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Abstract. Phenethyl isothiocyanate (PEITC) is a natural 
compound that is involved in chemoprevention as well as 
inhibition of cell growth and induction of apoptosis in several 
types of cancer cells. Previous studies have revealed that 
PEITC suppresses the invasion of AGS gastric and HT-29 
colorectal cancer cells. However, the effects of PEITC on 
the metastasis of SAS oral cancer cells remain to be deter-
mined. Our results showed that PEITC treatment inhibited 
the invasion of EGF-stimulated SAS cells in a concentra-
tion-dependent manner, but appeared not to affect the cell 
viability. The expression and enzymatic activities of matrix 
metalloprotease-2 (MMP-2) and matrix metalloprotease-9 
(MMP-9) were suppressed by PEITC. Concomitantly, we 
observed an increase in the protein expression of both tissue 
inhibitor of metalloproteinase-1 (TIMP-1) and -2 (TIMP-2) in 
treated cells. Furthermore, PEITC treatments decreased the 
protein phosphorylation of epidermal growth factor receptor 
(EGFR) and downstream signaling proteins including PDK1, 
PI3K (p85), AKT, phosphorylated IKK and IκB to inactivate 
NF-κB for the suppression of MMP-2 and MMP-9 expression. 
In addition, PEITC can trigger the MAPK signaling pathway 
through the increase in phosphorylated p38, JNK and ERK in 
treated cells. Our data indicate that PEITC is able to inhibit the 
invasion of EGF-stimulated SAS oral cancer cells by targeting 
EGFR and its downstream signaling molecules and finally 
lead to the reduced expression and enzymatic activities of 
both MMP-2 and MMP-9. These results suggest that PEITC is 
promising for the therapy of oral cancer metastasis.

Introduction

Head and neck squamous cell carcinoma (HNSCC), including 
oral cancer, is the sixth most common malignancy in humans 
worldwide. Oral cancer (OC) is one of the most frequent types 
of HNSCC. Approximately 95% of OCs are squamous cell 
carcinomas (OSCC) (1). Histologically, OSCCs are derived 
from the epithelium lining of the oral cavity and can occur at 
various sites in the oral cavity, including the lips, hard palate, 
gum and tongue (2), with a preference on the tongue and floor 
of the mouth. Each year, ~405, 000 new cases of oral cancer 
(OSCC) are diagnosed and the number is still accumulating in 
many countries. In Taiwan, OSCC is the sixth leading cause 
of cancer death. Approximately 5,400 new cases are identi-
fied and 2,200 deaths per year and the incidence of OSCC has 
increased 6-fold during the past decade.

The main causes of oral cancer includes tobacco and 
alcohol consumption (3), diets poor in vitamin A and carot-
enoids, indoor air pollution and poor oral hygiene (4,5). The 
occurrence of oral cancer in Taiwan is closely related to betel 
quid chewing, cigarette smoking and alcohol consumption (6). 
The standard treatments for patients with oral cancer include 
surgery, radiotherapy and chemotherapy (7). Despite the 
improvement in surgery and chemotherapy during the last 
20 years (8), oral cancer remains a disease with poor prog-
nosis and a low survival rate (9). In patients identified with 
an advanced stage of the disease, there is a high incidence of 
invasion to adjacent tissues, of metastasis to lymph node and 
distant areas and of recurrence during the patient's lifetime 
(10,11). As compare to 90% of patients without metastasis, 
the 5-year survival rate for patients with lymph node metas-
tasis at presentation is significantly reduced to 25-40% (12). 
Additionally, lymph node metastasis occurs in ~40% of 
patients with oral cancer. Therefore, there is an urgent need to 
identify agents that can inhibit the invasion and metastasis of 
oral cancers.

