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Abstract. Cancer-associated fibroblasts (CAFs) are well-known 
to be part of the tumor microenvironment. This heterogeneous 
population of cells of the tumor microenvironment via secre-
tion of various growth factors and cytokines was shown to 
contribute to increased cancer cell proliferation rate, migration, 
invasiveness and other key processes such as angiogenesis and 
lymphangiogenesis. Recent studies identified podoplanin as 
a marker of CAFs in various malignancies and its expression 
in these cells was shown to influence cancer progression. In 
some studies it yielded a prognostic impact on patient survival 
which was strongly dependent on the entity of the tumor. This 
review summarizes recent findings concerning the biology of 
podoplanin in cancer progression with particular emphasis on its 
expression in CAFs.
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1. Introduction

As early as 1863 Rudolf Virchow hypothesised that cancer 
cell growth may be stimulated by surrounding stromal cells 

and that the neoplastic process begins at the site of chronic 
inflammation, since leukocytes were seen in the stroma of 
neoplastic tissues (1). This hypothesis is actually somewhat 
true since recent research has shown that inflammatory cells 
may contribute to the development and progression of various 
malignancies (2,3). Besides inflammatory cells, in the majority 
of various tumors fibroblasts are seen (4). Under normal condi-
tions, fibroblasts synthesize the components and regulate the 
deposition of the extracellular matrix (ECM), epithelial differ-
entiation and inflammation (5-8). Fibroblasts are also key in 
the process of wound healing and fibrosis during which they 
exert different properties than those of normal fibroblasts (6,9). 
Their phenotype also changes, resulting in increased prolifera-
tion, motility and synthesis of various growth factors, referred 
to as ‘activation’ (4).

Cancers are often called ‘wounds that do not heal’. Recent 
research has shown that fibroblasts of cancerous stroma, the 
so-called cancer-associated fibroblasts (CAFs), exert an ‘acti-
vated phenotype’ in the majority of the studied malignancies 
(4,7,10,11). There is evidence which suggests that CAFs are 
characterized by a distinct gene expression profile, and that 
their properties differ from those of normal fibroblasts (12). 
Furthermore, CAFs may be incorporated into the tumor 
environment via different pathological mechanisms (4,7,13). 
Transformation of normal fibroblasts under the regulation 
of cancer cells has been proposed. However, it is becoming 
apparent that the recruitment of bone marrow derived stem cells, 
trans-differentiation of cancer (endothelial-mesenchymal tran-
sition; EMT) or endothelial cells (endothelial-mesenchymal 
transition; EndMT) may also very significantly contribute to 
this process (4,7,13,14). CAFs of invasive breast cancers were 
shown to augment tumor growth and induce angiogenesis via 
recruitment of endothelial cells due to secretion of high levels 
of stromal-derived growth factor (SDF-1) (15). CAFs were also 
shown to promote tumor growth by secreting ECM-degrading 
proteases (MMPs), hepatocyte growth factor (HGF) or 
connective tissue growth factor (CTGF) (16-22). Moreover, 
it was found that CAFs contribute to tumor progression via 
recruitment of inflammatory cells into the tumor environment 
(23). CAFs may also modulate cancer stem cell phenotype, as 
was recently described in colorectal carcinoma (24,25).

Fibroblasts are a heterogeneous group of cells. Their pheno-
type is strongly dependent on the tissue origin and topography. 
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As a result, tissue specific markers of fibroblast activation are 
of particular importance (26). The α-smooth muscle actin 
(αSMA) is regarded as a marker of activated CAFs in most 
of the studies (4,6,27). Besides αSMA, vimentin, desmin, 
fibroblast-specific protein 1 (FSP1) or fibroblast-activation 
protein are also used to identify and characterize CAFs in 
human malignancies (27-33). There is also evidence that 
different subsets of CAFs are present in the tumor stroma and 
differ in their properties (34). Recent findings have identified 
podoplanin as a potentially new marker of CAFs in various 
malignancies, giving new insight into the biology of cancers 
and the tumor microenvironment (27,28,35-37).

