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Abstract. Deregulation of key signal transduction pathways 
that govern important cellular processes leads to cancer. The 
development of effective therapeutics for cancer warrants a 
comprehensive understanding of the signaling pathways that 
are deregulated in cancer. The protein kinase C (PKC) family 
has served as an attractive target for cancer therapy for decades 
owing to its crucial roles in several cellular processes. PKCη 
is a novel member of the PKC family that plays critical roles 
in various cellular processes such as growth, proliferation, 
differentiation and cell death. The regulation of PKCη appears 
to be unique compared to other PKC isozymes, and there are 
conflicting reports regarding its role in cancer. This review 
focuses on the unique aspects of PKCη in terms of its structure, 
regulation and subcellular distribution and speculates on how 
these features could account for its distinct functions. We have 
also discussed the functional implications of PKCη in cancer 
with particular emphasis on breast cancer.
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1. Introduction

The protein kinase C (PKC) family is a family of serine/
threonine kinases that play diverse roles in fundamental 
cellular processes including cell proliferation, cell death and 
differentiation (1,2). PKCs respond to extracellular signals 
that promote phospholipid hydrolysis and facilitate the 
generation of diacylglycerol (DAG) and release of Ca2+ from 
intracellular stores. These two second messengers activate 
PKCs in the presence of acidic phospholipids, such as phos-
phatidylserine (2). The PKC family garnered considerable 
attention by the discovery that PKCs could serve as recep-
tors for tumor-promoting phorbol esters which was the first 
evidence to establish a link between PKCs and cancer (3,4). 
These phorbol esters are potent activators of PKCs and can 
substitute for the physiological stimulator DAG. Based on the 
structural features and cofactor requirements, the PKC family 
consists of 10 isozymes categorized as the conventional or the 
classical (c) PKCs (α, βI, βII, γ), the novel (n) PKCs (δ, ε, η, θ) 
and the atypical (a) PKCs (ζ, λ/ι) (1). While the conventional 
PKCs are sensitive to Ca2+ and DAG/phorbol ester, novel PKCs 
are insensitive to Ca2+ but respond to DAG/phorbol ester and 
atypical PKCs are insensitive to both Ca2+ and DAG/phorbol 
esters. The distinct structural and biochemical features of 
the PKC isozymes pave the way for the distinctive cellular 
responses attributed to the PKC family. Owing to the central 
role of PKCs in cellular regulation and signal transduction, 
significant research efforts have been devoted to the PKC 
family. However, much less is known about PKCη, which is a 
unique member of the novel PKC family. This review focuses 
on the biology of PKCη and its implications in breast cancer.

2. Protein kinase Cη, a unique PKC

Protein kinase Cη (PKCη) is a novel member of the PKC 
family. It is classified as a calcium-independent but 
DAG/phorbol ester-dependent PKC (5). It was first isolated 
from a cDNA library of mouse epidermis (5). PKCη is 
assigned to human chromosome 14 (14q22-23) and mouse 
chromosome 12 (12C3-D2) (6,7) and contains an open reading 
frame encoding 683 amino acid residues (8). Contrary to 
other PKCs which are primarily enriched in the brain tissue, 
PKCη is mainly expressed in lung, skin and heart tissues (9). 
PKCη participates in various cellular processes including 
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proliferation, differentiation, secretion and apoptosis (10-16). 
Recent reports have revealed the role of PKCη in immune 
function (17,18). PKCη was shown to be important for T-cell 
proliferation and homeostasis (19), and was also implicated 
in the regulation of toll-like receptor-2 (TLR-2) responses in 
macrophages (20).

3. Structure

All PKC isozymes contain a common structural backbone 
comprised of a highly conserved catalytic domain at the 
C-terminal and a regulatory domain at the N-terminal 
(Fig. 1). PKCs possess 4 conserved modules (C1-4): C1 and 
C2 are the membrane targeting modules that along with the 
pseudosubstrate region form the regulatory domain; C3 and 
C4 comprise the catalytic domain (21). A proteolytically 
labile hinge region connects the regulatory domain to the 
catalytic domain (22). The catalytic domain consists of motifs 
that are required for ATP/substrate binding and catalysis. 
The N-terminal contains the autoinhibitory pseudosubstrate 
sequence that contains an alanine in place of the serine/
threonine phosphoacceptor site, but otherwise resembles a 
PKC substrate. The pseudosubstrate thus holds the enzyme in 
an inactive conformation by occupying the catalytic site (21). 
The pseudosubstrate sequence of PKCη is the most divergent 
amongst the PKC isozymes (9).