The active components in natural products such as poly-
phenolic and isothiocyanate (ITC)-containing compounds 
are the intensive target of research for their promising cancer 
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preventative and therapeutic properties (13,14) and low toxicity 
to cells (15). Epidemiological investigations have reported 
an inverse relation between the dietary intake of fruits and 
vegetables, including cruciferous vegetables and the risk of 
various types of malignancies (16-18). The anti-carcinogenic 
effects of cruciferous vegetables such as broccoli (18) and 
watercress (19) have been ascribed to certain chemicals 
with the isothiocyanate (-N=C=S) functional group (19,20). 
Isothiocyanates are produced from the hydrolysis of the inac-
tive precursor glucosinolates by myrosinase in cruciferous 
vegetables when the plant tissues are crushed or masticated 
(19-21). These isothiocyanates, which consist of phenethyl 
ITC (PEITC), allyl ITC (AITC), benzyl ITC (BITC) (22) 
and sulforaphane (SFN), have been shown to have potential 
cancer chemopreventive activity in a number of experimental 
models, including cancer  of the esophagus, mammary gland, 
lung, liver, pancreas, fore-stomach, colon, small intestine 
and bladder of mice, rats, other rodents and colon cancer in 
humans (23-25).

PEITC, a member of isothiocyanate, possesses a variety 
of biological activities such as the induction of phase II 
detoxification enzymes, the inhibition of cytochrome P450 
(CYP) enzymes (26), arrest of cell cycle (27) and stimula-
tion of apoptosis (28-31), inhibition of nuclear factor-κB 
(NF-κB)-regulated gene expression (32) and activation of 
Atg5-mediated autophagy (33) in different cancer cell lines. 
PEITC also suppresses the pulmonary neoplasia induced by 
4-(methylnitrosamino)-1-(3-pyridyl)-1-butone in the lung of 
A/J mouse (34,35), prevents the formation of colonic aber-
rant crypt foci induced by azoxymethane (36) and reduces 
the number and size of polyps in ApcMin/+ mice (23). The 
incidence and burden (affected area) of poorly differentiated 
tumors in the dorsolateral prostate of transgenic adenocarci-
noma of mouse prostate (TRAMP) model mice were reduced 
when given 3 µmole PEITC/kg of diet (37). Further, PEITC is 
currently in clinical trials for lung cancer (38). These effects 
suggest a potential role of PEITC in the suppression of tumori-
genesis.

It has been shown that PEITC inhibited the migration 
and invasion of human gastric cancer AGS cells (39) and 
colon cancer HT29 cells (40). In addition, PEITC treatment 
reduced angiogenesis and cell motility of human umbilical 
vein endothelial cells and PC-3 prostate cancer cells (41). 
However, the effects and underlying mechanism of PEITC on 
the metastasis of oral squamous cell carcinomas are still not 
clear. In this study, we demonstrated that PEITC acted on the 
phosphorylation of EGFR and sequentially inactivated the 
PI3K/AKT kinase cascade, repressed the NF-κB-mediated 
signaling and hence reduced expression of matrix metallo-
proteases (MMPs), finally leading to the inhibition of OSCC 
invasion.

Materials and methods

Chemicals and reagents. Phenethyl isothiocyanate (PEITC) 
was purchased from Sigma-Aldrich (St. Louis, MO, USA). 
Antibodies against AKT, EGFR, ERK, IκB, JNK, MMP-2, 
MMP-9, p38, PI3K, TIMP-1, TIMP-2, β-actin and GAPDH 
were obtained from Santa Cruz Biotechnology (Santa Cruz, 
CA, USA). Antibodies against phospho-AKT (S308), phospho-

AKT (S473), phospho-EGFR (Y845), phospho-EGFR (Y992), 
phospho-EGFR (Y1068), phospho-ERK (Thr202/Tyr204), 
phospho-IKK, phospho-IκB, phospho-JNK (Thr183/Tyr185), 
phospho-PDK1, phospho-PI3K and phospho-p38 (Thr183/
Tyr185) were obtained from Cell Signaling Technology 
(Danvers, MA, USA). HRP-conjugated secondary antibodies 
such as rabbit anti-mouse IgG, goat anti-rabbit IgG and donkey 
anti-goat IgG were purchased from Santa Cruz Biotechnology. 
MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetra-
zolium bromide) and epidermal growth factor (EGF) were 
obtained from Sigma-Aldrich. DMEM medium, fetal bovine 
serum (FBS), L-glutamine, penicillin-streptomycin and 
trypsin-EDTA were purchased from Gibco BRL (Invitrogen 
Life Technologies, Carlsbad, CA).

