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Abstract. Genetic alterations in lung cancer are distinctly 
represented in non-small cell lung carcinoma (NSCLC) and 
small cell lung carcinoma (SCLC). Mutation of the RB1 and 
CDKN2A genes, which are tightly associated with cell cycle 
regulation, is exclusive to SCLC and NSCLC cells, respec-
tively. Through the systematic analysis of transcriptome and 
proteome datasets for 318 cancer cell lines, we character-
ized differential gene expression and protein regulation in 
RB1-mutant SCLC and CDKN2A-mutant NSCLC. Many of 
the genes and proteins associated with RB1-mutant SCLC cell 
lines belong to functional categories of gene expression and 
transcription, whereas those associated with CDKN2A-mutant 
NSCLC cell lines were enriched in gene sets of the extracel-
lular matrix and focal adhesion. These results indicate that 
the loss of RB1 and CDKN2A function induces distinctively 
different signaling cascades in SCLC and NSCLC cells. In 
addition, knockdown of the RB1 gene in CKDN2A-mutant 
cell lines (and vice versa) synergistically inhibits cancer cell 
proliferation. The present study on the exclusive role of RB1 
and CDKN2A mutations in lung cancer subtypes demonstrates 
a synthetic lethal strategy for cancer regulation.

Introduction

Understanding heterogeneous genetic alterations in tumors is 
recognized as a key factor in advancing cancer therapy (1-3). 
Lung cancers are classified into two subtypes, non-small cell 
lung carcinoma (NSCLC) and small cell lung carcinoma 
(SCLC), which harbor exclusive specific mutations: RB1 in 
SCLC and CDKN2A (p16INK4A) in NSCLC (4). Both the RB1 
and CDKN2A genes are tightly associated with cell cycle 

regulation, and CDKN2A regulates RB1 phosphorylation 
through cyclin E and D1 (5,6). The crucial role of RB1 as a 
regulator in cell cycle progression has been intensively inves-
tigated (7-9). Accumulated data have demonstrated mutually 
exclusive mutation patterns for genes encoding proteins that 
function in the same biological pathway. For instance, muta-
tions of the KRAS or BRAF gene, which are downstream of 
the EGFR signaling pathway, have not been found in EGFR-
mutated NSCLC (10,11), and co-mutations of the TP53 and 
PIK3CA pair (12) or the RB1 and CDKN2A pair (13) rarely 
occur in the same tumors. However, the biological meaning 
of such mutually exclusive mutation patterns is not fully 
understood, even though this exclusiveness does serve as an 
attractive target for the development of novel therapeutics (14).

An understanding of differential regulation along with 
distinct mutations in RB1 and CDKN2A is required to identify 
molecular characteristics of the progression of SCLC and 
NSCLC subtypes. Large-scale cell line-based high-throughput 
transcriptome and proteome datasets facilitate the under-
standing of molecular characterization of cancers through 
genome-wide functional analyses. The National Cancer 
Institute (NCI) released well-annotated sets of both DNA 
microarray data to detect the gene expression and reverse-phase 
protein array (RPPA) data to detect the total protein and phos-
phorylation on 60 well-characterized cancer cell lines (15). 
Diverse omics datasets on an expanded panel of >300 cancer 
cell lines were also generated by GlaxoSmithKline (GSK) (16). 
Together with these datasets, the extensive mutation profile on 
individual cell lines is available from the COSMIC (Catalogue 
of Somatic Mutations in Cancer) database (17). Through 
mutation-oriented association studies on cell line-based omics 
data, we have reported new targets and mechanisms for cancer 
regulation (3,18,19).

