
of GABARBP alone or combined with cisplatin, in ovarian 
cancer cells. These similar apoptotic signaling pathways 
for cisplatin could also contribute to a higher effectiveness 
in chemotherapy when these drugs are used in combination 
rather than alone. Our major focus was the functional mecha-
nisms of GABARBP on the different agent-mediated cell 
deaths in human ovarian cancer cells. Furthermore, we show 
that the PI3K/mTOR pathways are affected by GABARBP 
and that the expression levels of the Bcl-2 family proteins are 
regulated by GABARBP in ovarian OVCAR-3 cancer cells. 
In these observations, we elucidated that the possible intracel-
lular mechanisms of GABARBP have an additive effect on the 
roles of anticancer drug-induced apoptosis.

Materials and methods

Cell line, culture, reagents and antibodies. Human normal 
and carcinoma cell lines (HOSE-E6E7, MCF10A, BEAS-2B, 
SKOV-3, OVCAR-3 and MCF-7) were purchased from the 
American Type Culture Collection (ATCC, Manassas, VA) 
and were grown in M199/MCDB-105 (HOSE-E6E7), DMEM/
F12 (MCF10A and BEAS-2B) or DMEM (SKOV-3, OVCAR-3 
and MCF-7) (Life Technologies, Gaithersburg, MD) medium 
supplemented with 10% heat-inactivated FBS and penicillin/
streptomycin (100 U/ml) in a humidified incubator containing 
5% CO2 at 37˚C.

Anticancer drugs and chemicals were obtained from 
Sigma (St. Louis, MO). The primary antibodies used in this 
study were anti-GABARBP (Santa Cruz Biotechnology, Santa 
Cruz, CA), anti-Bax, anti-p53, anti-Bcl-2 (Cell Signaling, 
Beverly, MA), anti-cyclin D1, anti-p16, anti-p27, anti-p21, 
anti-CDK1, anti-PDK1, anti-phospho-specific PDK1, anti-Akt, 
anti-phospho-specific Akt, anti-mTOR, anti-phospho-specific 
mTOR, anti-p70S6K, anti-phospho-p70S6K, anti-GSK-3β, 
anti-phospho-specific GSK-3β (Santa Cruz), anti-β-actin 
(Sigma) and anti-α-tubulin (Santa Cruz).

Cell proliferation assay. Cell viability was determined using 
the 3-(4,5-dimethylthiazol-2-yl)-2.5-diphenyl-2H-tetrazolium 
bromide (MTT) assay system. The MTT assay suggests the 
fastest and most precise analysis results for cell growth. In 

brief, cells were seeded at a density of 3.5x103 cells/well, 
in 96-well plates. After 24 h, fresh cell culture medium 
containing 10% FBS, were added and incubated with 20 µl 
of MTT solution (Sigma, 5 mg/ml) for an additional 4 h at 
37˚C. After centrifugation, culture medium was removed 
and dimethyl sulfoxide (DMSO) was added to each well. The 
amounts of MTT-formazan generated were determined as the 
absorbance using a microplate reader at 540-570 nm.

Flow cytometry analysis. Cells were detached using trypsin 
and rinsed twice with PBS. The pellets were re-suspended 
with ice-cold PBS and fixed by adding ice-cold 70% ethanol. 
Fixed cells were stored for 1 h at 4˚C and then rinsed once 
with ice-cold PBS. Cells were treated with fluorescein isothio-
cyanate (FITC)-labeled Annexin V, propidium iodide (PI) 
(Boehringer-Mannheim, Mannhein, Germany) and RNase A 
(1 mg/ml) in PBS and incubated for 1 h at 37˚C in the dark. 
All cytometry data were analyzed in the FACSCalibur flow 
cytometer (Becton-Dickinson, Franklin Lakes, NJ).