Cell culture. Human OSCC SAS cell line was cultured in 
DMEM medium supplemented with 10% of fetal bovine 
serum, 100 U/ml penicillin, 100 µg/ml streptomycin and 2 mM 
glutamine and incubated at 37˚C in a humidified chamber with 
5% CO2 (42).

Cell invasion assay. The membrane of each transwell insert 
was washed with 1X PBS and pre-coated with Matrigel (2 mg/
ml, 20 µl; BD Matrigel™ Invasion chamber). SAS cells (2x104) 
were seeded into the chamber of the insert and incubated with 
0.5 ml of complete DMEM medium in each transwell. Cells 
were treated with EGF (100 ng/ml) and various concentrations 
of PEITC (0, 0.5, 1 and 2 µM) for 48 h and then cells inside the 
chamber were removed by a cotton swab. Invaded cells were 
fixed with 4% formaldehyde in PBS and stained with 0.1% of 
hematoxylin, captured and the number of invaded cells was 
counted (43,44).

Cell viability assay. SAS cells (2x104) were seeded into the 
96-well plate and treated with EGF (100 ng/ml) and PEITC (0, 
0.5, 1 and 2 µM) for 48 h. Medium was removed and replaced 
with fresh DMEM medium containing MTT (0.5 mg/ml) and 
cultured at 37˚C incubator for an additional 4 h. Medium was 
again removed and 200 µl of DMSO was added into each well 
to dissolve the formazan crystals and the absorbance of each 
well was measured at 570 nm with a reference wavelength at 
620 nm on an ELISA reader. The data of control sample (0 µM 
of PEITC) was set as 100% and the relative cell viability 
of drug-treated samples was calculated accordingly. Cell 
morphology was recorded by using a phase-contrast micro-
scope (43,44).

Gelatin zymography assay. SAS cells (1x106) were seeded 
into 12-well plate for 48 h and treated with EGF (100 ng/ml) 
and various concentrations of PEITC (0, 0.5, 1 and 2 µM) in 
serum-free DMEM medium for an additional 48 h. Culture 
medium was spun at 1000 x g for 10 min at 4˚C, superna-
tant was collected and protein concentration was determined 
as described below. 5 µg of total proteins were mixed with 
2X sample buffer (0.125 M Tris-HCl, pH 6.8, 4% SDS, 
20% glycerol, 0.01% bromophenol blue) and electrophoresed 
in an 8% SDS-polyacrylamide gel with 1% gelatin. Gel was 
incubated with 2.5% Triton X-100 at room temperature for 
30 min to remove residual SDS and then incubated in Zymogen 
developing buffer (50 mM Tris, pH 7.5, 200 mM NaCl, 5 mM 
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CaCl2, 1 µM ZnCl2, 0.02% Brij-35; Bio-Rad Laboratories, 
Hercules, CA, USA) at 37˚C overnight. Gel was then washed 
extensively with water and stained with 0.5% Coomassie 
blue G-250 (0.5% Coomassie blue G-250, 50% methanol and 
10% acetic acid) for 2 h and de-stained in de-staining solution 
(50% methanol and 10% acetic acid) until clear zones were 
evident. The gel was scanned by a scanning digitizing system 
and digitized by using free Image J software (NIH) (43,44).

Preparation of whole cell lysate. SAS cells were challenged 
with EGF (100 ng/ml) and treated with various concentrations 
of PEITC for the specified time and cells were collected for the 
preparation of whole cell lysate using iced-cold RIPA buffer 
(50 mM Tris-base, 150 mM NaCl, 0.1% SDS, 1% sodium 
deoxycholate, 1% NP-40, pH 7.5) supplemented with protease 
inhibitors including leupeptin (17 mg/ml), sodium orthovana-
date (10 mg/ml), phenylmethanesulfonyl fluoride (10 mg/ml). 
Cells were completely re-suspended in extraction buffer and 
kept in ice for 30 min with occasional mixing and cell lysate 
were collected by a spin at 12,000 x g for 10 min at 4˚C. The 
protein concentrations present in the samples were measured 
by using Bio-Rad Protein Assay Dye Reagent Concentrate 
(Bio-Rad) (43,45).