In the present study, the regulation of gene and protein 
levels driven by RB1 or CDKN2A mutations in lung cancer 
was analyzed using transcriptome and proteome datasets 
obtained from 318 diverse cancer cell lines. We attempted to 
identify the differentially regulated gene/protein signatures 
and functional pathways specific to RB1 and CDKN2A muta-
tions. Furthermore, we experimentally investigated whether 
double or complementary knockdown of RB1 or CDKN2A 
gene expression has a specific effect on the reciprocal mutant 
subtype in lung cancer cell lines. We expect that this study 
will provide a useful resource for the regulation of lung cancer 
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progression using synergistic mechanisms of exclusive RB1 or 
CDKN2A mutations.

Materials and methods

Data acquisition. The large-scale transcriptome dataset on 318 
cancer cell lines was obtained from the Cancer Biomedical 
Informatics Grid (caBIG) website (https://cabig.nci.nih.gov/
caArray_GSKdata) (16). This dataset, also known as the 
GlaxoSmithKline (GSK) dataset, has 950 arrays performed in 
triplicate for each cell line with the Affymetrix U133 Plus 2.0 
Array chip. It was normalized to MAS5 and then transformed 
to a log2 scale.

The reverse-phase protein array (RPPA) dataset to detect 
protein expression and phosphorylation was generated in the 
Functional Proteomics Core of the M.D. Anderson Cancer 
Center using a total of 179 cancer cell lines, which were 
included in the transcriptome dataset. These cell lines were 
purchased from several vendors (American Type Culture 
Collection; Developmental Therapeutics Program, National 
Cancer Institute; German Resource Centre for Biological 
Material and European Collection of Animal Cell Cultures) 
and grown in standard culture media as recommended by the 
vendor. The genetic identity of cell lines was determined by 
cross comparing all cell lines in this set (16,20). The cells 
were maintained in RPMI-1640 supplemented with 5% fetal 
bovine serum at 37˚C in a humidified 5% CO2 atmosphere. 
Proteins were harvested when the cells reached ~70% conflu-
ence. The cells were lysed in buffer containing 1% Triton 
X-100, 50 mM HEPES pH 7.4, 150 mM NaCl, 1.5 mM 
MgCl2, 1 mM ethylene glycol tetraacetic acid, 100 mM NaF, 
10 mM NaPPi, 10% glycerol, 1 mM Na3VO4 and complete 
protease inhibitor cocktail (Roche Diagnostics). Protein 
supernatants were isolated using standard methods (21), and 
the protein concentration was determined using the bicin-
choninic acid assay (22). Samples were diluted to a uniform 
protein concentration and denatured in 1% sodium dodecyl 
sulfate for 10 min at 95˚C. Samples were stored at -80˚C until 
use. RPPA analysis was performed as described previously 
(21,23,24). A logarithmic value reflecting the relative amount 
of each protein in each sample was generated for subsequent 
analyses. The RPPA analysis was performed using a total of 
115 antibodies.

The annotation of somatic mutation on all cell lines was 
organized by the COSMIIC (Catalogue of Somatic Mutations 
in Cancer) database (http://cancer.sanger.ac.uk/cosmic) (17).

Enrichment analysis of somatic mutations. To describe the 
selectivity of mutation occurrence, we calculated enrichment 
scores using an odds ratio between the observed odds and 
expected odds. The observed odds score is the ratio for the 
number of mutated cell lines in a specific cancer type via the 
number of cell lines in a specific cancer type. The expected 
odds score is the ratio for the number of mutated cell lines vs. 
the total number of cell lines. In addition, the probability of 
an odds ratio was calculated by the Fisher exact test using the 
R open-source computing language, version 2.15. The Fisher 
exact test uses a hypergeometric distribution to determine the 
significance of the agreement between individual question 
pairs (25).

