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Abstract. Human papillomaviruses (HPV) are small circular, 
double-stranded DNA viruses infecting epithelial tissues. 
HPV types can be classified both as high-risk or low-risk. 
Of the more than 120 different identified types of HPV, the 
majority are involved in infections of the genital tract, cancer 
of the cervix, vulva, vagina and penis, and of non-anogenital 
localizations, such as the head and neck areas. From the 
point of view of the infection, human papillomaviruses have 
developed several molecular mechanisms to enable infected 
cells to suppress apoptosis. This review provides a compre-
hensive and critical summary of the current literature that 
focuses on cervical carcinoma and cancer of the head and 
neck caused by HPV. In particular, we discuss HPV virology, 
the molecular mechanisms of carcinogenesis, the role of 
the tumor suppressor protein p53 and the E6/E7 zinc finger 
proteins. Classification of HPV according to diagnosis is also 
described.
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1. Introduction

Human papillomaviruses (HPVs) are a large family of 
small double-stranded DNA viruses infecting squamous 
epithelia (1) and causing papillomas in most mammals (2,3). 
The viruses are absolutely species-specific (1) and they have 
been detected in a variety of mammalian and avian species 
including humans, parrots, canines and felines (4). In addi-
tion, HPV has been accepted as an etiologic agent for cervical 
carcinoma, whereas the first association with head and neck 
cancer was published in 1985 (5). HPV was also shown to 
play a role in the pathogenesis of a subset of head and neck 
squamous cell carcinomas (HNSCCs) (6). HNSCCs belong 
to majority of head and neck malignancies (7-9). The term 
head and neck cancer includes malignancy in an area that 
comprises the skin, oral cavity, salivary glands, lip, pharynx, 
larynx, nasal cavity, paranasal sinuses and soft tissues of the 
neck and ear (7). Almost 650,000 patients worldwide are 
diagnosed with head or neck cancer each year and 350,000 
patients die of this disease (5) as this cancer is the sixth most 
prevalent type of cancer worldwide. The ratio of males to 
females is approximately 2:1 (7).

In head and neck cancer patients, two types of clinical 
precancer lesions have been established: white lesions (leuko-
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plakia) and reddish lesions (erythroplakia) (10). Precancerous 
lesions of the oral mucosa are epithelial changes that are able 
to undergo malignant transformation more likely than normal 
tissue at other mucosal sites. HPV is also a central causative 
agent in cervical carcinogenesis (11). HPV selectively infects 
the epithelium of the skin and mucous membranes. Specific 
HPV types are associated with squamous cell carcinoma, 
adenocarcinoma, and dysplasias of the cervix, penis, anus, 
vagina and vulva (12). A total of 150 HPV genotypes have 
been identified and fully sequenced (13-15). Determination of 
HPV genotype is based on the degree of homology within the 
L1 (major capsid protein) ORF (13). If the DNA sequence of 
the L1 ORF differs by more than 10% from the closest related 
known type, it is regarded as a novel type. HPV types associ-
ated with skin warts are for example HPV-1, -2 and -4 (16). 
A wide range of HPV types including HPV-5, -8, -9, -23 and 
-47 cause epidermodysplasia verruciformis lesions, which can 
be transformed to malignancy upon exposure to ultraviolet 
light (17). The largest subgroup is represented by HPV types 
infecting mainly mucosal surfaces of the genital and respira-
tory tracts. More than 40 of the identified HPV types belong to 
this group (13). HPV types are often referred to as ‘low-risk’ 
or ‘high-risk’ based on their potential for oncogenesis. The 
high-risk HPV types include HPV-16, -18, -31, -33, -35, -39, 
-45, -51, -52, -56, -58, -59, -68, -73 and -82. The low-risk HPV 
types cause especially benign lesions affecting the anogenital 
areas, such as genital warts (condylomata), low-grade squa-
mous intraepithelial lesions (SILs) of the cervix, and laryngeal 
papillomas. These low-risk types include HPV-6, -11, -40, -42, 
-43, -44, -53,-54, -61, -72 and -81 (18).