Western blotting. The obtained whole cell lysate was resolved 
in sodium dodecyl sulfate-polyacrylamide gel and transferred 
onto polyvinylidene fluoride (PVDF) membrane (Millipore) 
by using the iBlot Dry Blotting Transfer System (Invitrogen/
Life Technologies). The transferred membranes were blocked 
in 5% non-fat milk (prepared in Tris-buffered saline supple-
mented with 0.1% Tween-20; TBST) at ambient temperature 
for 1 h and incubated with primary antibody at 4˚C overnight. 
Membranes were washed with TBST three times for 10 min 
before incubated with HRP-coupled secondary antibody for 
1 h. Protein signals were visualized by enhanced chemilu-
minescence (ECL) and exposed to Bio-MAX MR X-ray film 
(Eastman Kodak, Rochester, NY, USA) (43,46,47).

Quantitative real-time PCR analyses. SAS cells were treated 
with 0, 1 and 2 µM of PEITC and EGF (100 ng/ml) for 24 h 
and cells were collected. Total RNAs were isolated using the 
Qiagen RNeasy mini Kit. cDNAs were synthesized using 
the High Capacity cDNA Reverse Transcription kit according 
to the supplier's brochure (Applied Biosystems). For the 
quantitative PCR reaction, 1 µl of cDNAs were mixed with 
2X SYBR Green PCR Master Mix (Applied Biosystems) and 
200 nM of forward and reverse primers (see below for detailed 
sequences). PCR reaction was performed on an Applied 
Biosystems 7300 Real-Time PCR system in triplicate 
according to the following conditions: 2 min at 50˚C, 10 min 
at 95˚C and 40 cycles of 15 sec at 95˚C, 1 min at 60˚C. Fold 
changes of the gene expression were derived using the compar-
ative CT method (40,48). The used primer pairs were: human 
MMP-2-forward, 5'-CCCCAGACAGGTGATCTTGAC-3'; 
human MMP-2-reverse, 5'-GCTTGCGAGGGAAGAAGT 
TG-3'; human MMP-9-forward, 5'-CGCTGGGCTTAGAT 
CATTCC-3'; human MMP-9-reverse, 5'-AGGTTGGATACAT 
CACTGCATTAGG-3'; human GAPDH-forward, 5'-ACACC 
CACTCCTCCACCTTT-3'; human GAPDH-reverse, 5'-TAGC 
CAAATTCGTTGTCATACC-3' (49).

Immunofluorescence staining. SAS cells were seeded onto 
slides overnight and incubated with EGF (100 ng/ml) and 
PEITC (0, 1 and 2 µM) for 6 h. Cells were fixed in 4% form-
aldehyde at room temperature for 15 min, washed with PBS 
and permeabolized with 0.1% Triton X-100 in PBS for 15 min, 
then incubated with primary antibodies at 4˚C overnight. After 
extensive washes, cells were incubated with FITC-conjugated 
secondary antibodies for 2 h. Cells were sealed and images 
were acquired with a fluorescence microscope (Nikon) and 
processed in Photoshop 7.0 software (50).

Statistical analysis. One-way ANOVA followed by Student's 
t-test was used to evaluate the differences between treated 
and experimental groups. p<0.05 was considered to define a 
statistically significant difference (49,51).

Results

PEITC inhibits EGF-stimulated invasion of SAS cells. We 
therefore determined the effects of PEITC on EGF-stimulated 
SAS cells. EGF-treatment increased the invasion of SAS cells, 
as revealed by Matrigel invasion assay (Fig. 1A). Treatment of 
EGF-stimulated SAS cells with PEITC decreased the invasion 
of cells in a concentration-dependent manner (Fig. 1A). From 
Fig. 1A, we have known that PEITC inhibited the invasion 
of EGF-stimulated SAS cells, a result that could be due to 
the inhibition of PEITC on the viability of EGF-stimulated 
cells. To test this, we treated EGF-stimulated SAS cells with 
different concentrations (0, 0.5, 1 and 2 µM) of PEITC and 
performed MTT cell viability assay. The result showed that 
PEITC at 0.5-2 µM of concentrations did not inhibit the 
viability of EGF-stimulated SAS cells, as compared to cells 
without drug treatment (Fig. 1B). The cell morphology was 
comparable between treatments with 0 and 2 µM of PEITC 
(see inserts in Fig. 1B).