Western blot analysis. Cells were harvested, rinsed in 
PBS, centrifuged and then lysed in a buffer containing 
protease inhibitor (50 mM Tris, pH 7.2, 150 mM NaCl, 1% 
Triton X-100, 1 µg/ml leupeptin, 1 µg/ml pepstatin, 2 µg/ml 
aprotinin, 200 µg/ml phenylmethylsulfonyl fluoride). The 
supernatant protein concentration was calculated using 
the Bradford method. Cell lysates were then collected and 
subsequently resolved with SDS-PAGE gel, then transferred 
to Immobilon P membranes (Millipore Corp., Billerica, 
MA) by electroblotting. After blocking, the membranes were 
probed with primary antibodies. The membranes were then 
washed thrice in a wash buffer and incubated with horse-
radish peroxidase-conjugated secondary antibodies. Blots 
were visualized using an ECL detection kit (Amersham, 
Arlington Heights, IL).

Luciferase-reporter gene assay. The p53- and p21-responsive 
reporter analysis was carried out using the Dual-luciferase 
assay kit (Promega, Medison, WI) according to the manufac-
turer's protocol. Briefly, OVCAR-3 cells were transfected with 
the vector DNA containing p53- and p21-luciferase, in which 
the luciferase was expressed under each promoter control. 
The reporter plasmid, p53-Luc, was a kind gift of Dr K. Park 
(Samsung Medical Center, Korea) and the p21 promoter 
reporter construct of Dr J. Park (Yonsei University, Korea). 
OVCAR-3 cells at 80-85% confluency were transiently trans-
fected with each indicated reporter construct. As an internal 
control to correct for variations in transfection efficiency, 
20 ng of pRL-TK (Promega), was co-transfected. After lysis 
with Reporter lysis buffer (Promega), the cell extracts were 
incubated at room temperature with the luciferase substrate 
for 30 min. Then, a 5-µl aliquot of each sample was trans-
ferred into the MicroLumat Plus LB96V luminometer. It was 
normalized for Renilla luciferase activity, in order to correct 
for variations in the transfection efficiency. All assays were 
carried out in triplicate with three independent experiments.

Reverse transcription-polymerase chain reaction (RT-PCR) 
for cDNA encoding full-length of human GABARBP. The total 
RNA from various cancer cell lines and tissues were obtained 
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using the TRIzol (Invitrogen, Carlsbad, CA) extraction method 
and full length cDNA, encoding human GABARBP, was 
synthesized from 1 µg of the total RNA using M-MLV reverse 
transcriptase (Promega) with the use of random hexamers 
(Invitrogen).

PCR reactions were carried out using a MyCyclerTM 
Thermal Cycler (Bio-Rad Laboratories Inc., Hercules, CA) as 
follows: 25 cycles for 1 min at 94˚C, 1 min at 56˚C and 1 min 
at 72˚C, followed by a final extension step of 10 min at 72˚C. 
The PCR products were sequenced by the dideoxy-mediated 
chain termination method using a 310-automatic sequencer 
(ABI 373; Perkin-Elmer, Wellesley, MA). Glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) was used as an internal 
control.

Statistical analysis. All data values are presented as the 
means ± SD or means ± SEM for at least three replicates for 
each group. Statistical comparisons were carried out using 
Student's t-test. The statistical significance was defined as 
P<0.05 and depicted with an asterisk (*) on each graph.

Results

GABARBP inhibits cell growth in a dose-dependent manner 
and additively promotes cell death by combination with 
cisplatin. To explore the biological function of GABARBP 
during cisplatin-induced cell death, we first checked by 
using a treatment of cisplatin and the ectopic expression of 
GABAPBP in ovarian cancer cells. As shown in Fig. 1A, the 
ectopic expression with GABARBP significantly reduced 
OVCAR-3 cell viability in a concentration-dependent 
manner. Overexpression with 1 µg GABARBP decreased 
the cell viability by 38%. Similar results were obtained 
when MCF-7 breast cancer cells were transfected with 
1 µg GABARBP (data not shown). The cell viability of 
OVCAR-3 cells treated with various concentrations (0, 5, 
10, 15, 20, 25 and 50 µM) of cisplatin was suppressed in a 
dose-dependent manner, and to inhibit the cells by 50% more 
than 20 µM was required. We also investigated the effect of 
GABARBP on FACS analysis, under the effects of cisplatin. 
As shown in Fig. 1B, the transfection of GABARBP into 

