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Abstract. Increasing evidence suggests that tumors are 
composed of a heterogeneous cell population with a small 
subset of cancer stem cells (CSCs) that sustain tumor formation 
and growth, and are hypothesized to account for therapeutic 
resistance. Based on the expression of the surface markers 
CD44, CD24, and EPCAM, putative CSCs have also been 
identified in pancreatic cancers. It has been well established 
that aberrant activation of β-catenin signaling pathway may 
contribute to the maintenance of CSCs. Cantharidin is an 
active constituent of mylabris, a traditional Chinese medicine. 
In our previous studies, we demonstrated that cantharidin 
treatment induced phosphorylation of β-catenin, leading to 
repression on β-catenin pathway. Therefore, in the present 
study, we investigated whether cantharidin and its derivant, 
norcantharidin, could repress the stemness of pancreatic 
cancer cells through repression on β-catenin pathway. By 
using microarray and flow cytometry, we found that treat-
ment with cantharidin and norcantharidin repressed the 
expression of CD44, CD24, and EPCAM at both mRNA and 
protein levels, leading to decreased CD44+/CD24+/EPCAM+ 

proportion, the putative pancreatic CSC subset. Pretreatment 
with the β-catenin pathway inhibitor FH535, attenuated the 
cantharidin- and norcantharidin-inducrd repression on CD44, 
CD24, and EPCAM, suggesting cantharidin and its derivant 
repressed stemness of pancreatic cancer cells in β-catenin 
pathway-dependent manner. Furthermore, cantharidin and 
norcantharidin strengthened the cytotoxicity of gemcitabine 
and erlotinib, two well established pharmacotherapeutics 
against pancreatic cancers, indicating cantharidin and norcan-
tharidin could be promising candidates for reversing drug 
resistance in pancreatic cancers. In conclusion, we presently 
propose that cantharidin and norcantharidin hold their promise 
in pancreatic cancer therapy through repression on stemness 
and strengthening the cytotoxicity of the present therapeutics.

Introduction

Pancreatic cancer is one of the most lethal human cancers. 
The 1-year survival rate, for all stages of the cancer, is only 
26% from the time of diagnosis, and the five-year survival rate 
is <5% (1). These poor prognoses are mainly attributable to 
late diagnosis, and its resistance to current therapies. Despite 
enormous efforts in basic and clinical research in the fight 
against pancreatic cancer, there is still a huge discrepancy 
in treatment benefit between preclinical and clinical stages. 
Even when patients are able to undergo surgery at an early 
stage, they frequently suffer recurrence or metastasis (2-4). 
Therefore, new treatments against this aggressive neoplasm 
are urgently needed.

It has been well accepted that in tumors there is a subgroup 
of cancer cells, termed cancer stem cells (CSCs) (5). In the past 
few years, CSCs have been found in most types of hematopoi-
etic and solid tumors including brain tumor, breast, head and 
neck, colon, lung, prostate, ovarian, and pancreatic cancers (5). 
CSCs have been proved to preserve the abilities of extensive 
proliferation, self-renewal, multi-lineage differentiation, and 
high tumorigenic potential (5). The critical role of pancreatic 
CSCs in regulating pancreatic cancer progression, metastasis, 
and drug resistance has since been confirmed (6,7). Therefore, 
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targeting CSCs could be a novel strategy for the treatment of 
pancreatic cancers.

Natural products and their derivatives have shown prom-
ising outcomes in cancer therapies. In our previous study, we 
demonstrated that cantharidin, the active constituent of Chinese 
blister beetle (8), inhibited growth and metastasis of pancreatic 
cancer cells (9-13), offering a potential role for cantharidin in 
the treatment of pancreatic cancer. Cantharidin acts as a potent 
and selective inhibitor of protein phosphatase 2A (PP2A) (14), 
a multimeric serine/threonine phosphatase. Inhibition of PP2A 
can result in phosphorylation of multiple substrates, including 
β-catenin, a key component of WNT/β-catenin pathway. In 
our previous study, phosphorylation of β-catenin induced by 
PP2A inhibitors led to repression on WNT/β-catenin pathway 
(12).

It has been well established that WNT/β-catenin signaling 
pathway is crucial for normal stem cell self-renewal and tissue 
differentiation (15). Recent studies proposed that aberrant acti-
vation of WNT/β-catenin signaling pathway may contribute to 
the maintenance of CSCs (16). Therefore, in the present study, 
we tried to verify whether cantharidin and norcantharidin 
could repress the stemness of pancreatic cancer cells through 
inhibition on β-catenin signaling pathway.