PEITC inhibits the enzymatic activities and gene expression 
of MMP-2 and MMP-9 in EGF-stimulated SAS cells. Studies 
have shown that matrix metalloproteinases including MMP-2 
(gelatinase A) and MMP-9 (gelatinase B) are expressed in oral 
cancers. These two MMPs are closely linked to the malignant 
potential of tumor cells and are also important for tumor inva-
sion and metastasis (44,52). To evaluate the effects of PEITC 
on the enzymatic activities of MMP-2 and MMP-9, we treated 
EGF-stimulated SAS cells with different concentrations 
(0, 0.5, 1 and 2 µM) of PEITC and assessed the enzymatic 
activities of MMP-2 and MMP-9 by gelatin zymography. As 
shown in Fig. 2A, treatments of cells with PEITC suppressed 
the enzymatic activities of both MMP-2 and MMP-9 in a 
concentration-dependent manner. Pronounced inhibition of the 
activities was observed at concentrations >1 µM of PEITC (see 
columns 3 and 4 and inserts of Fig. 2A). To address whether 
the inhibition of MMP-2 and MMP-9 was at the transcriptional 
level, we treated EGF-stimulated cells with PEITC (0, 1 and 
2 µM) and the effects of PEITC were analyzed by quantitative 
RT-PCR. As shown in Fig. 2B, treatment of PEITC significantly 
decreased the gene expression of both MMP-2 and MMP-9 in 
a concentration-dependent fashion. Taken together, these data 
suggested that both gelatinases (MMP-2 and MMP-9) are 
involved in the EGF-induced invasion of SAS cells.
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PEITC inhibits the protein expression of MMP-1, MMP-2 and 
increased the protein expression of TIMP-1 and TIMP-2 in 
EGF-stimulated SAS cells. Since PEITC inhibited the enzy-
matic activities and gene expression of MMP-2 and MMP-9 
in EGF-stimulated cells, we infered that PEITC could inhibit 
the protein expression of both metalloproteinases. As shown in 
Fig. 3A, treatment of EGF-stimulated SAS cells with PEITC 
(1 and 2 µM) reduced the protein expression of MMP-2 and 
MMP-9. It is well known that tissue inhibitor of metallopro-
teinases (TIMPs), TIMP-1 and TIMP-2, can bind and inhibit 
the enzymatic activities of MMP-2 and MMP-9 (53). We there-

fore examined the protein expression of TIMP-1 and TIMP-2 
in EGF-stimulated cells treated with PEITC (0, 1 and 2 µM). 
The result showed that treatment with PEITC significantly 
increased the protein expression of TIMP-1 and TIMP-2 
(Fig. 3A). These data suggested that PEITC can suppress the 
gene expression and protein expression of MMP-2 and MMP-9 

Figure 1. The effects of PEITC on invasion and viability of EGF-stimulated 
SAS cells. (A) PEITC inhibited the cell invasion of EGF-stimulated SAS 
cells. Cells were incubated in drug-free medium (basal) or treated with 
PEITC (0, 0.5, 1 and 2 µM) in medium containing EGF (100 ng/ml) for 48 h 
and cells that invaded through Matrigel into the lower surface of the filter 
were stained and counted. Inserts, images display the results of treatments 
with 0 (control) and 2 µM of PEITC. *P<0.05, as compared to the treatment 
in basal medium. #P<0.05, as compared to the treatment with 0 µM of PEITC 
(control) in EGF-containing medium. (B) PEITC did not affect the cell 
viability of EGF-stimulated SAS cells. Cells were treated with PEITC (0, 0.5, 
1 and 2 µM) in the presence of EGF (100 ng/ml) for 48 h and cell viability 
was determined by MTT assay as described in Materials and methods. The 
cell viability is expressed as percentage by setting control treatment as 100%. 
Each point is the mean ± SD of three repeats. Inserts, images display the cell 
morphology of treatments with 0 and 2 µM of PEITC.