The structure of PKCη comprises of a highly conserved 
catalytic domain at the C-terminal and the regulatory domain 
at the N-terminal similar to other PKCs (21). A characteristic 
cysteine-rich region is present in the C1 domain of PKCη 
which allows binding to physiological stimulator DAG and 
pharmacological activators such as tumor-promoting phorbol 
esters (23). In addition, C1 domain confers selectivity for 
phosphatidylserine that acts as the activator for PKCs (24). 
The C2 domain of PKCη lacks the key aspartic acid residues 
to bind Ca2+ and consequently renders PKCη insensitive to 
Ca2+ (23). PKCη shares greatest homology with PKCε, another 
novel PKC (9).

Similar to other PKC isozymes, PKCη has three conserved 
phosphorylation sites - activation loop (Thr-513), turn motif 
(Thr-655) and hydrophobic domain (Ser-674) (21). Although the 
order of priming phosphorylations of PKCη is not well estab-
lished, phosphoinositide-dependent kinase 1 (PDK1) is believed 
to phosphorylate PKCη at the activation loop in vitro (25). In 
mouse A9 fibroblasts infected with parovirus, Lachmann et al 
demonstrated that PKCλ phosphorylates PKCη at the hydro-
phobic site thus allowing PDK1 access to the activation loop 
(26). The C2 domain of PKCη was found to be similar to PKCε 
with significant differences at the putative lipid binding site. 
Mass spectrometric analysis of the C2 domain of PKCη revealed 
two autophosphorylation sites at Ser-28 and Ser-32 (27). The 
autophosphorylation site at Ser-28 but not Ser-32 is conserved 
in PKCε (27). It has been speculated that autophosphorylation at 
these sites could affect the lipid-binding of PKCη (27).

4. Regulation

The PKC isozymes are under tight structural and spatial regu-
lation that underlies their biochemical functions, intracellular 
localization and tissue distribution (21). PKCs can be regulated 

by phosphorylation, cofactor binding and membrane targeting 
through interaction with scaffold proteins (28).

Anionic phospholipids such as phosphatidylserine and 
DAG/phorbol esters regulate PKCη (5,9). However, in contrast 
to other phorbol-ester sensitive PKC isozymes, PKCη resists 
downregulation by prolonged treatment with phorbol esters, 
suggesting its unique regulation (11,29,30). We have shown 
that PKCη not only resists downregulation by phorbol esters 
but is in fact upregulated by several structurally and func-
tionally distinct PKC activators (31). We further reported 
that transphosphorylation by novel PKCε is responsible for 
activator-induced upregulation of PKCη (31).

PKCη is specifically activated by cholesterol sulfate and 
sulfatide (32). It was reported that cholesterol sulfate-mediated 
activation of PKCη involved casein kinase I (33). In addition, 
PKCη was shown to be activated by treatment with type I inter-
ferons (IFNs), IFNα or IFNβ in chronic myeloid leukemia cells 
(34). Interestingly, other novel PKC isozymes such as PKCδ, -ε 
and -θ are also activated by type I and type II IFNs and partici-
pate in type I and/or type II IFN-induced responses (35-38). 
However, contrary to these isozymes, IFN-inducible transcrip-
tion of IFN-stimulated genes or generation of antiviral responses 
is independent of PKCη. PKCη is also elevated in response to 
estradiol treatment in estrogen-sensitive breast cancer cells in a 
time- and concentration-dependent manner (39).

PKCη is subject to translational regulation under both 
normal and stressed conditions caused by amino acid starva-
tion (40). Raveh-Amit and colleagues reported that the 5'-UTR 
of PKCη is unusually long (659 nucleotides) and rich in GC 
content and identified two upstream open reading frames 
(uORF) in the 5'-UTR which function as repressive elements 
under normal growth conditions. However, under amino 
acid starvation, the repression is removed by leaky scanning 
leading to the translational upregulation of PKCη (40). PKCε 
is the only other PKC isozyme for which the presence of a 
regulatory uORF has been reported (41).