Figure 1. The apoptotic effects of cisplatin and GABARBP as a traditional anticancer drug. (A) Various concentrations of GABARBP or cisplatin, as a single 
agent, were used in the MTT colorimetric assays. (B) OVCAR-3 cells were transfected/treated with or without GABARBP, cisplatin or GABARBP plus 
cisplatin. After 24 h, cell proliferation was measured using the cell viability MTT assay (left panel) and flow cytometry analysis (right panel). The values for 
percentage of cell growth were calculated by comparing with the vector only transfected control cells. The experiments were repeated three times with similar 
results. The data values are presented as the mean ± SD.
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cispatin-induced cells, GABARBP-transfected cells had an 
additive effect when compared with the control, GABARAP, 
cisplatin or siGABARBP alone. All of these results indicate 
that GABARBP can additively enhance apoptotic sensitivity 
to the cisplatin-induced signal.

Movement of apoptosis-related machinery and cell cycle 
distribution. To further clarify the biological mechanism 
of GABARBP or cisplatin-stimulated cell cycle arrest, the 
protein levels of the cell death distribution were assessed in 
OVCAR-3 cells and then validated via cell migration and 
FACS analysis. The migration of carcinoma cells is a critical 
process in tumorigenesis. In order to measure the effects of 
GABARBP, cells were transfected/treated with control (vector 
only), GABARBP, cisplatin or cisplatin plus GABARBP, 
respectively. As shown in Fig. 2A, transfection/treatment 
with GABARBP or cisplatin, compared with the control, had 
suppressive effects, indicating that GABARBP plus cisplatin 
additively inhibits cell migration. Consistently, the cell cycle 
progression was examined using flow cytometry. The etopic 
expression of GABARBP was disrupted at a faster cell cycle 
when treated with cisplatin, under the IC50 value cells were 
greatly increased in the G0-G1 phase. Co-treatment with 
cisplatin and GABARBP dramatically increased the G0-G1 
phase in OVCAR-3 cells, indicating that cell cycle arrest in the 
G0-G1 phase contributes to the sensitization of GABARBP in 
cisplatin-induced cells (Fig. 2B).

The expression levels of CDK, cyclin D1, p16 and p27 
proteins are major factors in cell cycle progression. This is the 
case, since cell proliferation is directly related to cell cycle 
progression. Therefore, we next examined the expression 
of the cell cycle-regulatory member. After treatment with 
cisplatin plus GABARBP, the expression levels of cyclin D1 
and CDK4 were additively reduced when compared with the 
levels of each, the GABARBP-transfected or cisplatin-induced 

cells, whereas the CDK inhibitors, p16 and p27, were enhanced 
(Fig. 2C). Our findings suggest that GABARBP and cisplatin 
suppresses cell growth through the activation of the G1 phase 
arrest in cancer cells.

GABARBP controls the expression levels of apoptosis-related 
regulatory proteins and activation of p53 by UV-irradiation. 
Since p53-associated signaling pathways are well-known as 
critical modulators of cell death and survival (36-38), they 
are also known as major regulators of the Bcl-2 family genes 
(39-44). We investigated as to whether GABARBP altered the 
expression of the apoptosis-associated proteins. GABARBP 
dramatically decreased the expression levels of Bcl-xL 
and Bcl-2 proteins, while the siGABARBP transfectants 
were rescued. In contrast, the levels of Bax and p53 were 
increased in the GABARBP-transfected cells. Interestingly, 
the level of p21 expression was significantly increased by 
the ectopic expression of GABARBP, which is a well-known 
target gene of p53 (Fig. 3A). The effects of GABARBP on 
p53 and p21 transcription were assessed individually using 
a p53 and p21 promoter construct, which was introduced to 
be the luciferase gene. Both activities significantly enhanced 
the ectopic expression of GABARBP (Fig. 3B). In HCT116 
colon carcinoma cells, the absence of functional p53 and 
p21, abolished its anti-proliferative activity (Fig. 3C). These 
results indicate that GABARBP suppresses cell growth via 
p53. To further investigate whether GABARBP is essential 
for p53 activation, we introduced small interfering (si) 
RNA and antisense (As) methods to silence the expression 
of GABARBP. As-GABARBP and si-GABARBP reduced 
the expression of GABARBP, as calculated using RT-PCR 
(Fig. 3D, upper panel), in HCT116 p53-deficient colon cancer 
cells. Since As-GABARBP was shown to be more effective 
than si-GABARBP in blocking the expression of GABARBP, 
we used As-GABARBP to suppress GABARBP and examined 