Figure 2. PEITC inhibits the EGF-stimulated enzymatic activities and gene 
expression of MMP-2 and MMP-9 of SAS cells. (A) PEITC inhibited the 
EGF-induced enzymatic activities of MMP-2 and MMP-9. Cells were treated 
with different concentrations of PEITC (0, 0.5, 1 and 2 µM) in the presence of 
EGF (100 ng/ml) for 48 h. The conditioned media were collected for gelatin 
zymography assay to determine the MMP-2 and MMP-9 activities. Shown 
here are the densitometric data expressed as the mean ± SD of three inde-
pendent experiments. Enzymatic activity from control treatment (0 µM) was 
set as 100% and the percentage of higher drug concentrations was calculated 
consequently. *P<0.05, a significant statistical difference compared to the 
enzymatic activity of MMP-2 without PEITC treatment (control). #P<0.05, 
a significant statistical difference compared to the enzymatic activity of 
MMP-9 without PEITC treatment (control). (B) PEITC decreased the gene 
expression of MMP-2 and MMP-9. Cells were treated with different concen-
trations of PEITC (0, 1 and 2 µM) in the presence of EGF (100 ng/ml) for 24 h 
and gene expression of MMP-2 and MMP-9 was analyzed by quantitative 
RT-PCR. Gene expression of both control treatments were set as 1.0. Each 
point is the mean ± SD of three experiments. *P<0.05, a significant statistical 
difference compared to the gene expression of MMP-2 without PEITC treat-
ment (control). #P<0.05, a significant statistical difference compared to the 
gene expression of MMP-9 without PEITC treatment (control).
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and increase the protein expression of TIMP-1 and TIMP-2, 
leading to the decrease in the enzymatic activities of MMP-2 
and MMP-9 in EGF-stimulated SAS cells.

PEITC suppressed the activation of EGFR. Binding of 
EGF to its cognate receptor EGFR results in the activation 
of EGFR that involves the autophosphorylation of EGFR 
and activation of intracellular signaling pathways, such as 
activation of PI3K/AKT, mitogen-activated protein kinases 
(MAPKs) and the signal transducer and activators of tran-
scription (STATs) pathways, leading to cell proliferation 
and survival, invasion, metastasis and angiogenesis (54-56). 
Thus, we determined the effects of PEITC on the activation 
of EGFR proteins by examining the tyrosine phosphoryla-
tion of EGFR in EGF-challenged SAS cells. As shown in 
Fig. 3B, PEITC treatment (1 and 2 µM) inhibited the tyrosine 
phosphorylation of EGFR at Y845, Y992 and Y1068 concen-
tration-dependently, while the protein levels of total EGFR 
remained largely unchanged. Immuno-fluorescent staining 
with anti-p-EGFR (Y1068) and anti-p-EGFR (Y845) also 
showed that tyrosine-phosphorylated EGFRs at Y1068 and 
Y845 were dramatically reduced in EGF-challenged cells 
treated with PEITC (Fig. 4). These data suggested that 
PEITC treatment suppressed the activation of EGFR in 
EGF-challenged SAS cells.

PEITC decreases the protein phosphorylation of PI3K, 
AKT, IKK and IκBα in EGF-stimulated SAS cells. Since 
treatment with PEITC suppressed the activation of EGFR 
in EGF-challenged cells (Figs. 3B and 4), we next examined 
the effects of PEITC on downstream PI3K/AKT and NF-κB 
signaling pathways. PEITC treatment (1 and 2 µM) reduced the 
protein phosphorylation of PDK1, PI3K (p85) and profoundly 
reduced the protein phosphorylation of AKT (S308) and 
AKT (S473) in EGF-challenged cells (Fig. 5A, panels 1, 2, 4 
and 5). Total proteins of PI3K (p85) was not changed during 
drug treatment, although total proteins of AKT were slightly 
reduced at 2 µM of PEITC. In addition, PEITC treatment (1 
and 2 µM) decreased the protein phosphorylation of IKK and 
of IκBα, while increased the protein stability of IκBα. These 
data indicated that PI3K/AKT and NF-κB signaling pathway 
downstream of EGFR signaling is downregulated by PEITC 
treatment.