5. Signal termination and downregulation of PKCη

Termination of PKC signaling can occur via different mecha-
nisms such as release of PKC isozymes from the membrane, 
metabolism of DAG by DAG kinases (DGKs) (42,43), 
agonist-induced degradation or the removal of priming 
phosphorylation which leads to downregulation and rapid 
degradation (42,44,45). Several mechanisms of degradation 
have been proposed for the PKC isozymes. Conventional 
PKCs are believed to be downregulated by calcium-activated 
proteases, such as calpains (46,47) whereas PKCα, -δ and -ε 
were shown to be degraded via proteasome-mediated 
pathway (48-50). Our studies have demonstrated that PKCη 
can be downregulated by both proteasomal-dependent and 
-independent pathways. While inhibition/knockdown of PDK1 
caused PKCη downregulation via the proteasomal pathway, the 
downregulation of PKCη caused by the depletion of PKCε or by 
PKC inhibitors was independent of the proteasome-mediated 
pathway (51). Another study reported that dephosphorylation 
of PKCη was mediated by integrin-associated serine threonine 
phosphatase PP1γ in human platelets which was shown to be 
independent of the ubiquitin-mediated degradation (52). In 
addition, differential expression analysis in the neoplastic cell 
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line 8701-BC demonstrated that PKCη downregulation can be 
induced by type V collagen (53).

6. Localization of PKCη

PKCη is localized in the Golgi, endoplasmic reticulum (ER) 
and the nuclear envelope (54). Although the C1A domain 
of PKCη lacks a Golgi localization signal similar to the 
other members of the novel PKC family, the C1B domain of 
PKCη facilitates its translocation to the Golgi complex (54). 
The localization of PKCη in the Golgi could account for the 
involvement of PKCη in Golgi vesicular transport. It has been 
previously reported that Golgi-cell surface transport requires 
protein kinase D (PKD) which is specifically activated by 
G protein subunits β1γ2 and β3γ2 via the Golgi-associated 
PKCη (55). In response to serum starvation and PMA, PKCη 
translocates to the nuclear envelope. While C1B domain is 
sufficient to drive Golgi translocation of PKCη, both the C1 
and the pseudosubstrate region are required for the localization 
at the nuclear envelope and ER (54). PKCη is localized in the 
plasma membrane and the nuclear envelope upon stimulation 
with phorbol esters, while serum starvation leads to distribu-
tion only in the nuclear envelope (54). Furthermore, a recent 
study reported that in hepatocellular carcinoma cells, PKCη 
is targeted to lipid droplets where it limited the formation of 
larger lipid droplets (56).

7. Role of PKCη in breast cancer

PKC isozymes have been extensively researched as potent 
targets for cancer therapeutics since their discovery as recep-
tors for tumor promoters (3,57). The role of PKCη in cancer 
is controversial owing to its divergent responses in different 
cancers. Although, PKCη-deficient mice were more susceptible 
to tumor promotion in two-stage skin carcinogenesis model 
(58), PKCη mediates chemotherapeutic resistance in breast 
cancer (10,59), glioblastoma (60), lung cancer (61) and several 
other cancers (62,63). It has been reported that PKCη is down-
regulated in hepatocellular carcinoma (64) but is associated with 

the progression of renal cell carcinoma (65). Thus, PKCη may 
promote or inhibit malignant growth depending on the cellular 
context.

PKCη is a regulator of mammary gland development (66). 
It is upregulated in the rat mammary gland during the transi-
tion from the resting to the pregnant state (66). Furthermore, 
a marked decrease in PKCη levels was observed during gland 
regression which is typically characterized by the onset of 
apoptotic processes leading to involution (66). Qualitative and 
quantitative alterations in PKCη have been reported in human 
breast cancer tissues (67). PKCη expression was increased in 
locally invasive breast tumor tissues and high levels of PKCη 
were detected in invasive tumors associated with significant 
lymph node metastases which suggests a role for PKCη in 
cancer progression (67). This is consistent with a report which 
demonstrated the importance of PKCη in maintaining tight 
junction integrity via interaction and subsequent phosphory-
lation of occludin on its C-terminal domain (68). Since key 
changes in the barrier function of tight junctions have been 
shown to be critical in cancer progression (69), it is likely that 
PKCη may have potential roles in survival and progression 
of cancer cells. We also observed that the levels of PKCη 
progressively increase with breast cancer aggressiveness in 
the MCF10 breast cancer series (51). It is also noteworthy that 
the promoter region of PKCη contains multiple sites for the 
transcription factors Ets1 and AP-1 (6), both of which have 
been implicated in breast cancer growth and progression 
(70,71). However, contrary to these reports, decreased PKCη 
expression was observed in invasive breast tumor tissues 
compared to the surrounding normal epithelium, suggesting 
that PKCη is decreased during breast cancer progression 
(67). Thus the role of PKCη in cancer progression remains 
controversial.