2. Podoplanin discovery, structure and expression 
regulation

Podoplanin was first discovered in 1990, when its mRNA was 
found in the murine osteoblastic cell line (MC3T3-E1) and 
ras-transformed cells (38). In 1996, Wetterwald et al raised 
an antibody which could detect podoplanin (designated as 
E11 antigen due to the antibody clone) in rat osteoblasts, pre-
osteocytes and osteocytes (39). Podoplanin (E11) positive cells 
were also identified as alveolar type 1 cells in lung, endothelial 
cells of choroid plexus and lymphatic endothelial cells (LECs) 
(39). Podoplanin was named for the above mentioned protein 
when Breiteneder-Geleff et al, discovered for the first time 
its expression on rat podocytes (40). In 1999 podoplanin was 
accepted as a novel marker of lymphatic endothelial cells 
(Fig. 1) (41,42).

The most popular synonym for podoplanin is D2-40, stem-
ming from the name of the antibody clone which is widely 
used for its detection in paraffin-embedded tissues (27,43). 
Podoplanin, is also known as gp36, gp38, canine gp40, T1α, 
PA2.26, Aggrus, OTS-8 or M2A oncofetal antigen (38,44-50).

Podoplanin is a 162-amino acid transmembrane sialogly-
coprotein belonging to type-1 transmembrane sialomucin-like 
glycoproteins (51). Its mass varies from 38 to 50 kDa due to 
the extent of the sialilation of its extracellular domain with 
numerous serine and threonine amino acid residues (42,52,53). 
Podoplanin consists of a small transmembrane domain and an 
intracellular domain. The latter interacts with protein kinase C 
(PKC) and proteins of the ERM (ezrin, radixin, meosin) 
family, which were shown to influence cancer cell motility 
and invasive potential (51,54). The podoplanin gene consists 
of 34.4 kb and 8 exons. To date 2 isoforms of podoplanin have 
been discovered utilizing northern blotting. They probably 
resemble a product of alternative splicing, but the biological 
significance of this finding remains to be clarified (53,55). Its 
expression is regulated on the level of transcription (numerous 
initiation sites, alternative splicing, polyadenylation) and on 
the post-translational level due to podoplanin calpain-medi-
ated proteolysis (53,56). Although the exact mechanism of its 
expression regulation remains unknown, numerous factors 
ranging from micro-RNA to signalling factors have been seen 
(42,57-60).

3. Podoplanin and lymphatic vessel development

As mentioned above, podoplanin is regarded as a marker of 
lymphatic vessel endothelium (41,42). Podoplanin-positive 

cell structures were shown to be simultaneously positive for 
Prox1 and VEGFR-3 (61). It seems that VEGF-C upregulates 
podoplanin expression via Prox1, which is a master regulator 
gene of lymphatic vessel development facilitating LECs differ-
entiation from lymphatic progenitor cells in embryonic veins 
(61,62). Podoplanin expression was also shown to be upregu-
lated by IL-3 in dermal LECs (63).

The important role of podoplanin in lymphatic vessel devel-
opment has been made clear by experiments performed with 
podoplanin-deficient mice which die at birth from respiratory 
failure caused by abnormal alveolar sac development due to 
the absence of podoplanin expression in alveolar type I cells 
(48,64). In these mice there were serious lymphatic abnormali-
ties including abnormal lymphatic vessel patterning, lymph 
transport and lymphedema combined with lymphatic vessel 
dilatation (48). Although no connections between the blood 
and lymphatic vessels were reported in the above mentioned 
studies (the so-called ‘separation phenotype’), Fu et al 
showed that mice deficient in endothelial O-glycans, from the 
targeting of T-synthase required for their production, possess 
a ‘non-separation’ phenotype with numerous misconnections 
between both vessel types (65). Mice lacking the T-synthase 
were also characterized by impaired podoplanin expression 
on endothelial cells. As a result, it was hypothesized that 
the abnormal connections between the blood and lymphatic 
vessels occurred due to the lack of its expression (65). Recently 
Uhrin et al showed that podoplanin platelet-aggregating prop-
erties are crucial for proper lymphatic vessel development. 
Thrombi are formed at sites of podoplanin-positive lymph sacs 
separating them from cardinal veins during mouse embryonic 
development, thereby enabling proper separation of blood and 
newly formed lymphatic vessels (66).