Figure 3. PEITC inhibits the expression of metalloproteases MMP-2, MMP-9 
and induces the expression of tissue inhibitor of metalloproteinases TIMP-1 
and TIMP-2 through inactivation of the epidermal growth factor receptor 
(EGFR) in EGF-stimulated SAS cells. (A) The effects of PEITC on the 
expression of MMP-2, MMP-9, TIMP-1 and TIMP-2 proteins in EGF-
stimulated SAS cells. Cells were treated with EGF (100 ng/ml) and PEITC 
(0, 1 and 2 µM) for 48 h and cells were harvested for western blot analyses 
with MMP-2, MMP-9, TIMP-1 and TIMP-2 antibodies, respectively. The 
β-actin served as the loading control. (B) The effects of PEITC on the activa-
tion of the epidermal growth factor receptor (EGFR) in EGF-stimulated SAS 
cells. Cells were treated with EGF (100 ng/ml) and PEITC (0, 1 and 2 µM) for 
6 h and cell lysates were subjected to western blot analyses and detected with 
p-EGFR (Y845), p-EGFR (Y992), p-EGFR (Y1068) and EGFR antibodies, 
respectively. The β-actin served as the loading control.

Figure 4. PEITC suppresses the phosphorylation of EGFR in EGF-stimulated SAS cells by immuno-fluorescent staining. Cells were treated with EGF 
(100 ng/ml) and PEITC (0, 1 and 2 µM) for 6 h, fixed and stained with anti-p-EGFR (Y845) and anti-p-EGFR (Y1068), followed by staining with FITC-
coupled goat anti-mouse antibodies.
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The effects of PEITC on the MAPK signaling pathway in 
EGF-stimulated SAS cells. We also determined the effects of 
PEITC on the MAPK signaling pathways-p38, JNK and ERK 
signaling pathways downstream of EGFR activation. PEITC 
treatment (1 and 2 µM) increased the protein phosphoryla-
tion of p38 at higher drug concentration (2 µM) (Fig. 5B, 
top panel). PEITC treatment (1 and 2 µM) also increased the 
protein phosphorylation of JNK and ERK in a concentration-
dependent manner. The protein expression of p38, JNK and 
ERK appeared not to be affected (Fig. 5B, panels 2, 4 and 6), 
suggesting that the MAPK signaling pathway can be activated 
after PEITC treatment.

Discussion

Oral squamous cell carcinoma (OSCC) is a leading cause of 
cancer deaths in the world, characterized by poor prognosis 
and a low survival rate in spite of advances in treatment with 
surgery and radiotherapy. The main cause of death in OSCC 
is metastasis which primarily occurs through the lymphatic 
system. Once it has metastasized to the lymph nodes, the 
overall mortality rate of the disease is high and the 5-year 
overall survival rate does not exceed 50%, which is one of the 
lowest rates for all major cancers (10,57). Therefore, identifica-
tion of new drugs for the chemotherapy of OSCC metastasis is 
highly desirable.

The epidermal growth factor receptor (EGFR) belongs to 
the HER/ErbB protein family of receptor tyrosine kinases. 
The EGFR gene encodes a 170-kDa transmembrane glyco-
protein with its tyrosine kinase domain located within the 
cytoplasmic region. Ligand binding induces the activation of 
tyrosine kinase activity that triggers intracellular signaling 
cascades, including the Ras-Raf-mitogen-activated protein 
kinase pathway, the phosphatidylinositol 3-kinase-AKT 
pathway and the signal transducer and activators of tran-
scription pathway, which contribute to cell proliferation and 
survival (58). Dysregulation in the signaling of EGFR and 

Figure 5. The effects of PEITC on the PI3K/AKT and MAPK signaling path-
ways in EGF-stimulated SAS cells. Cells were treated with EGF (100 ng/
ml) as well as PEITC (0, 1 and 2 µM) for 6 h and cell lysates were prepared 
for the western blot analyses of (A) phosphorylated PDK1, PI3K (p85), 
phosphorylated PI3K (p85), AKT, phosphorylated AKT (S308 and S473), 
phosphorylated IKK, IκBα and phosphorylated IκBα and (B) p38, phos-
phorylated p38, JNK, phosphorylated JNK, ERK and phosphorylated ERK 
respectively. The β-actin served as the loading control.