2. Types of HPV head and neck cancers

There are different types of HPV head and neck cancers 
according to the location in the human body (7). In the 
following section, several types of HPV are defined and their 
characteristics are given.

Oral cavity, salivary glands and lips. The verrucous carci-
noma is a variant of HNSCCs found in the oral cavity. 
This carcinoma has been recognized as a locally invasive, 
non-metastasizing squamous cell carcinoma (SCC) with loca-
tions in the oral cavity, lips and larynx as well as in the genital 
tract (19). The most common HPV types in oral carcinomas 
are HPV 16, 33 and 82 (20).

Laryngeal area. The number of copies of HPV DNA is low 
in head and neck carcinomas excepting tonsillar carcinoma, 
which indicates a non-clonal association of these tumors. 
The HPV detection rate of 51% in tonsillar carcinomas is 
among the highest of any extragenital human malignancies 
(21,22). Antibodies against HPV proteins E6 and E7 are 
present in 65% of HPV DNA-positive cancers (oro-pharynx 
and tonsils), but only in 13% of HPV-positive oral cancers 
(23). The larynx is among the most significant anatomic sites 
in terms of HPV involvement, exceeded perhaps only by the 
genital tract and skin infections in clinical importance. This 
is because that HPV infection is the etiological agent of a 
clinically significant disease known as laryngeal papilloma 
(papillomatosis) (24,25).

Nasal cavity and paranasal sinuses. The HPV DNA in 
malignant lesions of the nasal cavity and the paranasal sinuses 
produce polyps, inverted papillomas and squamous cell 
carcinomas. Squamous cell carcinomas are the most frequent 
malignant tumors in this region. Report on malignant trans-
formation of benign lesions to sinonasal carcinomas has been 
published. The study focused on paranasal sinuses because this 
area is independent of tobacco and especially alcohol exposure 
(26). The coexistence of two different epithelia in sino-nasal 
papillomas and carcinomas (columnar cells and stratified 
squamous epithelium) creates squamocolumnar junctions 
(SCJs) at multiple sites in the respiratory tract, entities that are 
thought to be a prerequisite for the spreading HPV infections 
in this region (27-29).

3. HPV virology

HPVs are small, non-enveloped double-stranded DNA viruses. 
The HPV has a diameter of 55 nanometers and a genome 
consisting of a double-stranded circular DNA of approximately 
8,000 nucleotide base pairs associated with histones. This 
genome is enclosed in an icosahedral capsid shell comprised 
of major and minor capsid proteins (30). The genome that 
can be divided into 3 domains: an early region with 6 open 
reading frames (ORFs) E6, E7, E1, E2, E4 and E5; a late region 
with 2 ORFs, L1 (the major capsid protein) and L2 (the minor 
capsid protein); and a non-coding regulatory region (NCR) of 
approximately 1 kb, is shown in Fig. 1. The three regions are 
separated by polyadenylation sites, early AE and late AL.

The E1 protein binds to the origin of replication (31). The 
E2 ORF encodes protein that act as a transcriptional activator 
of HPV gene expression in both normal and immortal-
ized keratinocytes (32,33). The E2 proteins bind to E1 and 
stimulate viral DNA replication (34). The E4 is expressed as 
a late gene with a role in the productive infection. E5 protein 
stimulates the transforming activity of the epidermal growth 
factor receptor resulting in the increased cell proliferation 
(16,35). The E6 protein of HPV-16 is a small polypeptide of 
approximately 150 amino acids that contains two zinc-binding 
domains (36). It is a transforming protein and stimulates 
p53 degradation (37). The HPV-16 E6 protein also activates 
telomerase, an enzyme that maintains the telomeric DNA at 
the ends of linear chromosomes (38,39). Without telomerase, 
telomeres shorten upon each cell division, until they reach 
a critically short length. Beyond this point further division 
induces damage in the coding regions of the chromosome 
and causes cell senescence. Almost all human cancers and 
immortalized cell lines have highly active telomerase (40,41). 
The E7 protein of HPV-16 is a small, nuclear polypeptide of 
100 amino acids. Interestingly, the carboxyl-terminus of E7 
contains a similar zinc-binding domain as does E6. E7 binds 
to retinoblastoma protein (pRb). Besides pRb, E7 also inter-
acts with various other proteins, most of which are important 
regulators of the cell growth (42). The E7 protein induces 
abnormal centrosome duplication, resulting in multipolar, 
abnormal mitoses, aneuploidy and genomic instability (43). 
Both the E6 and E7 proteins play a role in the cell trans-
formation and immortalisation (16,44,45). The L1 and L2 late 
proteins form capsomers of the virus that encapsidate the viral 
DNA. The L1 is the major capsid protein and contains reactive 
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epitopes for type-specific neutralisation. The L2 protein is a 
minor component of the viral capsid (24,46). HPV infects cells 
in the basal layer (stratum basale), below the surface of the 
epithelium and carries out an infection cycle that is closely tied 
to the differentiation program of the host cells (1).