Mutation-specific gene and protein expression analysis. For 
the selection of RB1 and CDKN2A mutation-specific gene 
and protein expression markers together with excluding the 
subtype-dependent expressions, lung cancer cell lines were 
classified into two groups: NSCLC and SCLC. Then, we 
divided the cell lines of each subtype into two groups based 
on the mutational status of RB1 and CDKN2A. CDKN2A-
mutant and wild-type cell lines were mainly considered in 
the NSCLC type. RB1-mutant and wild-type cell lines were 
considered in the SCLC type. As a result, in the transcriptome 
dataset, we classified 9, 16, 22 and 24 cell line samples into 
the following four groups, respectively: RB1wt SCLC; RB1mt 
SCLC; CDKN2Awt NSCLC; and CDKN2Amt NSCLC. In the 
RPPA dataset, we classified 4, 7, 4 and 16 cell line samples 
into four groups, respectively: RB1wt SCLC; RB1mt SCLC; 
CDKN2Awt NSCLC; and CDKN2Amt NSCLC. The gene 
expression was detected using a log2 fold change value for 
the average difference of mutant and wild-type cell lines. The 
significance was confirmed by a t-test.

The patterns of gene expression were analyzed through a 
hierarchical clustering method. The clustering and its visu-
alization on a heatmap were performed using the software 
QCanvas (26). QCanvas can be downloaded freely from the 
website http://compbio.sookmyung.ac.kr/~qcanvas.

Gene set enrichment analysis. Pathway analysis was performed 
using the GSEA (Gene Set Enrichment Analysis) method (27). 
Gene sets, integrated from Reactome, PID, KEGG, and 
Biocarta database, were obtained from the online pathway 
database, MSigDB v3.1 (http://www.broadinstitute.org/gsea/
msigdb). The significantly (p<0.01) enriched gene sets among 
the results of the GSEA were reorganized based on major func-
tional categories in each database.

Cell culture. NCI-60 lung cancer cell lines (NCI-H460, A549, 
NCI-H322M, NCI-H226, EKVX, and NCI-H23) were obtained 
from National Cancer Institute (NCI DTP), USA. NCI-H1993, 
NCI-H1935, NCI-H82 and NCI-H524 were obtained from 
American Type Culture Collection (ATCC). All cells were 
grown in RPMI-1640 medium (HyClone, USA) with 10% FBS 
(HyClone) and 1% penicillin/streptomycin (Gibco, USA), and 
maintained at 37˚C in a humidified atmosphere at 5% CO2.

siRNA transfection and cell viability assay. To detect cell 
viability after siRNA transfection, the cells were seeded 
in a 96-well plate at a density of 5,000 cells per well. After 
adhering for 24 h, target siRNAs were added in transfection 
medium (Gibco) for 6 h at 37˚C in a CO2 incubator. siRB1 
(L-003296-02), siCDKN2A (L-011007-00) and non-targeting 
siRNA (D-001810-10) were purchased from Dharmacon Inc. 
(Lafayette, CO, USA). After being cultured for 72 h at 37˚C, 
5% CO2, cell viability was detected using a CellTiter-Blue Cell 
Viability Assay (Promega, Madison, WI, USA).

Results and Discussion

RB1 and CDKN2A mutations in SCLC and NSCLC cell lines. 
Genetic alterations affecting the same biological pathway 
are generally not found in the same cancer cell. Accordingly, 
exclusive mutation patterns of RB1 and CDKN2A genes 
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have been observed in the lung cancer subtypes SCLC and 
NSCLC (4,13). Based on the analysis of mutation frequencies 
across 318 cell lines, we found the general exclusiveness of RB1 
and CDKN2A mutations in diverse cancer lineages (Fig. 1A). 
RB1 mutations were significantly enriched in urinary tract and 
lung cancer cell lines yet rarely found in liver, renal, pancreatic 
and skin cancers, in which CDKN2A mutations were frequent. 
Furthermore, among 71 lung cancer cell lines, 25 SCLC-
derived cells were significantly enriched with RB1 mutations, 
whereas 46 NSCLCs predominantly contained STK11, KRAS 
and CDKN2A mutations (Fig. 1B). Taken together, the muta-
tions of RB1 and CDKN2A genes, which belong to a common 
functional pathway, were clearly exclusive from each other 

among frequently mutated genes in diverse cancer cell lines 
(Fig. 1C).