Figure 2. Wound healing and movement of the cell cycle-related machinery 
and cell cycle progression. (A) Cell migration assay. GABARBP ectopic 
expression inhibits wound healing in ovarian cancer cells. The migration 
activity was determined using wound healing. (B) Analysis of cell cycle 
progression. Cells were grown on 60-mm diameter dishes and transfected/
treated with the control (vector only), GABARBP, cisplatin or GABARBP 
plus cisplatin, repectively. Cells were treated with fluorescein isothiocyanate 
(FITC)-labeled Annexin V, propidium iodide (PI) and RNase A (1 mg/ml) in 
PBS and then incubated for 1 h at 37˚C in the dark. (C) Effect of GABARBP, 
cisplatin or GABARBP plus cisplatin on the expression of cell cycle-related 
genes, such as cyclin D1, CDK4, p16 and p27 in OVCAR-3 cells. The protein 
bands were detected with a chemiluminescence detection system. As an 
internal standard for equal loading, membrane blots were probed with the 
β-actin antibody.
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the significance of GABARBP in p53 induction. As shown 
in Fig. 3D, treatment with UV-irradiation promoted the p53 
expression levels, whereas the suppression of GABARBP, by 
As-GABARBP, blocked the induction of p53 (Fig. 3D, bottom 
panel), supporting the requirement of GABARBP for the 
increase in p53. These results indicate that GABARBP is a key 
regulator for the DNA damage-dependent induction of p53.

Effect of GABARBP on inhibiting Akt/mTOR phosphorylation 
by cisplatin. Akt as a key downstream modulator of PI3K, acti-
vates cell growth through a variety of biological mechanisms, 
such as phosphorylation and the inactivation of pro-apoptotic 
genes, Bcl-2 and the caspase family (45-47). We next performed 
immunoblotting of the downstream targets of PI3K after treat-
ment with either GABARBP or cisplatin. With treatment of 
GABARBP or cisplatin alone, as well as GABARBP plus 
cisplatin, it was shown that they induced downregulation of 
phospho-phosphoinositide-dependent protein kinase 1 (PDK-
1), phospho-Akt, phospho-mammalian target of rapamycin 
(mTOR), phospho-ribosomal p70 S6 kinase (70S6K) and 
phospho-glycogen synthase kinase 3β (GSK-3β), without 
changing their entire protein levels (Fig. 4). Taken together, 
the data clearly suggest that GABARBP and cisplatin induce 

Figure 3. Effects of GABARBP on the expression of the apoptosis-regulatory genes and p53 activity. (A) OVCAR-3 cells were transfected with the control 
(expression vector only), GABARBP or siGABARBP, respectively. After 48 h, the cells were harvested and treated with lysis buffer. Cell lysates were subjected 
to immunoblotting. The protein expression of the cell death regulator genes was tested. Protein expression was detected through immunoblotting, using 
specific antibodies. β-actin was used as a loading control. (B) Promoter activities of p53 and p21 were examined by the reporter assay with p53 promoter 
reporter (p53-Luc) and p21 promoter reporter (p21-Luc), respectively. To correct for the differences in transfection efficiencies, luciferase activities were 
normalized by co-transfection with Renilla luciferase plasmid. (C) HCT116 colon cancer cells were transfected with the control (vector only) or GABARBP-
expression plasmid and the effect of GABARBP on cell proliferation was monitored by calculating [3H]-thymidine incorporation. All experiments were carried 
out at least three times with consistent and similar results. All data values are presented as the mean values ± SD. *P<0.05. (D) The expression of GABARBP 
was compared with antisense (As) and small interfering (si) RNA using RT-PCR. HCT116 colon carcinoma cells were transfected with As-GABARBP 
or si-GABARBP construct and grown for 24 h (upper panel). The biological significance of GABARBP, on the induction of p53 by UV-irradiation, was 
investigated using an antisense (As) GABARBP. After being transfected with the control or As-GABARBP in the HCT116 cells, they were introduced to 
immunoblotting of GABARBP and p53 1 h after UV-exposure. β-actin was used as the loading control (bottom panel).