4. Molecular mechanism of HPV carcinogenesis

Carcinogenesis is a multistep process associated with the 
accumulation of genetic alterations in cells (47). The cancer 
results from the accumulation of specific genetic mutations, 
many of which have now been identified. These muta-
tions can cause an activation of genes that promote cellular 
proliferation or inhibit cell death (oncogenes), or they may 
inactivate genes that inhibit proliferation or promote cell 
death (tumor suppressor genes) (47). The proteins derived 
from various oncogenes, either cellular or viral, such as those 
of the polyomavirus SV40 T gene or the oncogenic human 
papillomavirus (HPV) E6 and E7 genes, will generally either 
increase the rate of cell division or inhibit programmed cell 
death (Fig. 2), thereby they will increase the risk of malignant 
transformation (48).

The molecular mechanism of HPV carcinogenesis can 
be explained by the regulation and function of the two viral 
oncogenes E6 and E7 (Fig. 3). These two genes of HPV 18 
have been shown to possess transforming ability when trans-
fecting into NIH 3T3 and Rat-1 cell lines (49). The E6 and E7 
genes are under the regulation of the E2 gene product. The 
E2 gene is often the site for the integration, resulting in the 
disruption of the E2 gene and subsequent derepression of the 
E6 and E7 (50). The E6 gene product binds to the p53 tumor 
suppressor gene. The association of E6 with p53 leads to the 
specific ubiquitination and degradation of p53 protein (51). E7 
targets another tumor suppressor protein, the retinoblastoma 
gene product (pRb) (52). Binding of the E7 to pRb alters its 
phosphorylation state and thereby functionally inactivates 
this protein, which, like p53, functions in the control of the 

cell cycle. Normally, pRb binds the transcription factor E2F, 
which functions in the progression of the cell cycle from G1 
to the S phase. The binding of E7 to pRb results in creation 
of an inactive E7-pRb complex; on the other hand, disrupted 
binding of E2F to pRb allows E2F to bind DNA and induce 
the cell growth and proliferation (53,54).

Figure 1. Genomic organization of the human papillomavirus type 16. ORFs deduced from the DNA sequence are designated E1 to E7, and L1 and L2. The 
non-coding region (NCR, also known as a long control region) is also shown. AE and AL indicate early and late polyadenylation sites. Adopted and modified 
according to Chen et al (16).

Figure 2. The protein products of the cellular tumor suppressor genes 
(anti-oncogenes). The proteins derived from various oncogenes, either cellular 
or viral [such as those of the polyomavirus SV40 T gene or the oncogenic 
human papillomavirus (HPV) E6 and E7 genes] will generally either increase 
the rate of cell division or inhibit cell death controlled by apoptosis. Adopted 
and modified according to Rose et al (47).
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Many oncogenes encode growth factors that stimulate 
proliferation of keratinocytes including transforming growth 
factor-α (TGF-α) and epidermal growth factor (EGF). Both 
proteins are frequently overexpressed in squamous cell carci-
nomas (SCC) of the head and neck, particularly of the oral 
cavity. Overall, approximately half of all the cancers of the 
mucosa of the head and neck are believed to contain muta-
tions in a specific region of the p53 gene (55). Disruption to 
the function of p53 appears to be an early event in the head 
and neck oncogenesis and has been linked to exposure to 
mutagens, such as benzopyrenes, in tobacco. The inactivation 
of the product of the retinoblastoma gene (pRB), although 
it is less common than the p53, malfunctions in SCC of the 
head and neck (44). Although the significance of the p53 and 
pRb has been known for many years, the recent finding that 
malfunction of other genes controlling the cell cycle can lead 
to malignant transformation represents an important advance 
in the cancer biology (47).

