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Proteomic identification of potential cancer markers
in human urine using subtractive analysis

HOLGER HUSI', RICHARD J E. SKIPWORTH?, ANDREW CRONSHAW?>,
KENNETH C.H. FEARON®" and JAMES A. ROSS>"

"nstitute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8QQ; 2School of Clinical Sciences,
3School of Biological Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK

Received November 21, 2015; Accepted December 27, 2015

DOI: 10.3892/ijo.2016.3424

Abstract. Urine is an ideal medium in which to focus diag-
nostic cancer research due to the non-invasive nature and
ease of sampling. Many large-scale proteomic studies have
shown that urine is unexpectedly complex. We hypothesised
that novel diagnostic cancer biomarkers could be discovered
using a comparative proteomic analysis of pre-existing data.
We assembled a database of 100 published datasets of 5,620
urinary proteins, as well as 46 datasets of 8,620 non-redundant
proteins derived from kidney and blood proteome analyses.
The data were then used to either subtract or compare mole-
cules from a novel urinary proteome profiling dataset that we
generated. We identified 1,161 unique proteins in samples from
either cancer-bearing or healthy subjects. Subtractive analysis
yielded a subset of 44 proteins that were found uniquely in
urine from cancer patients, 30 of which were linked previously
to cancer. In conclusion, this approach is useful in discovering
novel biomarkers in tissues where unrelated profiling data
is available. Only a limited disease-specific novel dataset is
required to define new targets or substantiate previous find-
ings. We have shared this discovery platform in the form of our
Large Scale Screening Resource database, accessible through
the Proteomic Analysis DataBase portal (www.PADB.org).
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Introduction

Screening of human tissues for cancer biomarkers is an impor-
tant task in cancer diagnosis and treatment, which is hindered
by the complexity of the sample systems studied. A less
complex system such as urine is a preferred medium to screen
for protein or peptide biomarkers due to the non-invasive
sampling of patients, ease of sampling and the unrestricted
quantities obtainable. Urine is relatively stable in terms of
protein/peptide composition and fragmentation compared
with other bodily fluids such as serum, where proteolytic
degradation by endogenous proteases has been shown to occur
during or after sample collection (1).

Several investigations have been published describing the
urinary peptidome and proteome (as well as biomarker discov-
eries for several diseases) using methodologies ranging from
traditional 2D gel electrophoresis alone (2), or coupled with
mass spectrometry (2-DE-MS) (3), immunohistochemistry (4),
liquid chromatography mass spectrometry (LC-MS) (5), and
surface enhanced laser desorption ionisation-time of flight
mass spectrometry (SELDI-TOF-MS) (6-9).

The proteomic screening of urine for potential cancer
markers has shown several proteins to be differentially present
in ovarian cancer (10). Bladder cancer biomarkers constitute
a different non-overlapping set of molecules (11-13), as do
potential biomarkers for upper gastrointestinal cancers (9).
An improvement in the reliability of diagnostic tests is to
employ more than one biomarker synchronously (9,14). For
example, one previous study employed an antibody-based
array of 810 different antibodies to define peptide patterns in
urine associated with cancer (15). A different approach was
used successfully in recent years, combining urinary mass
spectroscopy with protein/peptide pattern analysis to identify
kidney disease (16).

There is a clear need to collect and cross-correlate the
wealth of data published in the scientific literature. Currently,
there are a number of urinary databases available. The majority
consist of lists of identified proteins derived from tryptic digests
analysed by liquid chromatography tandem mass spectrometry
(LC-MS/MS), such as the Max-Planck Unified Proteome
Database (MAPU) (17) and Sys-BodyFluid (18). More recently,
a urinary database combining chromatographic reverse-phase
retention times and m/z values has been established (19).



1922

However, there is no database available which integrates all of
the data. In order to fill this gap, we have assembled datasets
from 100 urinary proteomic studies in our novel proteomic
database termed the Large Scale Screening Resource (LSSR).
LSSR is accessible and downloadable through the Proteomic
Analysis DataBase (PADB) portal at www.PADB.org.

In this study, we explore the possibility of discovering
novel cancer-associated molecular markers in human urine by
subtractive analysis using a novel dataset of the human cancer
urinary proteome [derived from patients with upper gastroin-
testinal (GI) cancer] and comparing it to non-cancer urinary
datasets.

Materials and methods

Materials. Tris/Tricine peptide gels, gel-running buffers, CM
and IMAC resins, and chromatography buffers were from
Bio-Rad (Hemel Hempstead, UK). All other chemicals were
obtained from Sigma-Aldrich (Gillingham, UK).