Differential gene expression profiles between RB1mt SCLCs 
and CDKN2Amt NSCLCs. To find lineage-independent, 
mutation-specific gene expression patterns, we classified 9, 16, 
22 and 24 cell line samples into four groups, RB1wt SCLC, 
RB1mt SCLC, CDKN2Awt NSCLC and CDKN2Amt NSCLC, 
and analyzed the group-specific gene expression patterns 
using DNA microarray data. There was no general correla-
tion of gene expression between the SCLC and NSCLC cell 
lines (Fig. 2A), and significantly enriched gene sets were also 
different between the lung subtypes. However, RB1mt SCLC 

Figure 1. RB1 and CDKN2A mutation frequency in the cancer cell line panel. (A) Enrichment score of RB1 and CDKN2A mutation frequency among diverse 
cancer lineages. The enrichment score was calculated by the odds ratio between the observed and expected odds. The observed odds ratio is the ratio for RB1 
or CDKN2A mutation among each cancer type. The expected odds ratio is the ratio for RB1 or CDKN2A mutation among all 318 cell lines. (B) The enrichment 
score of major mutation frequency in non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). The observed odds ratio is the ratio for each 
mutation frequency in 46 NSCLC or 25 SCLC cell lines. The expected odds ratio is the ratio for each mutation frequency in all 318 cell lines. (C) The distribu-
tion of major gene mutations in lung cancer cell lines. Statistical significance of *p<0.05 and **p<0.01, respectively.

Figure 2. Comparison of gene expression in SCLC and NSCLC with the mutational status of RB1 and CDKN2A. (A) The expression change of a total of 
22,357 gene probes in SCLC and NSCLC cell lines. Major categories of the gene sets significantly (p<0.01) over-enriched for each gene expression were 
analyzed using gene set enrichment analysis (GSEA). Gene sets from different pathway DBs (orange, Reactome; sky-blue, PID; purple, KEGG; and green, 
Biocarta) were collected. The number indicates the number of gene sets per category. (B) Comparison of gene expressional change in RB1-mutated SCLC 
and CDKN2A-mutated NSCLC. Red represents 1,208 RB1-mutated SCLC-specific gene signatures and blue represents 159 RB1-mutated SCLC-specific gene 
signatures (>2-fold change and p<0.01). A total of 42 gene probes were commonly selected between them. (C) Comparison of gene expression change in SCLC 
and NSCLC cell lines with RB1 and CDKN2A wild-type, respectively. The colored gene signatures were consistent with (B). The expressional change for each 
gene probe was calculated by the log2 fold change via the median across 318 cell lines. The r value represents the Pearson correlation coefficient.
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and CDKN2Amt NSCLC cells showed a negative correla-
tion in gene expression (Fig. 2B), whereas RB1wt SCLC and 
CDKN2Awt NSCLC exhibited a positive correlation (Fig. 2C). 
This observation indicated that RB1 and CDKN2A mutations 
caused lineage-specific distinctive changes in gene expression.

Our analysis showed that the lineage difference was gener-
ally more important than RB1 and CDKN2A mutational status 
in the differential gene expression pattern (Fig. 3A). Thus, 
we attempted to identify RB1mt- and CDKN2Amt-specific 
gene signatures by separately analyzing SCLC and NSCLC 
cells (Fig. 3B). As a result, we were able to identify distinct 
mutation-specific gene signatures for which expression was 
significantly regulated (>2-fold change and p<0.05) in each 
subtype (Tables I and II). Of note, the significantly over-
enriched (p<0.01) gene sets (functional categories of selected 
gene signatures) generally did not overlap between the two 
mutation groups (Fig. 3B). The upregulated gene sets with RB1 
mutation in SCLC cell lines mainly belonged to functional 
categories of transcription. The hit list included known target 
genes of E2F, which are released and activated upon RB1 
inactivation (28). The upregulated genes upon CDKN2A muta-
tion in NSCLC cell lines were largely enriched in the gene 
sets of extracellular matrix and metabolism. Genes related 
to the extracellular matrix are known to be important factors 
for enhancing tumorigenicity and promoting metastasis (29). 
Although CDKN2A and RB1 are known to function in the 
same pathway of cell cycle regulation, inactivation of the 
mutations might have a different functional role in cancer 
development or progression in SCLC and NSCLC subtypes.