5. Interaction of HPV E6 and p53 proteins

The p53 is a tumor suppressor gene and a key regulator of the 
cell proliferation. Due to its central role in the regulation of 
the cell cycle, p53 is systematically dysregulated in cancers 
(56). The p53 protein is a multifunctional protein that consists 
of 393 amino acids (Fig. 4). The cellular MDM2 protein, first 
known as a transcriptional target of p53, has been found to act 
as an E3 ubiquitin-ligase, which transfers ubiquitin (Ub) onto 
p53, thereby targeting it to proteasome-mediated degradation 
(57,58). The p53 tumor suppressor is the first described and 
best known target of HPV E6 (37). The presence of the E6 
in the high-risk types of HPV interferes with this process, 
because E6 binds to both p53 and E6-associated protein 
ligase (E6AP), causing ubiquitinylation and the subsequent 
degradation of the p53. This degradation then prevents p53 
from inducing either the growth arrest or apoptosis of infected 
cells (59). Papillomavirus E6 oncoproteins interact with target 

cellular proteins through a conserved binding motif containing 
the sequence LXXLL (60, 61). The cancer-associated human 
papillomavirus type 16 protein E6 binds to the LXXLL motif 
(LQELL) on the cellular E3 ubiquitin ligase E6AP (62).

Clinical correlations. Yu et al investigated the relation 
between high-risk HPV 16/18 infection and p53 mutation 
in lung carcinomas and its association with tumor behavior 
(63). The study indicated that mutation in the p53 and HPV 
16/18 infection might coordinate in the development of lung 
squamous cell carcinomas, and their coexistence is associ-
ated with poor prognosis. Within the group of lung squamous 
cell carcinomas, the p53 mutation rate was significantly 
higher in those with HPV infection (78.1%) than that of the 
non-infected carcinomas (51.2%, P=0.004) (63). Katori et al 
investigated the relationship between the expression of p21 and 
p53 proteins, HPV infection and malignant transformation in 
sinonasal-inverted papilloma (64). A significant decrease in 
expression of p21 and p53 was observed in HPV 16/18 posi-
tive sinonasal-inverted papilloma compared with HPV 16/18 
negative sinonasal-inverted papilloma, which could be caused 
by the degradation of p53 in HPV infected sinonasal-inverted 
papilloma (64). Similarly, Fujita et al investigated HPV infec-
tion and the expression of p53 in verrucous carcinoma (VC) 
(65). The expression of p53 was correlated inversely with HPV 
infection. Oral VC tumorigenesis may involve the inactivation 
of p53, which is associated with HPV infection.

Therapy of HPV-related cancers. In order to develop a 
gene-specific therapy for HPV-related cancers, Reschner 
et al investigated a potential therapeutic strategy of the 
silencing of HPV16 E6 oncogene by using an E6-antisense 
oligonucleotide (E6-ASO) in a polyazaaromatic ruthenium 
(Ru-II) complex (E6-Ru-ASO) (66). This complex was able 
to crosslink irreversibly the targeted sequence under visible 
illumination. They demonstrated that E6-Ru-ASO induces a 
reactivation of p53, the most important target of E6, as well 