Figure 4. Immunoblotting analysis of the downstream components in the Akt 
signaling pathways with GABARBP-transfected or cisplatin-treated ovarian 
carcinoma cells, respectively. After transfection/treatment of the control (vector 
only), GABARBP, cisplatin or GABARBP plus cisplatin, total cell lysates 
were prepared and determined for phospho-PDK-1 (Ser241), mTOR (Ser2448), 
phospho-p70S6K (Thr421) and phospho-GSK-3β (Ser9) protein levels through 
immnunoblot analysis. Non-phosphorylation protein was used as an equal 
loading control (indicated as PDK-1, mTOR, p70S6K and GSK-3β).
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changes in apoptosis, cell cycle progression and the PI3K 
signaling pathway regulatory proteins in ovarian carcinoma 
cells.

Expression of GABARBP in human carcinoma cells and 
patient tissues. To explore whether a functional connection 
of GABARBP exists with human cancers, we first observed 
the mRNA expression of GABARBP with different human 
carcinoma cells and non-malignant normal cell types by 
RT-PCR. Among the calculated cell types, the expression 
level of GABARBP mRNA was enhanced ~8-fold higher 
in HOSE-E6E7 (6.25-fold), MCF10A (6.95-fold) and three 
BEAS-2B (9.46-fold) normal cell types than in the two ovarian 
and one breast carcinoma cell types (Fig. 5A). When we also 
compared the expression levels of GABARBP, by western 
blotting, in the three different carcinoma cell types; the band 
intensities were measured using ImageLab software program. 
Our results were consistent with those observed by the RT-PCR 
experiments (Fig. 5B). Therefore, these finding suggest that 
the GABARBP expression levels may be downregulated in 
human carcinoma cell types. The results appear to be associ-
ated to the functionality of p53 (Fig. 3A). We next assessed 
the expression levels of GABARBP with tissues obtained 
from ovarian tumor patients. Among the six different patient 
samples of the ovarian tumor, low GABARBP expression 
levels were observed in six of the six patient cases, in contrast 
to the corresponding normal tissue samples (Fig. 5C). All of 
these results clearly suggest that low GABARBP expression 
may be frequently reduced with various human cancer types 
that include ovarian tumors.

Discussion

Ovarian cancer is one of the most aggressive tumor types, the 
overall prognosis for advanced cancer patients is poor. One of 
the reasons for the low survival rate is due to the resistance to 
many clinical therapies, such as conventional chemotherapy 

and radiotherapy (48). Conventional chemotherapy is gener-
ally used when the tumor has spread or may spread, to all 
areas of the body. Several previous studies have reported 
that different types of epigenetic and genetic alterations are 
included in gynecologic carcinoma (49,50). Inhibition of apop-
tosis is commonly accepted as one of the major contributing 
factors to chemoresistance (51). Apoptosis plays an important 
role for the maintenance of tissue homeostasis and the devel-
opment and inhibition of tumorigenesis. Generally, regulation 
of this form of apoptosis comprises of the participation of 
the p53 and Bcl-2 family proteins. Bcl-2 family members are 
known as major regulators of apoptosis, including pro- and 
anti-apoptotic proteins, such as Bcl-2, Bcl-xL, Mcl-1 and Bax 
(39,52). GABARBP is a modulator of the cellular trafficking 
of GABAA receptor, including the γ2 subunit (53). Klebig et al 
(33) reported that GABARBP functions as a putative tumor 
suppressor gene class II in breast cancer.