4. Podoplanin and tumor metastasis facilitated by 
thrombus formation

Recent findings have led to new discoveries which help clarify 
the functions of particular podoplanin domains. The extracel-
lular domain of podoplanin consists of the EDxxVTPG segment 
(PLAG - platelet aggregating domain), which is responsible 
for platelet aggregation (51). C-type lectin-like receptor-2 
(CLEC-2) was discovered as the first podoplanin receptor on 
human platelets responsible for platelet aggregating properties 
of podoplanin (67,68). Recombination of CLEC-2 or mutations 
in the threonine residues of PLAG result in abolished platelet 
aggregation by podoplanin (47,67). Podoplanin interaction 
with platelets was also shown to be inhibited by antibodies 
directed against CLEC-2, which may be significant in anti-
cancer therapies (68,69). It was shown that tumor cells induce 
platelet aggregation which protects cancer cells from sheer 
stress and host immunological defence (70). This phenomenon 
may result in increased tumor growth and enhanced metastatic 
potential of the tumors (47,71,72). Using animal models it was 
shown in vivo that antibodies targeting the interaction of the 
PLAG domain and CLEC-2 may suppress tumor metastasis 
(68,73). The blockade of CLEC-2 may be of potential impor-
tance since diminished functionality of this receptor results in 
decreased thrombus formation with a non-significant clinical 
rise in bleeding time (72,74-76). However, caution should be 
taken when using antibodies targeting podoplanin function 
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because podoplanin-Fc transgenically expressed in mouse 
skin resulted in lethal disseminated intravascular coagulation 
(77).

5. Podoplanin and cancer cell migration, invasion and 
progression

Several studies and reviews have already shown that podo-
planin affects the migration of normal and cancer cells 
(42,52,59,78). Cancer cells may migrate in two distinctive 
patterns. The most often studied theory is based on the single 
cell migration model which is often connected to the EMT 
phenomenon. In this process, cancer cells lose their epithelial 
phenotype e.g., loss of E-cadherin, and acquire a mesenchymal 
phenotype which is characterized by expression increase of 
the mesenchymal markers N-cadherin, αSMA or FSP-1. This 
is often regarded as the cadherin switch (52). This process 
results in the increase of migratory and invasive potential, and 
cancer cell resistance towards apoptotic stimuli (79). Although 
this process is considered crucial in cancer cell dissemination, 
it is rarely observed in paraffin sections of embedded cancer 
tissues. On the contrary, large cancer cell bulks invading the 
neighboring tissues are most frequently observed in cancerous 
tissues. In this model, known as ‘collective cell migration’, 
cancer cells maintain the expression of epithelial markers (52). 
Experimentation has indicated that podoplanin may mediate 
cancer cell migration in both hypothetical invasion models.

Wicki et al in the Rip1Tag2 model of pancreatic β-cell 
carcinogenesis have shown that transgenic expression of 
podoplanin in pancreatic β-cells led to the formation of 
carcinomas in the absence of EMT, since the cancer cells 

Figure 1. A membrane-cytoplasmic expression pattern of podoplanin in the 
lymphatic vessel endothelium was utilized to detect lymphatic vessels in var-
ious tissues, as none of its expression is noted in the blood vessel endothelium 
(A and B). Podoplanin expression in myoepithelial cells surrounding breast 
duct cells (C). None of its expression is noted in the normal, non-transformed 
stroma.