As CSCs are generally more resistant than other cancer 
cells to conventional anticancer therapeutics, we also tried 
to verify whether cantharidin and norcantharidin could 
strengthen the cytotoxicity of gemcitabine and erlotinib, two 
first line pharmacotherapeutics commonly used in the treat-
ment of pancreatic cancers (17).

Materials and methods

Cell line and cultures. The human pancreatic cancer cell 
lines, PANC-1 and CFPAC-1, were purchased from the 
American Type Culture Collection (ATCC, VA, USA). Cells 
were maintained in Dulbecco's minimum essential medium 
(DMEM; Gibco, NY, USA) supplemented with 10% fetal calf 
serum (FCS; Hyclone, UT, USA), 100 U/ml penicillin, and 
100 mg/ml streptomycin. The cultures were incubated at 37˚C 
in a humidified atmosphere with 5% CO2. Cells were passaged 
every 2-3 days to obtain exponential growth.

Reagents. Cantharidin was purchased from Enzo Life Sciences 
International (Plymouth Meeting, PA, USA). Norcantharidin 
(NCTD) was purchased from Sigma (St. Louis, MO, USA). 
FH535 was purchased from Millipore (Billerica, MA, USA).

MTT assay. Cellular growth was evaluated by MTT (3-[4,5- 
dimethyltiazol-2-yl] 2,5-diphenyl-tetrazolium bromide) assay 
(9). Cells were seeded into 24-well tissue culture plates at 
5x104 cells per well. After treatment, MTT (Sigma) was added 
to each well to a final concentration of 0.5 mg/ml, followed 
by incubation at 37˚C for 4 h. The medium was then removed, 
and 600 µl of dimethyl sulfoxide (DMSO) was added per well. 
As the PP2A inhibitor-treated cells became detached (18), the 
formazan in the medium was harvested by centrifugation at 
10,000 rpm for 10 min, dissolved in 200 µl of DMSO, and 
then returned to the original well. The absorbance of total 
800 µl formazan dissolved DMSO in each well was measured 
at 490  nm using a microplate ELISA reader (Bio‑Rad 

Laboratories, CA, USA). The relative cell viability was calcu-
lated as follows: relative cell viability = (mean experimental 
absorbance/mean control absorbance) x 100%.

Plate clone formation assay. The cells were seeded at a density 
of 200 cells/well in 24-well plates and treated 12 h later. After 
15 days, the cells were stained with 1% methylrosanilinium 
chloride and the numbers of visible colonies were counted. 
The relative clone formation ability was calculated as relative 
clone formation ability = (mean experimental clone number/
mean control clone number) x 100%.

Microarray assay. Sample preparation and processing proce-
dure were performed as described in detail in the Agilent 
GeneChip Expression Analysis Manual (Santa Clara, CA, 
USA). Differentially expressed genes were screened using 
Agilent 44K human whole-genome oligonucleotide micro-
arrays. The selection criterion was defined as a >1.5-fold 
difference in the level of expression (difference in upregulated 
expression >1.5-fold, and difference in downregulated expres-
sion <0.5-fold). Hierarchical clustering of samples was done 
by average linkage algorithm using TIGR MultiExperiment 
Viewer (The Institute for Genomic Research, Rockville, MD, 
USA).

Protein expression evaluation. The protein expression levels 
of CD24, CD44 and EPCAM in pancreatic cancer cells was 
measured by flow cytometry. Following treatment, the cells 
were harvested, fixed with 4% paraformaldehyde and permea-
bilized using 0.1% Triton X-100. After washing with PBS three 
times, cells were incubated with anti-CD24 (FITC-conjugated, 
Santa Cruz), anti-CD44 (PE-conjugated, Santa Cruz), and anti-
EPCAM (PerCP-cy5.5-conjugated, Santa Cruz) antibodies, 
respectively, for 30 min at 4 ˚C. Subsequently, the cells were 
analyzed using a Beckman Coulter FC500 dual-laser five-
color flow cytometer (Beckman Coulter).