Specific change in total proteins and phosphoproteins in RB1 
and CDKN2A mutations. We characterized the differential 
regulation of RB1 and CDKN2A mutations at the protein level 
using RPPA data of 77 pan- and 38 phospho-antibodies for 
89 proteins across 179 cancer cell lines. Consistent with the 
patterns of gene expression data, the overall protein expression 
and phosphorylation status were inversely correlated between 
RB1mt SCLC and CDKN2Amt NSCLC cell lines (Fig. 4). 
Thus, the mutational effect of RB1 and CDKN2A genes 
were separately analyzed in SCLC and NSCLC cell lines 
(Fig. 5). The results showed that β-catenin was commonly 
over expressed in both RB1 and CDKN2A mutants. Wnt/β-
catenin overexpression has been extensively reported in lung 
cancer (30), and the overexpression of β-catenin might be 
maintained by the mutational effect of both RB1 and CDKN2A 
genes. The RB1 mutation specifically regulated PTEN, STAT, 
mTOR, p53 expression and MAPK phosphorylation in SCLC 
cells. However, the CDKN2A mutation altered the expression 
of JNK2 and cKIT and the phosphorylation status of AKT, 
STAT3 and AMPKa.

MAPK (T202), which is significantly (p<0.05) phosphory-
lated in RB1-mutated SCLC cancer cell lines, has an important 
role in transcriptional regulation of targeting transcription 
factors such as c-Jun, c-Fos, and c-Myc (31). This observation is 
consistent with the DNA microarray data (Fig. 3B) for RB1mt 
SCLC cells, which are enriched in the functional categories of 
transcription. AKT is specifically phosphorylated (S473, T308) 
in CDKN2Amt NSCLC and related to focal adhesion (32), 
which is the enriched gene set of CDKN2Amt NSCLC from 

Figure 3. RB1mt- and CDKN2Amt-specific gene signatures in SCLC and NSCLC cells. (A) Enrichment score (ES) map of significantly (p<0.01) over-enriched 
gene sets in SCLC and NSCLC cell lines. Each subtype was further divided by RB1 or CDKN2A mutational status. The color index on the right side represents 
the functional category of clustered gene sets. The individual gene expression level in Fig. 2 was used for gene set enrichment analysis (GSEA). (B) Comparison 
of gene expression change along RB1 and CDKN2A mutations. The red color represents 159 transcription markers specific to the RB1 mutation, and blue 
represents 122 transcription markers specific to the CDKN2A mutation (>2-fold change and p<0.05). The complete list of the selected markers is available 
in Table I and II. The scale of the plot is log2 fold change of differential gene expression. It was calculated by the differences of average log2 gene expression 
between mutation and wild-type cell lines in a given subtype. Major categories of the gene sets significantly (p<0.01) over-enriched for each gene expression 
were analyzed by GSEA. Gene sets from different pathway DBs (orange, Reactome; sky-blue, PID; purple, KEGG; and green, Biocarta) were collected. The 
value next to each category indicates the number of sub-gene sets. The r value represents the Pearson correlation coefficient.
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Table I. The RB1mt-specific gene signatures in SCLC.