Figure 2. Podoplanin membrane staining of squamous cancer cells of skin (A) and lung (B) cancers. On the contrary no staining is visible in the adenocarcinoma of 
the lung (C), colon (D) and invasive ductal breast carcinoma (E and F). In these tumors, podoplanin expression is mainly noted in the CAFs of tumour stroma (C-E) 
and LECs (F).
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invaded the surrounding tissues in a collective pattern (59). In 
this experimental model mice develop adenomas and carci-
nomas of β-cells in pancreatic Langerhans islets due to the 
expression of simian virus large T antigen under the control 
of rat insulin promotor (52,59). Moreover, podoplanin colocal-
ized with E-cadherin on the invading tumor edge in various 
cancers of tumor origin (52,59). Neo-expression of podoplanin 
in MCF-7 (breast cancer cell line) supported this observation 
since no cadherin switch occurred in these cells. Nevertheless, 
the cells were characterized by increased migratory and 
invasive potential (59). Under the influence of transforming 
growth factor β (TGFβ), epidermal growth factor (EGF) and 
hepatocyte growth factor (HGF), an increase in podoplanin 
expression could be noted in the podoplanin transfected 
MCF-7 cells (59). It is noteworthy that podoplanin is rarely 
expressed in breast cancer cell lines and tissues, not even in the 
most invasive and metastasizing cell lines showing expression 
of mesenchymal markers (MDA-MB-231 and MDA-MB-231.
BO2) (27,36,53).

Podoplanin neo-expression in Madin-Darby canine kidney 
(MDCK) cells resulted in EMT. The cells acquired migratory 
features dependent on the interaction of podoplanin endodo-
main with ezrin and radixin, proteins of the ERM complex 
of cell membrane. Podoplanin binding to these proteins 
resulted in activation of RhoA small G protein (54). Moreover, 
induction of podoplanin expression in epidermal MCA3D 
keratinocytes (3D2.26) induced cell surface extensions, had 
increased motility, a loss of cortical actin and destabilization 
of adherens junctions. In addition, these cells also had a loss of 
keratin-14 and an increase of vimentin and keratin-14 expres-
sion. Upon injection into athymic mice, 3D2.26 cells formed 
undifferentiated tumors with aberrant E-cadherin expression 
and formation of tumor metastases in regional lymph nodes. 
This highlights the malignant transformation of these cells 
(80). Podoplanin was also shown to be upregulated in human 
epideral keratinocytes by TGFβ, IFNγ, IL-6 and IL-22, which 
partially confirms the findings in the MCF-7 cells (57).

Podoplanin was also identified in raft platforms, structures 
crucial for cell signaling (81). It seems that the short GXXXG 
motif of the podoplanin transmembrane domain is crucial for 
its association with detergent-resistant membranes (DRMs), 
ERM phosphorylation or induction of EMT and cell migra-
tion (81). MDCK cells with mutation in the GXXXG motif 
of podoplanin transmembrane domain were characterized by 
their impaired dimerization and lacked localization in the lipid 
raft platforms resulting in the absence of EMT (81). Apparently 
podoplanin inclusion in the raft platforms is crucial for its 
interaction with the actin cytoskeleton and activation of the 
RhoA/ROCK pathway. A recent study showed that podoplanin 
interacts with CD44 independently of ERM proteins in cell 
membrane protrusions which therefore ensures directional 
cell migration (82). CD44 is an ERM binding protein. Its 
interaction with actin cytoskeleton is also dependent on its 
inclusion in the lipid rafts (83). It therefore appears that podo-
planin regulates the RhoA/ROCK activity via its inclusion 
(81-83).

Although it is clear that podoplanin mediates migration 
and invasiveness of cancer cells, the biology and interactions 
of this protein seem to be strongly dependent on the cell type. 
Martin-Villar et al and Fernandez-Munoz et al demonstrated 

that podoplanin expression in MDCK cells led to induced 
activity of RhoA, whereas Wicki et al, demonstrated a 
decrease of RhoA, Rac1 and cdc42 activity upon podoplanin 
introduction into the MCF-7 cells (54,59,81).

It has also been shown, that the Src kinase stimulates 
podoplanin expression in the homozygous null gap junction 
Cx43 (connexin 43) knock-out brain cells by phospho-
rylating the focal adhesion adaptor protein Cas (Crk 
associated substrate). This led to induced cell migration 
(84). Interaction of the Src kinase with Cas was shown to 
promote anchorage-independent growth and migration of 
cancer cells and these effects may be mediated by induc-
tion of podoplanin expression (84). In addition, podoplanin 
expression was found to be decreased by contact normali-
zation, a process that forces the cells to maintain normal 
non-transformed cell phenotype, therefore preventing their 
malignant transformation (84,85).