Pancreatic cancer cell stemness evaluation. Cells were 
harvested, washed twice with 2% FBS/PBS solution, and 
resuspended in 100 µl of 2% FBS/PBS before incubating with 
anti-CD24 (FITC-conjugated), anti-CD44 (PE-conjugated), 
and anti-EPCAM (PerCP-cy5.5-conjugated) antibodies for 
30 min at 4˚C. Cells were then washed twice with 2% FBS/PBS 
solution, and resuspended in 500 µl of 2% FBS/PBS prior to 
reading on a Beckman Coulter FC500 dual-laser five-color 
flow cytometer (Beckman Coulter).

Real-time PCR. Total RNA was extracted using Trizol 
reagent (Invitrogen, CA, USA) according to the manufacturer's 
protocol. After spectrophotometric quantification, 1 µg total 
RNA in a final volume of 20 µl was used for reverse transcrip-
tion with PrimeScript RT Reagent kit (Takara, Otsu, Shiga, 
Japan) according to the manufacturer's protocol. Aliquots of 
cDNA corresponding to equal amounts of RNA were used for 
quantification of mRNA by real-time PCR using the 
LightCycler 96 Real-time Quantitative PCR Detection system 
(Roche, Indianapolis, IN, USA). The reaction system (25 µl) 
contained the corresponding cDNA, forward and reverse 
primers, and SYBR Green PCR master mix (Roche). All data 
were analyzed using B2M gene expression as an internal stan-
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dard. The specific primers were as follows: i) CD24, forward, 
5'-CAGGGCAATGATGAATGAGAAT-3', reverse, 5'-CCT 
GGGCGACAAAGTGAGA-3', product, 233 bp; ii) CD44, 
forward, 5'-GTGATGGCACCCGCTATGTC-3', reverse, 5'-AAC 
CTCCTGAAGTGCTGCTCC-3', product, 129 bp; iii) EPCAM, 
forward, 5'-TAATCGTCAATGCCAGTGTACTTC-3', reverse, 
5'-GCCATTCATTTCTGCCTTCAT-3', product, 100 bp; 
iv)  B2M, forward, 5'-TCAAGAAGGTGGTGAAGCAG-3', 
reverse, 5'-AAGGTGGAGGAGTGGGTGTC-3', product, 
112 bp.

Statistical analysis. Each experiment was performed a 
minimum of three times. Results were expressed as the 
mean value ± standard deviation (SD). Statistical analysis 
was performed by unpaired Student's t-test. The correlations 
between microarray assays were analyzed using Spearman's 
rank correlation analysis. A P-value <0.05 was considered 
significant.

Results

Cantharidin and norcantharidin repressed pancreatic cancer 
cell growth and downregulated stemness markers. Dose- and 
time-dependent repression on pancreatic cancer cell growth 
by cantharidin and norcantharidin was firstly confirmed 
by MTT assay (Fig. 1A-D). To investigate the cytotoxicity 
of long-term exposure of cantharidin and norcantharidin, 
PANC-1 and CFPAC-1 cells were treated with cantharidin and 
norcantharidin at low doses and cell growth was evaluated by 
using plate clone formation assay. As shown in Fig. 1E and F, 
both cantharidin and norcantharidin presented significant 
dose-dependent inhibition on the clone formation ability of 
pancreatic cancer cells. As the clone formation ability often 
correlated with stemness (19), we further investigated whether 
cantharidin and norcantharidin could affect the stemness of 
pancreatic cancer cells. Expressions of stem cell related genes 
were evaluated by microarray assay. As shown in Fig. 1G, 

Figure 1. Repression on pancreatic cancer cell growth by cantharidin and norcantharidin. (A and B) Exposure to various concentrations of cantharidin (A) 
and norcantharidin (B) resulted in a dose- and time-dependent growth inhibition in PANC-1 cells. (C and D) Dose- and time-dependent growth inhibition in 
CFPAC-1 cells by cantharidin (C) and norcantharidin (D). (E) Cantharidin (CAN) and norcantharidin (NCTD) treatment inhibited the clone formation ability 
of PANC-1 cells in a dose-dependent manner. (F) Cantharidin (CAN) and norcantharidin (NCTD) treatment dose-dependently inhibited the clone formation 
ability of CFPAC-1 cells. *P<0.05; **P<0.01 indicates significant differences from the respective control groups. (G) llustration of results of the microarrays. 
Up and down arrows indicate the gene expression significantly upregulated or downregulated, respectively, by 1.5-fold.
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Figure 2. Cantharidin and norcantharidin repress protein expression of CD24, CD44 and EPCAM. (A and B) Protein expression of CD24 in PANC-1 (A) and 
CFPAC-1 (B) cells after treatment with cantharidin (CAN) and norcantharidin (NCTD) for 24 h. (C and D) Protein expression of CD44 in PANC-1 (C) and 
CFPAC-1 (D) cells after treatment with cantharidin (CAN) and norcantharidin (NCTD) for 24 h. (E and F) Protein expression of EPCAM in PANC-1 (E) 
and CFPAC-1 (F) cells after treatment with cantharidin (CAN) and norcantharidin (NCTD) for 24 h. **P<0.01 indicates significant differences from the 
respective control groups.