 Upregulated genes specific to RB1mt Downregulated genes specific to RB1mt
 ----------------------------------------------------------------------------------------------------------------- ----------------------------------------------------------------------------------------------------------------
ProbeID Symbol log2 fold change p-value ProbeID Symbol log2 fold change p-value

231736_x_at MGST1 2.083 0.001 202834_at AGT -3.059 0
218847_at IGF2BP2 2.058 0.011 1566764_at MACC1 -2.16 0.035
202620_s_at PLOD2 2.01 0.002 205501_at PDE10A -2.159 0.004
213139_at SNAI2 2.002 0.016 204044_at QPRT -2.149 0.004
206332_s_at IFI16 1.879 0.03 239503_at Unknown -2.041 0
235763_at SLC44A5 1.829 0.009 208891_at DUSP6 -2.019 0.006
204646_at DPYD 1.828 0.005 1560652_at Unknown -1.943 0.019
202016_at MEST 1.817 0.003 203881_s_at DMD -1.937 0.006
226225_at MCC 1.717 0.045 208892_s_at DUSP6 -1.921 0.005
217028_at CXCR4 1.675 0.023 206218_at MAGEB2 -1.732 0.013
214597_at SSTR2 1.655 0.038 203132_at RB1 -1.709 0.006
210839_s_at ENPP2 1.557 0.04 205305_at FGL1 -1.67 0.006
203038_at PTPRK 1.531 0.001 201328_at ETS2 -1.663 0.005
222553_x_at OXR1 1.528 0.003 205110_s_at FGF13 -1.651 0.036
1558217_at SLFN13 1.515 0.045 209365_s_at ECM1 -1.61 0.014
1565162_s_at MGST1 1.493 0.016 210102_at VWA5A -1.597 0.005
204620_s_at VCAN 1.47 0.011 209468_at LRP5 -1.583 0.001
221731_x_at VCAN 1.44 0.018 1558882_at LOC401233 -1.574 0.032
218197_s_at OXR1 1.409 0.006 219750_at TMEM144 -1.572 0.034
205229_s_at COCH 1.338 0.006 223748_at SLC4A11 -1.552 0.002
203184_at FBN2 1.338 0.026 205601_s_at HOXB5 -1.511 0.023
205027_s_at MAP3K8 1.311 0.004 209803_s_at PHLDA2 -1.495 0.038
204030_s_at SCHIP1 1.308 0.038 212268_at SERPINB1 -1.467 0.001
241400_at Unknown 1.296 0.006 1569191_at ZNF826 -1.448 0.022
1555788_a_at TRIB3 1.274 0.034 212188_at KCTD12 -1.43 0.002
211675_s_at MDFIC 1.272 0.012 241672_at C13orf36 -1.414 0.033
229465_s_at PTPRS 1.255 0.008 219305_x_at FBXO2 -1.337 0.015
225093_at UTRN 1.255 0.042 1554472_a_at PHF20L1 -1.317 0
205122_at TMEFF1 1.251 0.01 203028_s_at CYBA -1.308 0.047
219489_s_at NXN 1.238 0.035 228726_at Unknown -1.303 0.01
225056_at SIPA1L2 1.237 0.011 204158_s_at TCIRG1 -1.302 0.006
208949_s_at LGALS3 1.235 0.021 211538_s_at HSPA2 -1.279 0.035
201063_at RCN1 1.229 0.033 220082_at PPP1R14D -1.259 0.008
235244_at CCDC58 1.184 0.032 203005_at LTBR -1.257 0.011
210978_s_at TAGLN2 1.184 0.005 229964_at C9orf152 -1.23 0.036
233903_s_at SGEF 1.182 0.003 203961_at NEBL -1.212 0.032
205123_s_at TMEFF1 1.177 0.019 224577_at ERGIC1 -1.206 0.002
200897_s_at PALLD 1.164 0.018 238021_s_at CRNDE -1.189 0.022
200916_at TAGLN2 1.161 0.015 223041_at CD99L2 -1.182 0.001
215127_s_at RBMS1 1.143 0.03 205586_x_at VGF -1.182 0.008
202887_s_at DDIT4 1.141 0.005 239278_at Unknown -1.163 0.013
212636_at QKI 1.137 0.014 213689_x_at FAM69A -1.157 0.005
214877_at CDKAL1 1.134 0.03 232099_at PCDHB16 -1.153 0.028
227197_at SGEF 1.129 0.005 219256_s_at SH3TC1 -1.153 0.005
224918_x_at MGST1 1.12 0.02 227943_at Unknown -1.141 0.004
227522_at CMBL 1.08 0.007 210538_s_at BIRC3 -1.138 0.024
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Table I. Continued.