Figure 3. HPV-induced oncogenesis: cellular events. E6 binds to p53 and induces its degradation. E7 binds the Rb gene product and causes the transcription 
factor E2F-1 to become unbound and free to induce the cell cycle activation/proliferation. Adopted and modified according to Janicek et al (11).
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as the inhibition of cell proliferation with a selective repres-
sion of E6 at the protein level after illumination in HPV16(+) 
SiHa cervical cancer cells (66). High-risk types of HPV, such 
as HPV16, have been detected in nearly all cases of cervical 
cancer. Therapies targeted at blocking the HPV16 E6 protein 
and its deleterious effects on the tumor suppressor pathways 
of the cell can reverse the malignant phenotype of affected 
keratinocytes while sparing uninfected cells. Togtema et al 
used sonoporation to deliver the HPV16 E6 antibody into the 
HPV16 positive cervical carcinoma derived cell lines (67). 
Delivery of the E6 antibody using sonoporation significantly 
restored expression of p53 in these cells, indicating that the 
antibody is able to enter the cells and remains active. Cervical 
cancer develops via progression from normal cervical 
epithelium through squamous intraepithelial lesions (SIL) to 
invasive cancer. Cervical cancer is associated with oncogenic 
human papillomavirus (HPV). The HPV E6 oncoprotein binds 
to the tumor suppressor gene product p53 under promotion 
of its degradation. The Arg allele of p53 containing Arg72 
binds more ardently with HPV E6 than the Pro72 variant. In 
individuals that show HPV positivity, there was a significantly 
higher odds of progression from SIL to cervical cancer with 
the p53 Arg allele (68). Similarly, Chen et al examined p53 
codon 72 polymorphism and expression of HPV oncoprotein 
in lung tumors from patients to determine the polymorphism 
of p53 codon 72 (69). The presence of HPV 16/18 DNA and the 
E6 protein was inversely associated with the expression of p53. 
The frequency of degradation of p53 protein was also much 
higher in HPV 16/18 E6-positive Arg/Arg (genotype at codon 
72 of the p53 gene) lung tumors than in other groups (69).

6. HPV E6/E7 proteins and zinc fingers

The E6 protein of HPV16 consists of 158 amino acid residues 
and contains two (Cys-X-X-Cys) zinc fingers (70-72). This zinc 
finger sequence motif is unique for papillomavirus E6 and E7 
proteins and includes numerous specific amino acid residues, 
highly conserved among all carcinogenic HPVs as well as 
among many animal and human papillomaviruses associated 
with benign lesions (73,74).

Beerheide et al (72) investigated 36 compounds selected 
according to their structure for the ability to release zinc from 
the E6 protein of HPV16. Nine of the 36 tested compounds 

released zinc from E6, two of the nine compounds inhibited the 
interaction of E6 with E6-associated protein and E6-binding 
protein, and one of these two, 4,4'-dithiodimorpholine, 
selectively inhibited cell viability and induced higher levels 
of p53 protein (associated with the induction of apoptosis) in 
tumorigenic HPV-containing cells (72). This assay system 
may be useful in the development of drugs effective against 
cervical cancer, genital warts, and asymptomatic infections 
by genital HPVs.

Griffin et al (75) isolated an antibody fragment (GTE6-1) 
that binds to the protein E6 of HPV16 in its first zinc finger. The 
targeting of HPV16 oncogene may be an effective anticancer 
therapy (75). HPV E6 proteins have two mechanisms to abolish 
the function of p53, the repression of the transcriptional activity 
or eliminating the protein through the proteosome degradation 
pathway. The transcriptional coactivator CBP/p300 interacts 
with HPV-16 E6 protein in the C-terminal zinc finger to 
repress the p53-dependent transcription (76).

The E6 oncoprotein of human papillomavirus (HPV) is 
critical in the development of cervical cancer. Jong et al have 
shown that HPV-16E6 (16E6) interacts with one of the DNA 
fragmentation factors (DFFs), DFF40, which mediates the 
DNA degradation during apoptosis (77). HPV-16 E6 interacts 
with DFF40 through its zinc finger motif 2 and a bridge section 
linking the two zinc finger motifs.