A recent study of Acton et al identified podoplanin as an 
inducer of dendritic cell (DC) migration via interaction with 
its receptor, the CLEC-2 protein (86). Binding of podoplanin 
expressed on fibroblastic reticular cells (FRCs) and LECs with 
CLEC-2 on DCs resulted in increased migratory potential of 
the latter. This mechanism might also be responsible for the 
migration of cancer cells along the lymphatic networks since 
the neoexpression of CLEC-2 in a human A375 melanoma 
cell line resulted in protrusion formation upon contact of the 
CLEC-2 overexpressing A375 melanoma cell line with podo-
planin expressing FRCs (86).

Diversity of podoplanin biology is also apparent in 
different tumor types. Podoplanin expression in breast 
cancer cell lines augmented their metastatic potential and 
dissemination through villin-1 dependent induction of 
lymphangiogenesis (87). On the contrary, forced expression 
in the lung squamoid EBC-1 cancer cells attenuated pro-
lymphangiogenic and metastatic potential by reducing the 
expression of VEGF-C in these cells via the downregulation of 
c-jun N-terminal kinase (JNK) (88). These results agree with 
the results obtained on human squamous non-small cell lung 
cancer and cervical cancer, where cases with high expression 
of podoplanin were characterized by a lower incidence of 
nodal metastasis (89-93). However, in head and neck cancers 
high podoplanin expression in cancer cells was found to be 
a negative prognostic factor (94-100). Interestingly, in some 
tumors cell lines derived from these tumor types e.g., inva-
sive ductal breast carcinoma, lung, pancreatic and colorectal 
adenocarcinoma, podoplanin expression in cancer cells is 
rarely observed (27,28,36,37,53). There is abundant evidence 
pointing to elevated podoplanin expression in cancers. This 
shows squamous differentiation in comparison to those of the 
adenocarcinoma type (Fig. 2A and B) (42,52,53).

Podoplanin was also proposed to be a hallmark of tumor 
initiating cells in squamous cell cancers since podoplanin-
positive cancer cells exerted augmented tumorigenic 
potential as compared to cells without podoplanin expres-
sion (101,102). In normal epidermis, podoplanin expression 
is observed in the basal layer and rises in the precancerous 
lesions (actinic keratosis) and skin squamous cell cancer 
(103,104). Moreover, the A431 squamous cancer cell line 
derived from the vulva and the TE-11 cell line derived 
from esophageal squamous cell cancer showed divergent 
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subpopulations with respect to podoplanin expression. Cells 
expressing podoplanin could give rise to both podoplanin 
expressing and non-expressing cells. Upon subcutaneous injec-
tion into SCID mice, tumors bearing podoplanin expressing 
cells were characterized by augmented growth as compared 
to tumors generated by cells without podoplanin expression 
(101,102). In addition, podoplanin-positive A431 cells exhib-
ited high expression of CD44 and sonic hedgehog (SHH), 
which are both markers of tumor initiating cells (102).

6. Podoplanin expression in cells of normal and cancerous 
stroma

Skin cancer. Podoplanin expression was first studied as a 
potential marker of lymphangiogenesis. The assessment 
of this process in numerous tumors led to the discovery of 
podoplanin expression in cancer cells as well as ‘activated 
fibroblasts’ (42,52). At first, podoplanin expression, known 
as PA2.26, antigen was noted in the membrane of fibroblasts 
in vivo (NIH-3T3, Swiss-3T3 and 10T1/2) and in fibroblasts 
of tissue sections of skin exposed to wounding or stimulation 
with 12-O-tetradecanoylphorbol-13-acetate (TPA) (45). In this 
study, in normal, untreated skin podoplanin expression was 
not noted in the basal and suprabasal skin layers, suggesting 
that podoplanin may be a marker of cell activity in skin carci-
nogenesis (45).