 Upregulated genes specific to RB1mt Downregulated genes specific to RB1mt
 ---------------------------------------------------------------------------------------------------------------- -------------------------------------------------------------------------------------------------------------------
ProbeID Symbol log2 fold change p-value ProbeID Symbol log2 fold change p-value

206385_s_at ANK3 1.073 0.042 1568838_at LOC100132169 -1.117 0.032
226464_at C3orf58 1.072 0.01 229872_s_at LOC100132999 -1.099 0.021
1568720_at ZNF506 1.054 0.04 1555579_s_at PTPRM -1.09 0.043
201656_at ITGA6 1.04 0.028 224997_x_at H19 -1.082 0.032
212190_at SERPINE2 1.034 0.037 213005_s_at KANK1 -1.081 0.01
204995_at CDK5R1 1.022 0.017 219371_s_at KLF2 -1.076 0.013
210512_s_at VEGFA 1.02 0.037 37408_at MRC2 -1.074 0.01
226419_s_at FLJ44342 1.015 0.001 224391_s_at SIAE -1.059 0.01
210735_s_at CA12 1.011 0.032 201329_s_at ETS2 -1.053 0.022
65588_at LOC388796 1.002 0.009 205016_at TGFA -1.049 0.007
213857_s_at CD47 1.001 0.002 227384_s_at LOC727820 -1.043 0.002
208622_s_at EZR 1.001 0.001 228010_at PPP2R2C -1.033 0.031
    209500_x_at TNFSF12/ -1.031 0.019
     TNFSF13
    224576_at ERGIC1 -1.031 0.007
    236719_at Unknown -1.025 0.004
    227001_at NIPAL2 -1.021 0.006
    230722_at BNC2 -1.019 0.047
    204682_at LTBP2 -1.007 0.024

Figure 4. Comparison of protein expression and phosphorylation in SCLC and NSCLC with the mutational status of RB1 and CDKN2A. Protein expression 
change of a total of 77 pan-antibodies was compared between (A) SCLC and NSCLC, (B) RB1-mutated SCLC and CDKN2A-mutated NSCLC, and (C) SCLC 
and NSCLC with RB1 and CDKN2A wild-type cell lines, respectively. Protein phosphorylation change of a total of 38 phospho-antibodies was compared 
between (D) SCLC and NSCLC, (E) RB1-mutated SCLC and CDKN2A-mutated NSCLC, and (F) SCLC and NSCLC with RB1 and CDKN2A wild-type cell 
lines, respectively. The phosphorylation change for each protein phospho-antibody was calculated by the log2 fold change via the median across 179 cell lines. 
The r value represents the Pearson correlation coefficient.
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DNA microarray analysis. Furthermore, PTEN, which was 
overexpressed in RB1mt SCLC cells (Fig. 5A), is a well-
known negative regulator of AKT activation (33), suggesting 
that AKT-mediated signaling might be exclusively activated 
by CDKN2Amt in NSCLC, not by RB1mt in SCLC. Both 
proteome and transcriptome data analyses demonstrated that 
exclusive RB1 and CDKN2A mutations in different subtypes of 
lung cancer included a differential change of gene expression 
and protein regulation, even though RB1 and CDKN2A are in 
the same cell cycle-related pathway.