Figure 3. Cantharidin and norcantharidin decreased proportion of pancreatic CSCs. (A) Cantharidin (CAN) and norcantharidin (NCTD) downregulated 
CD24+/EPCAM+ subset. (B) Cantharidin (CAN) and norcantharidin (NCTD) decreased CD44+/EPCAM+ population. (C) Cantharidin (CAN) and norcan-
tharidin (NCTD) eradicated the CD24+/CD44+ subgroup. (D) Cantharidin (CAN) and norcantharidin (NCTD) abolished CD24+/CD44+/EPCAM+ proportion. 
**P<0.01 indicates significant differences from the respective control groups.
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although 8 genes (EZH2, KLF4, ACVR1, KLF5, CXCR4, 
ABCB1, ACVR1C and NANOG) were upregulated, expres-
sions of 23 genes (MYC, CD44, CYR61, CD24, SMAD3, 
SOX9, EPHA2, MYCBP, HMGA2, LGR4, EPCAM, MSX2, 
MET, NES, ALCAM, HES1, ERBB3, HIF1A, CXCL12, 
BMI1, ACVR1B, SOX2 and HNF4A) were repressed, 
suggesting stemness of pancreatic cancer cells was repressed 
by cantharidin treatment.

Cantharidin and norcantharidin repressed CD24, CD44 
and EPCAM expression at protein levels. CD24, CD44 and 
EPCAM are the well accepted pancreatic CSC markers (20). 
As microarray assay indicated repressed mRNA expression 
of these three markers, we further confirmed the downregula-
tion of CD24, CD44 and EPCAM at protein level by using 
flow cytometry. As shown in Fig. 2, expression of the three 
markers was downregulated, confirming the repressed stem-

ness of pancreatic cancer cells upon treatment of cantharidin 
and norcantharidin.

Cantharidin and norcantharidin repress CD24+/CD44+/
EPCAM+ proportion in pancreatic cancer cells. As expression 
of CD24, CD44 and EPCAM was repressed by cantharidin 
and norcantharidin, we further used flow cytometry to evaluate 
the positivity of CD24, CD44 and EPCAM on the surface of 
pancreatic cancer cells. As shown in Fig. 3A-C, flow cytometry 
by using pairwise coupling of these three markers suggested 
decreased distributions of all three markers on the surface of 
pancreatic cancer cells after treatment with cantharidin and 
norcantharidin. Analysis by using the triplet combination of 
CD24, CD44 and EPCAM indentified 2.89(±0.37)% and 
6.14(±0.47)% CD24+/CD44+/EPCAM+ cells in PANC-1 and 
CFPAC-1 cells, respectively. After treatment with cantharidin 
for 24  h, the proportion dropped to 0.07  (±0.03)% and 

Figure 4. Cantharidin and norcantharidin repress expression of CD24, CD44 and EPCAM in a β-catenin pathway-dependent manner. (A and B) Pretreatment 
with FH535 (FH) impaired the repression on CD24 expression by cantharidin (CAN) and norcantharidin (NCTD) in PANC-1 (A) and CFPAC-1 (B) cells. 
(C and D) Pretreatment with FH535 (FH) impaired the repression on CD44 expression by cantharidin (CAN) and norcantharidin (NCTD) in PANC-1 (C) 
and CFPAC-1 (D) cells. (E and F) Pretreatment with FH535 (FH) impaired the repression on EPCAM expression by cantharidin (CAN) and norcantharidin 
(NCTD) in PANC-1 (E) and CFPAC-1 (F) cells. **P<0.05, **P<0.01 vs. respective control groups; @P<0.05, @@P<0.01 vs. FH535 group; &P<0.05, &&P<0.01 
induction between groups.
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0.05(±0.03)% respectively. Norcantharidin treatment also 
resulted in decreased CD24+/CD44+/EPCAM+ population 
to 0.12(±0.03)% and 0.13(±0.03)% in PANC-1 and CFPAC-1 
cells, respectively.