Figure 6. A model depicting the molecular mechanisms of PEITC on the 
inhibition of EGF-stimulated SAS cell invasion.
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other members of the tyrosine kinase receptor family has 
been linked to cell transformation, autonomous cell growth, 
angiogenesis, invasion and metastases in a number of cancers 
(59). Up to 90% of head and neck squamous cell carcinoma 
(HNSCC) patients are identified with EGFR overexpression, 
which is considered to be involved in tumorigenesis and 
metastasis (60). Overexpression of EGFR in HNSCC is often 
associated with the simultaneous increase in its ligands such 
as the transforming growth factor α (54,61), which will lead to 
excessive activation of EGFR signaling either in an autocrine- 
or paracrine-dependent manner. Thus, EGFR appears to be a 
promising therapeutic target for oral cancer metastasis (44). 
Our data indicated that PEITC can inhibit the EGF-induced 
invasion of SAS cells through the inactivation of EGFR 
and downstream signaling, including the suppression in the 
phosphorylation cascade of PI3K, PDK1 and AKT and hence 
the reduction of phosphorylated IKK, the decrease in the 
phosphorylation of IκB and the simultaneous increase in the 
stability of IκB and the block in the release and activation 
of NF-κB. These results are consistent with previous studies 
using prostate cancer PC-3 cells (32,62).

Matrix metalloproteases (MMPs) are responsible for 
the degradation of the extracellular matrix and facilitating 
spreading and metastasis of tumor cells. They are strongly 
blocked by the endogenous tissue inhibitors of metallopro-
teinases (TIMP-1, -2, -3 and -4). The expression of MMP-2 
and MMP-9 was shown to be associated with tumor invasion 
and lymph node metastasis of oral cancer (63). The expression 
can also be regulated by NF-κB as their promoters possess 
NF-κB binding sites. As expected, the activities and expres-
sion of MMP-2 and MMP-9 were downregulated after PEITC 
treatment in EGF-stimulated SAS cells (Figs. 2 and 3A). These 
results could be due to the inactivation of NF-κB caused by 
the disruption in the EGFR signaling after PEITC treatment, 
leading to the failure in the expression of MMP-2 and MMP-9. 
Concomitantly, the increase in the expression of MMP-2 and 
-9 inhibitors, TIMP-1 and -2 proteins, was observed (Fig. 3A). 
These data suggested that PEITC suppressed the invasion and 
metastasis of EGFR-overexpressed oral cancers by reducing 
the expression and activities of MMP-2 and MMP-9 through 
the interference with the phosphorylation of EGFR and down-
stream signaling.

The other major downstream pathway regulated by EGFR 
is MAPK. Our finding that the phosphorylation of p38, JNK 
and ERK was increased after PEITC treatment in SAS cells is 
contradictory to the previous reports that PEITC can suppress 
the MAPK activation to inhibit the invasion and metastasis of 
HT-29 colon cancer cells and AGS gastric cancer cells (39,40). 
These discrepancies could be due to cell type-specific effects. 
Alternatively, it has been reported that PEITC can induce cell 
apoptosis through the activation of MAPK (29,64-68) and 
this raises the possibility that PETIC may trigger apoptosis in 
addition to the suppression of invasion and metastasis in our 
system. However, our data showed that the cell viability was 
not affected after PEITC treatment (1-2 µM) (Fig. 1B). This 
suggests that the activation of MAPK by PEITC may elicit the 
downstream signaling and drive specific genes expression 
to repress the invasion and metastasis of OSCC, but not to 
cause apoptosis. Further detailed mechanism needs to be 
elucidated.

In conclusion, the signaling pathway underlying the 
effects of PEITC on the invasion of EGF-stimulated SAS 
cells is shown in Fig. 6. PEITC suppressed the phosphoryla-
tion and activation of EGFR and inhibited the sequential 
phosphorylation and activation of PI3K, PDK1 and AKT, 
resulting in the reduced expression of phosphorylated IKK 
and hence the reduced protein phosphorylation and increased 
protein stability of IκBα, which in turn suppressed the 
expression and enzymatic activities of MMP-2 and MMP-9, 
contributing to the inhibition of invasion in EGF-challenged 
SAS cells. Our data suggested that PEITC will be a prom-
ising therapeutic agent for the treatment of oral cancer 
metastasis.
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