Synthetic lethality of reciprocal regulation of RB1 and 
CDKN2A expression. Through the systematic analysis of 
transcriptome and proteome data, we found unique mRNA and 
protein regulation patterns induced by the mutation of either 
the RB1 gene or the CDKN2A gene (Fig. 6A). Furthermore, we 
investigated the synergistic negative effect on cancer growth 

by simultaneous functional loss (or knockdown) of these two 
genes. We performed a viability assay with diverse lung cancer 
cell lines with the combined knockdown of RB1 and CDKN2A 
genes using siRNA-mediated gene depletion. As a result, the 
knockdown of one of these genes decreased the viability of cells 
harboring a mutation of the other gene (Fig. 6B). The viability 
of CDKN2A-mutant cell lines was significantly decreased 
by knockdown of RB1; similarly, RB1-mutant cell lines were 
inhibited by CDKN2A depletion. Consistently, the simultaneous 
depletion of RB1 and CDKN2A genes significantly decreased 
the viability of lung cell lines harboring wild-types of these 
genes (Fig. 6C). However, the single knockdown of either the 
RB1 gene or the CDKN2A gene did not effectively reduce 
viability in these wild-type cell lines. In conclusion, the func-
tional inhibition of the RB1 or CDKN2A gene in CDKN2Amt 
or RB1mt cancer cells, respectively, might be a promising thera-
peutic approach in SCLC or NSCLC lung cancers. The present 

Table II. The CDKN2Amt-specific gene signatures in NSCLC.

 Upregulated genes specific to CDKN2Amt Downregulated genes specific to CDKN2Amt
 ------------------------------------------------------------------------------------------------------------ ---------------------------------------------------------------------------------------------------------------------
ProbeID Symbol log2 fold change p-value ProbeID Symbol log2 fold change p-value

236694_at CYorf15A 2.585 0.001 228956_at UGT8 -1.618 0.001
211980_at COL4A1 1.978 0.006 209644_x_at CDKN2A -1.52 0.004
213725_x_at XYLT1 1.654 0.023 225681_at CTHRC1 -1.396 0.014
204971_at CSTA 1.615 0.022 1554242_a_at COCH -1.373 0.008
209970_x_at CASP1 1.566 0.001 218820_at C14orf132 -1.199 0.012
225688_s_at PHLDB2 1.412 0.017 200884_at CKB -1.191 0.001
202638_s_at ICAM1 1.388 0.011 227623_at Unknown -1.156 0.018
222453_at CYBRD1 1.377 0.016 207558_s_at PITX2 -1.151 0.014
1562102_at AKR1C1 1.344 0.048 236302_at PPM1E -1.151 0.009
208782_at FSTL1 1.312 0.014 209198_s_at SYT11 -1.145 0.007
211340_s_at MCAM 1.299 0.002 1560023_x_at Unknown -1.097 0.01
210004_at OLR1 1.299 0.01 214321_at NOV -1.094 0.035
202008_s_at NID1 1.286 0.004 205229_s_at COCH -1.061 0.031
202350_s_at MATN2 1.197 0.012 223551_at PKIB -1.045 0.046
239999_at Unknown 1.126 0.033 230130_at Unknown -1.04 0.049
205407_at RECK 1.117 0.014 212706_at LOC100286937/
     LOC100287164/
     RASA4 -1.019 0.003
203304_at BAMBI 1.113 0.012
228698_at SOX7 1.104 0.014
227051_at Unknown 1.088 0.036
201939_at PLK2 1.082 0.017
209087_x_at MCAM 1.081 0.007
206165_s_at CLCA2 1.067 0.025
227178_at CUGBP2 1.067 0.012
227253_at CP 1.044 0.015
212262_at QKI 1.043 0.002
202998_s_at LOXL2 1.039 0.006
214022_s_at IFITM1 1.021 0.034
211366_x_at CASP1 1.019 0.001
222446_s_at BACE2 1.014 0.009
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study on differential proteome and transcriptome profiles 
between two mutant groups provides mechanistic insights into 
the synthetic lethality of RB1 and CDKN2A mutations.
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