Cantharidin and norcantharidin repress expression of 
CD24, CD44 and EPCAM β-catenin pathway-dependently. 
Previous studied indicated that β-catenin pathway is essential 
for maintaining stemness of CSCs, (16) and we previously 
demonstrated that cantharidin is able to block the β-catenin 
pathway (12). To find out whether β-catenin pathway was 
involved in the repressed stemness by cantharidin and norcan-
tharidin, pancreatic cancer cells were pretreated with the 
classical β-catenin pathway inhibitor FH535, and expression 
of CD24, CD44 and EPCAM were then tested after treatment 
with cantharidin and norcantharidin. As shown in Fig. 4, 
downregulation of CD24, CD44 and EPCAM was attenuated 
by FH535 pretreatment in each, suggesting cantharidin and 
norcantharidin repressed stemness of pancreatic cancer cells 
β-catenin pathway dependently.

Cantharidin and norcantharidin strengthen cytotoxicity of 
gemcitabine and erlotinib. Gemcitabine and erlotinib are first 
line pharmacotherapeutics against pancreatic cancer. However, 
all patients receive these agents will develop resistence (17). As 
CSCs are responsible for the relative resistance of the tumor to 
systemic chemotherapy and radiation (5), and cantharidin and 
norcantharidin downregulated stemness of pancreatic cancer 
cells, we then investigate whether cantharidin and norcan-
tharidin could strengthen the cytotoxicity of gemcitabine and 
erlotinib.

Dose- and time-dependent repression on pancreatic 
cancer cell growth by gemcitabine and erlotinib was first  
confirmed by MTT assay (Fig. 5A-D). Then, co-treatment of 
cantharidin or norcantharidin with gemcitabine or erlotinib 
was performed. As shown in Fig.  5E and F, co-treatment 
of cantharidin or norcantharidin with gemcitabine had no 
synthetic effect. However, cantharidin and norcantharidin 
significantly strengthened cytotoxicity of erlotinib.

We then performed plate clone formation assay, and 
evaluated whether cantharidin and norcantharidin could 
strengthen cytotoxicity of long-term exposure of gemcitabine 
and erlotinib at low doses. Dose-dependent repression on clone 
formation ability by gemcitabine and erlotinib was confirmed 
(Fig. 6A-D). Then, co-treatment of cantharidin or norcanthar-
idin with gemcitabine or erlotinib was performed. As shown 
in Fig. 6E-H, cantharidin and norcantharidin significantly 
strengthened cytotoxicity of both gemcitabine and erlotinib, 
suggesting a potential of combination of cantharidin or 
norcantharidin with pharmacotherapeutics against pancreatic 
cancer.

Discussion

Pancreatic cancer is the fourth leading cause of cancer related 
deaths in Western countries (21). Reasons for the frustrating 
effort to find effective therapies could be due to the existence 
of a select population of cancer cells, termed cancer stem cells 
(CSCs) (5). There is increasing evidence proving that pancreatic 
cancer is a CSC-driven disease. Isolation and characterization 
of pancreatic CSCs reveal that these tumor-initiating cells 
share important molecular pathways seen in other solid-organ 

Figure 5. Cantharidin and norcantharidin strengthen cytotoxicity of erlotinib after short-term exposure. (A and B) Exposure to various concentrations of gem-
citabine (A) and erlotinib (B) resulted in a dose- and time-dependent growth inhibition in PANC-1 cells. (C and D) Dose- and time-dependent growth inhibition 
in CFPAC-1 cells by gemcitabine (C) and erlotinib (D). (E and F) PANC-1 (E) and CFPAC-1 (F) cells were co-treated by cantharidin (CAN) or norcantharidin 
(NCTD) with gemcitabine (Gem) or erlotinib (Erl) for 72 h. **P<0.01 vs. respective control groups; @@P<0.01 vs. cantharidin (CAN) or norcantharidin (NCTD) 
group; &&P<0.01 induction between groups.
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CSCs (22). The deregulation of the pathway of self-renewal 
and differentiation in CSCs resulted in unlimited self-renewal 
and a subsequent excess of CSCs. In addition, CSCs have aber-
rant differentiation programs that generate progenitor tumor 
cells, which then proliferate to form the bulk of the tumor 
(23). CSCs have been found to be resistant to conventional 
cancer therapies including radiotherapy and chemotherapy. In 
addition, these cells can also escape the cytotoxic action of 
the host immune cells (24). Moreover, CSCs show their high 
propensity of invasiveness and metastasis (5). These features 
of CSCs could cause cancer recurrence after eliminating most 
of the cancer cells by conventional therapies. Thus, the pres-
ence of CSCs may explain how pancreatic cancer cells can 