Lung cancer. There is increasing evidence that podoplanin 
is possibly expressed in CAFs of cancerous stroma, which 
contribute to the progression of numerous tumors (Fig. 2C-F) 
(4,7). To date, podoplanin-positive CAFs are best characterized 
in lung adenocarcinoma. Kawase et al identified podoplanin-
positive CAFs in tissue sections of 54 out of 177 cases of lung 
adenocarcinoma and confirmed its expression on the protein 
level in CAFs isolated from some of the tumors (28). It is 
noteworthy that podoplanin expression in CAFs was higher 
in comparison to non-cancerous fibroblasts isolated from 
surrounding tissues of the same patients (28). In this study 
cohort, podoplanin expression in CAFs was associated with 
a history of smoking, a primary tumor that was larger in size, 
the presence of lymph node metastasis, advanced pathological 
stage, poor grade of differentiation, as well as vascular and 
pleural invasion. Moreover, patients whose tumors were char-
acterized by podoplanin expression in CAFs had significantly 
shorter overall survival in comparison to patients whose 
CAFs did not exhibit podoplanin expression (28). Podoplanin 
expressing CAFs were also identified as a marker of poor 
prognosis in other studies conducted on lung adenocarcinoma 
(35,105,106). Interestingly, podoplanin expression in CAFs had 
no prognostic significance in squamous lung cancer, which is 
characterized by elevated expression of podoplanin in cancer 
cells (35,107). As in cancer cells, tumor promoting effects 
of podoplanin-positive CAFs were found to be mediated by 
elevated RhoA activity, similar to observations in other cell 
types (54,80,81,108). Human fibroblasts isolated from vascular 
adventitia with ectopic expression of podoplanin exerted 
elevated RhoA activity. Injection of these cells was shown to 
augment tumor formation of human lung adenocarcinoma cell 
line A549 upon co-injection into SCID mice, as compared to 
A549 cells co-injected with control human fibroblasts (108). 

As the A549 cell line does not express CLEC-2, the mecha-
nism of enhanced tumor formation by podoplanin expressing 
fibroblasts remains to be elucidated in order to determine if 
this interaction is contact dependent or mediated via secretion 
of other stimulatory factors. In their previous study, the authors 
showed that fibroblasts derived from human vascular adven-
titia enhanced lung adenocarcinoma tumor formation in vitro 
and in vivo of lung adenocarcinoma cell lines (A549, PC-14, 
CRL-5807) (105). Moreover, the experiments revealed that the 
podoplanin expressing subset of these fibroblasts enhanced 
tumor formation and lymph node metastasis of A549 cells as 
compared to the subset lacking podoplanin expression (105). 
Interestingly, podoplanin expressing CAFs were also identified 
in nodal metastases of lung adenocarcinoma and were associ-
ated with poor overall survival of patients with pathological 
N2 stage III cancers. However, the presence of podoplanin 
expressing CAFs in the metastatic lesion did not correlate 
with any other clinicopathological factors of the patients (109). 
Recently, Ono et al showed that podoplanin assessment in 
CAFs of stage I human squamous cell carcinoma, in addition 
to other immunohistochemical markers, may identify patients 
with poor outcome risk (110). In this study, a combined survival 
analysis of patients with low E-cadherin expression in cancer 
cells and high podoplanin expression in CAFs revealed that 
only 7% of the patients achieved the 5-year overall survival 
time (110).

Breast cancer. Podoplanin expression in CAFs was also 
identified as a negative prognosis marker of invasive ductal 
breast carcinoma (IDC) (27,36). In normal breast and 
mastopathies, podoplanin expression was noted in myoepi-
thelial cells surrounding the duct cells (27,36,104). Although, 
the percentage of cases showing podoplanin expression 
in the study of Pula et al (27) and Schoppmann et al (36) 
differed, podoplanin expressing CAFs were associated with 
nodal involvement, poor differentiation grade and negative 
estrogen receptor status. Of the analyzed invasive lobular 
breast cancers, only one out of 48 analyzed cases showed 
podoplanin immuno reactivity in CAFs (36). In both studies 
the authors analyzed the association between the podoplanin 
expression in CAFs and lymphatic vessel densities (LVD) 
in the intratumoral and peritumoral areas, but only in the 
study of Pula et al a significant rise of intratumoral LVD 
with increasing expression of podoplanin in CAFs was noted 
(27). This may indicate that podoplanin-positive CAFs can 
possibly be generated via EndEMT from LECs. This hypoth-
esis remains to be clarified.