The similar domains of E6 and E7 proteins allow the 
formation of telomeric complexes that possess interesting 
biological activities (78). The mutations in the zinc finger 
domain of E7 do not affect the ability to bind and deteriorate 
the pRB, but they do abrogate its ability to immortalize cells 
(79). In the human papillomavirus 83 (HPV83m) that produced 
cervical cancer, five mutations were found in the second zinc 
finger domain of E6, an important domain for protein-protein 
or protein-DNA interactions. These mutations do not disrupt 
the p53 stability or telomerase activity, and they act only as 
a specific modulator of the transcriptional machinery. The 
mutation in the second zinc finger can increase the oncogenic 
potential of HPV83 (80).

The pCAF acetyltransferase is a co-activator for a variety 
of transcription factors including p53. An interaction of the 
HPV 6, 16 and 18 E7 proteins with pCAF acetyltransferase 
has been described (81). Mutation of a highly conserved 
leucine residue within the zinc finger region of HPV 16 E7 

Figure 4. Localization of residues within the structure of the p53 core domain. Schematic view of the domain structure of the p53. The p53 protein that contains 
393 amino acids comprises N-terminal transactivation domain, followed by a proline-rich region, a central DNA-binding core domain, a tetramerization domain 
and a regulatory domain at the extreme C-terminus. The regions of the possible interaction between p53 and MDM2 or p53 and HPV E6 are suggested. Adopted 
and modified according to Bernard et al (110).
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disrupts binding to pCAF and impairs transformation and 
transcriptional activation (81).

Mino et al have constructed, as candidates for new antiviral 
drugs, cell-permeable artificial zinc finger proteins (AZPs), 
namely PTD-4 AZP, AZP-R9, AZPAla-R9 and E2C-R9, for 
inhibition of HPV-18 DNA replication (82). The AZP used 
in this study is the one that reduced the replication level of 
HPV 18 DNA to 12% of that of a control. They confirmed 
that cell-permeable AZPs are effective for inhibition of the 
HPV replication (82). Artificial zinc fingers (AZF) have been 
designed as potent new inhibitors of HPV, thus, they block the 
replication in episomal HPV infection, hindering the union of 
E2 to origin of the viral replication (83). The avian papilloma-
virus (PV) share with the mammalian PV strictly conserved 
ORFs in E1, E2, L1 and L2 proteins (84). The differences of 
avian PV from the mammalian PV is that avian E7 protein 
contain an extended unfolded N-terminus and a zinc-binding 
domain of reduced size, and the avian E6 proteins consist 
of a single zinc-binding domain, whereas all mammalian 
E6 proteins always contain a pair of zinc-binding domains 
(85). One hypothesis suggests that it could be one common 
PV-single zinc-binding domain ancestor and that the duplica-
tion event may have taken place during the 310 million years 
separating birds and mammals (86). A direct interaction has 
been demonstrated between the HPV E2 and E7 proteins. It 
requires the hinge region of E2 and the zinc-binding domain 
of E7. E2 is responsible for the stability of E7 and its cellular 
location during mitosis (87). Mavromatis et al have shown that 
the part carboxyl-terminus of human papillomavirus (HPV) 
E7 oncoprotein can be replaced by the zinc-binding domains 
of the HPV E6 protein. This part is necessary for the func-
tional and structural integrity of the HPV (78).

7. Metallothionein in head and neck cancer

Metallothioneins (MT) are low-molecular weight proteins 
involved in heavy metal detoxification, essential metal ion 
homeostasis and cell protection against free radicals (88-92). 
Several studies reported increased MT protein levels in 
malignant tumors in head and neck area (93-95). Sochor et al 
determined MT levels in tumor tissues of patients suffering 
from head and neck tumors using differential pulse voltam-
metry (94). Fifty-five samples of tumor tissue were analyzed. 
The highest MT level was determined in the tissues of oral 
tumors (170±70 µg/g) followed by hypopharynx (160±70 µg/g) 
and larynx (160±70 µg/g). The relatively lowest MT level was 
determined in tumors of oropharynx (130±50 µg/g). In the 
following study, Krejcova et al analyzed MT levels in blood of 
patients suffering from primary malignant tumor in head and 
neck area also using differential pulse voltammetry (93). The 
tumor blood samples was represented by patients suffering 
from oropharyngeal cancer, laryngeal cancer, hypopharyngeal 
cancer, oral cavity cancer and rarely occurring nasal cavity 
and paranasal sinus cancer. The obtained data of MT level in 
blood of healthy human were from 0.2 to 0.8 µM. Determined 
MT levels in blood of oncological patients varied from 1.08 
to 6.39 µM (93). In the study of Dutsch-Wicherek et al, tissue 
samples taken from patients with pharyngeal squamous cell 
carcinoma were analyzed (96). An increased immunoreac-
tivity levels of MT was observed in the tissue samples from 