re-grow even when anticancer treatment destroys tumor cells 
and shrinks the tumor size. Therefore, it is postulated that by 
developing strategies targeting CSCs can solve the problem of 
cancer recurrence and metastasis. It is important to note that 
therapeutics that eliminate the CSCs within a tumor may bring 
little or no immediate reduction in tumor size. However, tumor 
growth is not sustainable without CSCs to replenish the bulk 
population and the tumor will eventually degenerate as bulk 
tumor cells are depleted. Therefore it is of paramount impor-
tance to develop targeted therapies, which eliminate CSC, 
thereby destroying the sole source for new tumor cells (25).

The first identification of CSCs was reported by Bonnet in 
acute myeloid leukemia (26). Then, CSCs were identified in 

Figure 6. Cantharidin and norcantharidin strengthen cytotoxicity of gemcitabine and erlotinib after long-term exposure. (A and B) Gemcitabine (Gem) (A) 
and erlotinib (Erl) (B) treatment inhibited the clone formation ability of PANC-1 cells in a dose-dependent manner. (C and D) Gemcitabine (Gem) (C) and 
erlotinib (Erl) (D) treatment inhibited the clone formation ability of CFPAC-1 cells in a dose-dependent manner. (E and F) PANC-1 cells were co-treated by 
cantharidin (CAN) or norcantharidin (NCTD) with gemcitabine (Gem) (E) or erlotinib (Erl) (F) for 15 days. (G and H) CFPAC-1 cells were co-treated by 
cantharidin (CAN) or norcantharidin (NCTD) with gemcitabine (Gem) (G) or erlotinib (Erl) (H) for 15 days. **P<0.01 vs. respective control groups; @@P<0.01 
vs. cantharidin (CAN) or norcantharidin (NCTD) group; &&P<0.01 induction between groups.
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other cancers, including pancreatic cancer (20). Markers that 
have been utilized to identify pancreatic CSCs include CD24, 
CD44, EPCAM (a synonym for ESA, which was one of the 
CSC markers described in the original article of Li et al) (20), 
c-Met (27), CD133 (28), aldehyde dehydrogenase (ALDH) 
(28), and Hoechst dye exclusion (side population) (29).

CD24 is a heavily glycosylated protein, which was 
originally described as heat stable B cell-associated antigen. 
It is thought to be able to facilitate metastasis of tumor cells 
through binding to P-selectin (30).

CD44 overexpression in tumors has been shown to be 
correlated with invasiveness, metastasis and poor prognosis 
in various human tumors (31,32). CD44 participates in cell 
survival and proliferation by harboring chemokines and 
growth factors, such as HGF (hepatocyte growth factor). 
CD44 also plays a role in angiogenesis and invasion via 
MMP (matrix metalloproteinase) binding (30). CD44 medi-
ates matrix formation, which is crucial for the settlement and 
growth at a secondary site, whereas apoptosis resistance of 
CD44+ cells supports the efficacy of metastasis formation (33). 
Through interaction with integrins such as VLA-4, CD44 is 
able to activate the MAPK (mitogen-activated protein kinase) 
pathway. Finally, integrin activation may lead to activation of 
WNT/β-catenin signaling pathway, which has been proven 
to be associated with maintaining stemness of CSCs (30,34). 
In human pancreatic cancer samples, CD44 expression was 
correlated with histologic grade and the patients with CD44+ 
tumors showed poor prognosis (23).

The cell adhesion molecule EPCAM is a type I transmem-
brane molecule with an EGF (epidermal growth factor)-like 
domain, followed by a thyroglobin repeat domain (35), a 
cysteine poor region, a transmembrane domain and a short 
cytoplasmic tail (36). EPCAM is thought to support metastasis 
formation (30). Previous investigation reported that modula-
tion of cadherin-mediated cell-cell interactions by EPCAM 
could be a possible functional involvement of this molecule in 
tumor progression (37). Besides, EPCAM has been shown to 
be involved in signal transduction and to support cell motility 
(38,39). Overexpression of EPCAM can also induce upregu-
lation of the oncogenic c-myc and support cell proliferation 
via upregulated synthesis of cyclin A and E (40,41). Finally, 
like CD44, EPCAM also contributes in the activation of the 
stemness-preserving WNT/β-catenin signaling pathway (42).