Sample collection. Urine samples were obtained from upper
GI cancer patients (n=41) and non-cancer controls (n=21) as
described previously (9). Summary participant demographics
are shown in Table I. Participant age ranged between 21 and
84 (control group), and 43 and 82 (cancer group). Random
morning urine samples were collected over a time period of
2 years. Cancer urine samples were collected prior to surgery if
the patient was being considered for resection. All procedures
were approved by the local research ethics committee, and
written informed consent was obtained. The study conformed
to the standards set by the Declaration of Helsinki. All urine
samples were kept at -40°C for short-term or -80°C for long-
term storage.

Chromatographic enrichment of urine proteins and peptides,
and sample preparation. Aliquots of 0.5 ml from individual
cancer or control urine samples was added to either 30 ul
CMI10 (n=33 cancer urines, n=8 control urines) or 30 ul
IMAC30 (Cu*-chelated) (n=21 cancer urines, n=19 control
urines) spin column resin (Bio-Rad) and 0.75 ml binding
buffer (either 0.1 M NaH;C,0O, pH 4.0 for CM resin, or 0.1 M
NaHPO, pH 7.0 including 0.5 M NaCl for IMAC30 resin) and
incubated for 1 h at room temperature under constant agita-
tion. Sample and resin combinations were chosen based on
independent analyses using peak stratification by SELDI mass
spectrometry (9). Unbound material was removed and the resin
washed four times with 0.3 ml binding buffer. Bound material
was separated by electrophoresis on a 16.5% Tris-Tricine gel
(Bio-Rad), and gel bands in the region of 2-10 kDa were excised
after Coomassie staining (BioSafe Coomassie; Bio-Rad). The
molecular mass range of 2-10 kDa was selected since many
urinary proteins are derived from proteolytic processing and
urinary shedding as described (20). Additionally, we previ-
ously observed potential urinary cancer markers in this mass
range (9).

LC-MS/MS mass spectrometry. Proteins and peptides from gel
bands were digested in situ with trypsin. The resulting peptides
were eluted with acetonitrile (ACN), and analysed by LC-MS/
MS (21). The LC-MS system consisted of an Agilent 1200
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Series HPLC (Agilent Technologies, Yarnton, UK) with a Kasil
sealed fused silica pre-column (Next Advance, New York,
NY, USA) packed to a length of ~3 cm with Pursuit C18,
5 pm particle size (Varian, Crawley, UK) and PicoTip Emitter
analytical column PF 360-75-15-N-5 (New Objective, Woburn,
MA, USA) packed to a length of ~20 cm with Pursuit CI8,
5 um particle size (Varian). The column was equilibrated
with solvent A (0.1% formic acid in 2.5% acetonitrile) and
eluted with a linear gradient from 0 to 10% over 6 to 8 min;
from 8 to 60% over 8 to 35 min; from 60 to 100% over 35
to 40 min; solvent B (0.1% formic acid, 0.025% TFA in 90%
acetonitrile) over 45 min at a flow rate of 5 yl/min. The LTQ
mass spectrometer (Thermo Scientific, Epsom, UK) was fitted
with a NanoLC ESI source. Data-dependent acquisition was
controlled by XCalibur software. Fragmentation spectra were
then processed by XCalibur and BioWorks software (Thermo
Fisher Scientific, Loughborough, UK) and submitted to the
Mascot search engine (Matrix Science, London, UK) using
UniProt/SwissProt (release May 2011, Homo sapiens, 18055
sequences) as the reference database. Mascot search parameters
were: enzyme specificity trypsin, maximum missed cleavage 1,
fixed modifications cysteine carbamidomethylation, variable
modification methionine oxidation, precursor mass tolerance
+/-3 kDa, fragment ion mass tolerance +/-0.4 kDa. Only
Mascot hits with a false discovery rate (FDR) <0.05 were
taken into consideration.

Meta-analysis and subtractive data analysis. Proteins with at
least two peptide matches were analysed further by comparing
molecules that were only observed in urine samples from
cancer patients with a database consisting of proteins found
by other studies in urine, blood and kidney. This database was
assembled from 136 publications, listing 146 tissue-specific
datasets. The blood datasets covered plasma, serum and
erythrocytes; the kidney studies were derived from analyses
of cortex, medulla, epithelium, glomerulus, inner medul-
lary collecting duct, mesangium, parenchyma, peroxisomal
membrane, peroxisome, basolateral membrane vesicles,
brush border membrane vesicles, urothelial mucosa and
whole kidney; and urine datasets described either the whole
or exosomal proteomes. All entries were then matched to the
UniProt database, followed by clustering to individual (unique)
entries by annotating splice and variant entries to common
parent molecules and ultimately assigning each unique cluster
an in-house specific accession number. Additionally, all
proteins mapping to immunoglobulins were clustered into one
generic cluster, as well as all proteins belonging to the Major
Histocompatibility Complex (MHC). Merging and subtrac-
tion analysis was done using software written in-house. We
also manually added our own functional classification tags
to each molecular cluster, based on known properties of each
molecule, giving an abridged view of proteome compositions.