tonsillar squamous cell carcinoma in comparison to reference 
group. Jayasurya et al examined the relationship between 
MT expression and tissue zinc levels in conjunction with cell 
proliferation in nasopharyngeal cancer (NPC) (97). Thirteen 
tumors displayed weak MT staining and the remaining 11 
showed moderate to strong immunostaining. A linear relation-
ship was also observed between nuclear zinc levels and MT 
immunostaining. In the next study Dutsch-Wicherek et al 
evaluated the MT expression using immunohistochemistry 
in head and neck squamous cells carcinoma and its histologi-
cally healthy adjacent tissue (98). MT expression was revealed 
in 85.7 % of head and neck cancers and MT expression was 
statistically significantly higher in tumor adjacent tissue than 
in cancer tissue in cases with the presence of lymph node 
metastases. Therefore, it can be concluded that the increased 
MT expression is observed in tumor tissues as well as in blood 
of patients with head and neck cancers.

8. Zinc, zinc fingers, p53 and metallothionein - is there any 
connection with HPV?

Zinc is an essential element that controls the normal devel-
opment of the cells, tissues, and organs via zinc-containing 
proteins that orchestrate cell genesis, differentiation and 
viability (99,100). Many transcriptional factors contain zinc 
finger motifs. Zinc finger is able to form a complex with DNA 
based on the interactions between α-helix of a zinc finger and 
DNA-specific bases. The function of the zinc fingers consists 
especially in the recognition of DNA and the activation of 
transcriptional processes. Role of the zinc finger proteins in 
the regulating the cell proliferation by HPV is described above. 
On the other hand, p53 is a transcription factor encoded by the 
tumor suppressor gene TP53 that binds DNA via structurally 
complex domain stabilized by a zinc atom (101). Genotoxic 
as well as non-genotoxic stress induce p53 and coordinate 
pro-apoptotic (anti-proliferative) pathways to eliminate cells 
with damaged DNA. The depletion of the intracellular zinc 
can induce a change in the p53 protein conformation and the 
loss of DNA binding capacity (101). The role of metallothio-
nein in the controlling the conformation and activity of the 
p53 protein is still discussed (102,103). The intracellular level 
of zinc(II) ions is strictly regulated in cells. Metallothionein 
(MT), a family of proteins rich on cysteine residues, plays a key 
role in the regulating the intracellular zinc levels and distribu-
tion (88,89). MT is localized especially to the membrane of 
the Golgi apparatus. On the other hand, Tohyama et al (104) 
and Tsujikawa et al (105) have shown presence of MT in nuclei 
of hepatocytes, Nartey et al in fetal human liver and kidney 
(106), and Banerjee et al in nuclei of rat liver and kidney (107). 
Tohno et al have characterized MT-binding chromatin after 
induction by 4-aminopyrazolo[3,4-d] pyrimidine (108). The 
MT-binding chromatin was composed of supranucleosomal 
fibers. Localization of MT in myotomal cell nuclei during somi-
togenesis of Xenopus laevis has been described by Sunderman 
et al (109). These authors observed not only presence of MT, 
but also its increasing after exposure to zinc(II) ions. This 
fact indicates involvement of MT in the regulation of the cell 
genesis, proliferation and viability. In light of these facts, we 
must assume the role of metallothionein in the regulation of 
transcription in HPV-infected cells via zinc(II) ions. Closer 
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information is unfortunately still lacking and further research 
to determine the possible connection in the involvement of MT 
and zinc(II) ions in HPV infection and regulation of the cell 
proliferation and viability is necessary.
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