Combination, but not single marker, has been applied 
to the identification of pancreatic CSCs. By FACS analysis, 
Li et al were the first to isolate the CD44+/CD24+/EPCAM+ 
pancreatic CSCs from pancreatic cancer tissue. These CD44+/
CD24+/EPCAM+ cells showed stem cell properties including 
self-renewal, the ability to produce differentiated progeny, 
and the increased expression of sonic hedgehog (20). The 
CD44+/CD24+/EPCAM+ cells had a 100-fold increased tumor-
igenic potential compared to marker-negative cancer cells. In 
an animal study, 50% of animals injected with as few as 100 
CD44+/CD24+/EPCAM+ cells formed tumors that were histo-
logically indistinguishable from the original pancreatic cancer 
(20). Similar results were shown by follow-up studies. CD44+/
CD24+ have a significantly higher possibility for colony forma-
tion in vitro (43), and are more resistant to irradiation (43). The 
characteristics of CD44+/CD24+/EPCAM+ cells in clinical 
specimens of pancreatic cancer using immunohistochemical 

presented correlationship between CD44/CD24/EPCAM 
expression and poor glandular differentiation as well as high 
proliferation (44). Survival analysis showed that CD44+/CD24+ 
expression appeared to be correlated with poor prognosis (44). 
Thus, investigators have suggested that the subpopulation of 
pancreatic cancer cells showing CD44+/CD24+/EPCAM+ had 
stem cell-like properties of self-renewal and the ability to 
produce differentiated progeny (23). In addition, CD44, CD24, 
and EPCAM are now widely used for the identification of 
pancreatic cancer stem cells (28,44-47). In the present study, by 
using CD44, CD24, and EPCAM, we proved that cantharidin 
and norcantharidin eliminated the stem-like pancreatic cancer 
cells, making cantharidin and norcantharidin promising candi-
dates for pancreatic cancer treatment.

WNT/β-catenin signaling has a critical role in the regula-
tion of tissue selfrenewal, especially in intestinal crypts and 
bone growth plates (48,49). Deregulated WNT/β-catenin 
signaling has been associated with CSCs activity; particularly, 
cutaneous CSCs require β-catenin signaling to maintain their 
tumorigenic phenotype (34). We previously reported that 
cantharidin could suppress migration and growth of pancre-
atic cancer cells via inhibition on the WNT/β-catenin pathway. 
In the present study, we found that pretreatment of PANC-1 
cells with FH535, a classical β-catenin pathway inhibitor, 
attenuated the repression on CD44, CD24, and EPCAM by 
cantharidin and norcantharidin, suggesting cantharidin and its 
derivate suppressed the stemness of pancreatic cancer cells via 
inhibition on WNT/β-catenin pathway.

Emerging evidence has demonstrated that CSCs are resis-
tant to conventional chemotherapy. It was found that CSCs in 
mouse mammary tumors contributed to cisplatin resistance 
(50) and that CSCs in colorectal cancers were responsible 
for the resistance to chemotherapeutic drugs (51). In chronic 
myeloid leukemia, imatinib, an Abl tyrosine kinase inhibitor, 
dramatically depleted differentiated cells but failed to reduce 
leukaemic stem cells, thus leading to disease progression 
(23). A previous study using biopsy tissues from patients with 
breast cancer showed that chemotherapy led to an increased 
percentage of CD44+/CD24+ cells consistent with increased 
clone formation ability (52). Liu et al demonstrated that 
CD133+ cells derived from human glioblastoma were signifi-
cantly resistant to various chemotherapeutic agents compared 
to CD133- cells, and CD133 expression was significantly higher 
in recurrent glioblastoma (23). Therefore, strategies targeting 
CSCs are gaining their prospect in cancer treatment.