PKCη mRNA is elevated in multidrug-resistant breast 
tumors (72), and overexpression of PKCη has been shown 
to protect against apoptosis (10,11,15). We have previously 
reported that overexpression of PKCη attenuated caspase acti-
vation and TNF-induced cell death in breast cancer cells (10). 
PKCη also protects against camptothecin-induced DNA 

Figure 1. Domain structure of PKC isozymes. The PKC family comprises of three classes, conventional, novel and atypical. Each isozyme has a regulatory 
domain (C1, C2) and a catalytic domain (C3, C4). The C1 domain binds phosphatidylserine for all PKCs and consists of motifs that form the DAG/phorbol ester 
binding site for the conventional and novel PKCs while C2 domain binds anionic lipids and Ca2+ for conventional PKCs. Atypical PKCs possess a Phox and Bem 1 
(PB1) module for protein-protein interactions. C3 and C4 form the ATP and the substrate binding domains of PKCs, respectively.
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damage by activating NF-κB and promoting nuclear localiza-
tion of RelA/p65 in breast cancer (15). Upon etoposide-induced 
stress, PKCη is tethered to the nuclear membrane and confers 
protection against cell death (73). Moreover, PKCη was effective 
in blocking apoptosis via the suppression of c-Jun N-terminal 
kinase (JNK) activity upon UV irradiation (59). PKCη is also 
critical for cell cycle control. Although PKCη induced growth 
arrest in NIH3T3 fibroblasts and keratinocytes (74,75), it 
enhanced cell cycle progression in breast cancer cells (12). 
Induced expression of PKCη led to an increase in the levels of 
cyclin E and cyclin D (12). Although the levels of the cell cycle 
inhibitor p27 (kip1) were unaltered by PKCη overexpression, it 
facilitated the removal of the cell cycle inhibitor p27 (kip1) from 
the cyclin E/cdk2 complex, thereby activating the cyclin E/cdk2 
complex (12). Consistent with these findings, we observed that 
PKCη promotes breast cancer cell growth and proliferation, 
similar to its role in glioblastoma (14,51,76). On the other hand, 
PKCη was shown to negatively regulate Akt leading to decrease 
in insulin-like growth factor I (IGF-I)-induced cell proliferation 
in MCF-7 breast cancer cells (77). There are thus, contrasting 
functional responses of PKCη not only in different cancers, but 
also within the same cancer type.

8. Conclusions

PKCη is a unique member of the PKC family. Its distinct regu-
lation in response to tumor promoters compared to the other 
PKCs has potential implications in cancer. Although several 
studies have established the role of PKCη in cell growth, 
proliferation and chemoresistance, conflicting reports have 
added ambiguity to the functional role of PKCη. Moreover, 
PKCη interacts with several signaling pathways, such as the 
PI3K/Akt, NF-κB and ERK/Elk-1 (15,76,78). In addition, most 
cells express multiple PKC isozymes which display redun-
dant as well as opposing functions. The distinct biochemical 
properties, tissue distribution and subcellular localization of 
different PKC isozymes have been reported to result in diver-
gent responses in cancer (79-81). Thus, the crosstalk between 
these proteins will eventually influence the final outcome.

While the published reports have helped discern the 
regulation and function of PKCη, many questions remain 
regarding the paradoxical actions of PKCη. It would be worth-
while to understand the specific interactions of PKCη with 
other signaling pathways and the subsequent consequences 
on cellular regulation. Studies focused on the interaction of 
transcription factors such as AP-1 or Ets1 with PKCη in breast 
cancer could also yield interesting results. Thus, future studies 
should help determine the molecular cues which govern the 
dynamic role of PKCη.
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