Intrahepatic cholangiocarcinoma. In a study conducted on 
86 cases of intrahepatic cholangiocarcinoma, Aishima et al 
identified podoplanin-positive myofibroblasts in the tumor 
stroma of 33 cases. The presence of these cells was associ-
ated with lymph node metastasis and poor outcome of the 
patients (111).

Colorectal carcinoma. Although the majority of recently 
published studies identified podoplanin expression in CAFs as 
an unfavorable marker of prognosis, expression of podoplanin 
in the tumor stroma of colorectal cancer was shown to be asso-
ciated with good outcome of the patients (37). Moreover, cases 
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characterized by podoplanin expression in the tumor stroma 
had shallower depths of tumor invasion, were localized more 
distally and had a lower incidence of liver metastasis (37). 
These contradictory results were supported with in vitro tumor 
invasion assays, which showed that colon adenocarcinoma 
cell lines (HCT116 and HCT15) exerted augmented invasive 
potential, when co-cultured with fibroblasts with podoplanin-
siRNA mediated knock-down (37).

Uterine cervical carcinoma. The prognostic value of podo-
planin expression in CAFs was also studied in uterine cervical 
carcinoma. Similar to the results obtained in colorectal carci-
noma, cases characterized by podoplanin expression in CAFs 
had lower incidences of lymph node metastases (112). Although 
the proportion of fatal cases in this group was smaller than in 
cases without podoplanin in CAFs, this trend was not statisti-
cally significant (112). The presence of podoplanin expression 
in the squamous cell carcinomas of the uterine cervix was also 
noted by Dumoff et al, who showed that its levels in the stroma 
of invasive tumors were significantly elevated in comparison 
to normal stroma of the cervix. However, the prognostic 
significance of this finding was not assessed in this study 
(91).

Adenocarcinoma of the esophagus. Podplanin expression 
in CAFs was recently shown in adenocarcinoma of the 
esophagus, whereas none of its expression was noted in the 
precursor lesions of this cancer (Barret's mucosa without 
dysplasia, with low grade and high grade dysplastic Barret's 
mucosa) (113). Twenty-two of the 200 (11%) studied adeno-
carcinomas were identified as podoplanin expressing and 
these cases were characterized by an advanced tumor stage, 
more frequent lymph node involvement and lymphatic vessel 
involvement. In addition, podoplanin expression in CAFs was 
identified as an independent marker of poor prognosis in the 
analyzed adenocarcinoma patients cohort supporting its role 
in the progression of this cancer (113). Interestingly, only 3% 
of the analyzed lymph node metastases revealed podoplanin 
expression.

Other cancers. A comprehensive study aimed at identifying 
podoplanin expression in the cancerous stroma of various 
cancers was undertaken by Kitano et al (35). The most abun-
dant podoplanin expressing CAFs were found in colorectal, 
stomach and biliary tract and pancreatic cancer, whereas 
cancers of the bladder, lung, liver, uterine body, prostate and 
ovary were characterized by expression in less than half of 
the CAFs. In thyroid cancers no podoplanin expression in 
the cancerous stroma was noted (35). Although the authors 
reported that podoplanin expression in CAFs was associ-
ated with higher primary size, the presence of lymph node 
metastasis, advanced disease stage, higher LVD and lymphatic 
and blood vessel invasion, these results should be interpreted 
with caution since the statistical analysis was performed on a 
pooled cohort of the analyzed cancers (35).

7. Conclusion

Recent years have brought new insights into the biological 
role of podoplanin. It is becoming apparent, that this widely 

expressed protein may become a key target for future anti-
cancer therapies, regardless of its expression in cancer as well 
as CAFs. Nevertheless, the diversity of the biological roles 
of podoplanin in normal and cancerous transformed tissues 
requires further studies in order to better understand cancer-
stromal interactions.
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