Similar to other CSCs, the presence of pancreatic CSCs 
with the drug-resistant and high metastatic characteristics 
contributes to the treatment failure resulting in high mortality 
of patients diagnosed with pancreatic cancer. Gemcitabine and 
erlotinib are first line pharmacotherapeutics commonly used in 
the treatment of pancreatic cancers (17). However, the median 
overall survival of gemcitabine treated patients with advanced 
pancreatic cancer is still only 5-6 months (53). To improve the 
prognosis of patients, low dose gemcitabine therapy combined 
with radiotherapy or other chemotherapeutic agents has 
been used, but with few exceptions, no improvement in the 
overall survival rates of patients with advanced pancreatic 
cancer has been reported (54,55). Some EGFR inhibitors 
(e.g., erlotinib) are approved for lung cancer, however, avail-
able data are inconclusive for treatment of pancreatic cancer 
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patients with EGFR-targeted therapies (56). This unfavorable 
situation could be due to the presence of CSCs. Pancreatic 
CSCs identified by CD133 or CD44/CD24/EPCAM were 
more resistant to gemcitabine (57,58). In a xenograft model, 
gemcitabine-treated animals had a decrease in tumor size but 
an increase in the CD133+ cells fraction (57). Hong et al found 
that gemcitabine treatment eliminated the bulk of cells but 
left a CD44+ enriched cells population and a small subset of 
CD44+/CD24+/EPCAM+ cells, which was able to proliferate 
and reconstituted the neoplasm (23). Likewise, resistance to 
erlotinib has also been found to be associated with stemness of 
pancreatic cancer cells (59).

Therefore, strategies targeting CSCs holds promise in 
pharmacotherapy sensitization. For example, by using human 
pancreatic andenocarcinoma in nonobese diabetic/severe 
combined immunodeficiency (NOD/SCID) mice, an in vivo 
study found that the anticancer effect of gemcitabine was 
strengthened by XL184, an inhibitor of pancreatic CSC marker 
c-Met (27). In a separate report, RNA interference of CD44 
inhibited the clonogenic activity of gemcitabine-resistant 
pancreatic cancer cells (23). As cantharidin and norcanthar-
idin were able to eliminate pancreatic CSCs, we investigated 
whether cantharidin and norcantharidin could strengthen the 
cytotoxicity of gemcitabine and erlotinib. Although short-term 
exposure of cantharidin or norcantharidin with gemcitabine did 
not present synergistic effect, data from the long-term co-treat-
ment was favorable. Excitingly, co-treatment of cantharidin 
or norcantharidin with erlotinib presented synergistic effect 
after both short- and long-term exposures. Thus, the present 
study suggested that cantharidin and norcantharidin possess 
the ability of eliminating pancreatic CSCs, could be promising 
candidates to strengthen present first line therapeutics against 
pancreatic cancer.

Because CSCs possess many of the features of normal 
stem cells, it will be important to determine if such targeting 
strategies may be effective in tackling CSCs without unduly 
harming normal stem cells. Two recent reports suggest that 
selective targeting of CSCs may indeed be possible. A study 
by Yilmaz and colleagues investigated the role of the tumor 
suppressor gene PTEN in leukemia (60). They found that 
conditional deletion of PTEN in adult hematopoietic cells 
in mice lead to expansion of leukemic CSCs and depletion 
of normal hematopoietic stem cells. Treatment of the mice 
with rapamycin, used to counter the effects of PTEN dele-
tion, inhibited the development of CSCs while preserving 
normal stem-cell populations. In another study, targeting the 
CSC surface molecule CD44 using a monoclonal antibody 
resulted in eradication of human acute myeloid leukemic 
stem cells using a xenograft model in immunodeficient mice 
while sparing normal stem cells (61). Interestingly, it has 
been proven that clinical treatment with cantharidin and 
norcantharidin could increase the count of white cells (10), 
suggesting the stemness repression ability of cantharidin and 
its derivate could also be cancer-targeting.

In conclusion, CSCs contribute to resistance to conventional 
chemotherapy and radiation (22), and are believed to be the 
major culprits in cancer recurrence and metastasis (5). Present 
therapies that target rapidly dividing non-stem cell bulk popu-
lations in the tumor may produce rapid tumor shrinkage, but 
they are unlikely to produce long-term remissions unless the 

CSCs responsible for maintaining the disease are also targeted 
(62,63). Therefore, eradication of CSCs in the bulk tumor 
directly affects prognosis (64). In the present study, we proved 
that cantharidin and norcantharidin could repress the stemness 
of pancreatic cancer cells and strengthen the cytotoxicity of 
pharmacotherapeutics against pancreatic cancer, suggesting 
cantharidin and norcantharidin show promise as therapeutics 
against pancreatic cancer and may bring new light to the treat-
ment of this aggressive neoplasm.
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