In this study, using the cancer model system, we found the 
new biological mechanisms of GABARBP as a novel potent 
regulatory factor that can target through a combination of 
traditional anticancer drugs in the mTOR signaling pathway. 
GABARBP mRNA and protein expression are dramati-
cally downregulated in ovarian cancers when compared 
with normal patient tissues (Fig. 5). Ectopic expression of 
GABARBP greatly inhibits cell proliferation by enhancing 
cisplatin-induced apoptosis, increased Bax expression and 
reduced Bcl-xL expression, as well as Bcl-2 in OVCAR-3 
carcinoma cells. Tumor suppressor p53 was upregulated in 
GABARBP-expressing cells (Fig. 3), while NF-κB expres-
sion was downregulated (data not shown), which may give a 
survival benefit for cancer cells.

The activation of the Bcl-2 protein can be regulated by 
post-translational modifications, such as phosphorylation that 
contains Akt and mTOR (54,55). Akt activates mTOR and 
is regulated by mTOR via a negative and positive feedback 
system (56), as a critical mediator of cell proliferation, which 
enhances cell survival through various mechanisms. mTOR, 

Figure 5. Expression of GABARBP in different human, normal or cancer cell types and ovarian, normal or patient tissues. (A) The mRNA expression was 
determined using RT-PCR. GAPDH was included as a loading control. (B) The detection of GABARBP expression was confirmed by the samples through 
immunoblotting analysis (A). β-actin served as the loading control. (C) Decreased mRNA expression of GABARBP in tissues from ovarian cancer patients. 
Total RNA was isolated from normal and tissues of carcinoma and analyzed using human GABARBP-specific primers. RT-PCR was used to compare the 
mRNA expression of GABARBP.
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a serine/threonine kinase, plays a key role in controlling 
cell cycle progression, protein synthesis and tumor growth. 
Interestingly, this downstream regulator for PI3K/mTOR, is 
constitutively activated in various types of human tumors, 
including ovarian cancer (57-59). Recently, Suvasini and 
Somasundaram have suggested the pivotal role of the PI3K/
Akt signaling pathway in p53-mediated transcription (60). In 
spite of these reports, biological/physiological mechanisms 
for therapeutic outcomes are very poor. We have integrated 
the biological role among these molecules in ovarian tumors. 
GABARBP inactivated cisplatin-induced dephosphorylation 
of the PI3K/Akt signaling pathway, including mTOR, p70S6K, 
as well as GSK-3β expression. The promoter activity of p53 
and p21 was enhanced as well as the protein expression levels, 
while Bcl-2 protein expression was inactivated by GABARBP. 
Importantly, our results show that GABARBP can additively 
regulate the expression of the apoptosis regulator gene by 
upregulation of p53 and the downregulation of NF-κB activity 
to cisplatin-induced apoptosis in the OVCAR-3 ovarian carci-
noma cells. In addition, we found that the GABARBP ectopic 
expression, significantly reduced the protein levels of the 
mTOR signaling pathway-associated genes. Taken together, 
these results clearly indicate that GABARBP and a chemo-
therapeutic agent have an additive effect on apoptosis and they 
also provide a biological function of GABARBP during tumor 
cell apoptosis. Optimization of the use of anticancer agents 
may offer great chances for further elevating the management 
of ovarian malignancies because it could help to enhance the 
quality of life in tumor patients (61).

In conclusion, we further validated a new critical 
molecular mechanism for GABARBP, a novel powerful pro-
apoptotic factor, which can control phosphorylation of Akt/
mTOR via the targeting of the p53 signaling pathways. These 
findings strongly indicate that GABARBP inhibition supports 
tumorigenesis by suppressing apoptosis in an ovarian cancer 
system. Our study is the first to show that GABARBP exerts its 
anticancer potency by increasing the p53-p21 protein expres-
sion of the G1 phase of cell cycle progression and cell death in 
human ovarian tumorigenesis.
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