Results

Urine samples were extracted from 21 healthy non-cancer
controls and 41 patients with upper GI cancer (n=41) (Table I).
Of the 41 cancer patients, staging investigations demonstrated
that at least 29 (70.7%) had nodal or metastatic disease. We
analysed all 62 urine samples by LC-MS/MS in the region
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Figure 1. Flow-diagram of the steps involved to elucidate potential novel cancer markers.

of 2-10 kDa by chromatographic enrichment using either CM 10,
IMACS30, or both resin types individually, resulting in a total
of 81 chromatographic enrichments, followed by gel analysis,
tryptic digestion and mass spectrometry. All molecular weight
regions cut from gels were identical in at least three samples
from each cohort group, thus also allowing comparison of iden-
tified molecules on a gel-region by gel-region basis After data
extraction by Mascot searching (resulting in 35,801 peptides
covering 7,639 proteins) and applying discovery criteria of a
FDR =<0.05 and a minimal Mascot score of 13, the resulting 81
datasets were further analysed by merging all protein lists. This
yielded 1,228 unique non-redundant entries (data not shown).

Additionally, all molecules relating to either immunoglobulins
or MHC were also merged into two individual clusters since
members of these two families are well known to show a
great degree of hypervariability, and therefore they may skew
any analysis towards single entries from those classes, since
they are not expected to show any duplications across the
datasets analysed in this study. The final list consisted of 1,161
molecular clusters. Furthermore, we re-classified all molecules
in the datasets available by manually annotating every protein
with a single molecular property or functionality tag as listed
in the legend of Fig. 1. The properties or functionalities were
assigned based on known properties of each individual protein,
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Figure 2. Composition of blood, urine, kidney and our datasets used in this study based on functional classifications. All merged datasets were analysed
based on the functional description of each molecule assigned by our database and depicted as percentage pie-charts. The legend listing all possible classes is

displayed on the right.

Table I. Demographics of the study cohort.

merged datasets of blood, urine and kidney proteomes, as well
as our urinary dataset is shown in Fig. 2. It was clear that all

Entire merged datasets consist of ~25% enzymes, 10% cell-shape
Cancer Control cohort . .
molecules, 10% transcriptional or translational elements and
(n=41) (n=21) (n=62)
10% transport molecules. However, our novel dataset appeared
Age (years) 64 (9.5) 62.1 (23.5) 634(156) O coptain more cell-shape and transcript%onal/translational
Male (M:F) 2615 17:04 43:19 protel.ns. and l.ess t.ransport molecules, which may reflect an
. . association with disease, rather than a general breakdown of
Primary tumor origin
P 15 N/A cellular components.
ancreas The 1,161 molecules were then split into groups depending
Oesophagus o on whether they were observed in cancer urine samples, or
0GJ 7 urine from healthy individuals (Fig. 3A). The 745 proteins
Stomach 5 only found in cancer urine samples were then tagged and the
Duodenum 1 entire dataset compared to data of 31,743 unmerged entries
Unknown 4 derived from 146 tissue-specific datasets from 137 publica-
Histology tions (data not shown). This external data consisted of 9,707
Adenocarcinoma 34 N/A merged entries, covering proteomic studies from urine,

Squamous carcinoma

Unknown

Urine specimens were analysed from cancer patients (n=41) and healthy con-
trols (n=21). Data are presented as means with standard deviations in brackets.

OGJ, oesophago-gastric junction.

either from original publications or derived from database
annotations, such as enzyme nomenclatures, sequence homolo-
gies and domain analysis. The compositional analysis of the

kidney and blood (Table II). A comparative analysis of our
dataset with the three largest urinary proteome profiling
datasets showed a 46% overlap of our data with the dataset
from Kentsis et al (22), a 41% overlap with the study by
Adachi et al (23), and a 21% with the urinary exosome dataset
from Gonzales et al (24) (Fig. 3B). A global comparison
between proteomes from urine, kidney and blood (Fig. 3C)
demonstrated a slightly larger overlap of the urinary proteome
with the kidney proteome than the blood proteome.

We then performed subtractive analysis on our urinary
proteome data by eliminating any potential cancer candi-
date molecule if it was found in any of the urinary datasets
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Figure 3. Venn diagrams of the meta-analysis to define potential cancer-associated molecules. Our dataset was analysed to define the overlap with datasets
described in the literature. (A) Our dataset split into potential cancer markers by subtraction of molecules found in urine samples from healthy subjects.
(B) Venn diagram of the four largest urinary datasets listed in the LSSR database, including the number of overlapping entries, and the number of questionable
entries based on single peptide identification in brackets. (C) Overlap of all proteins found in urine with those found in blood and kidney, based on the datasets

listed in the LSSR database.

Table II. Number of entries listed in the LSSR database for
analysed samples derived from blood, urine and kidney.

No. of entries Merged No.

prior to merge entries of studies
Urine 13,635 5,868 101
Blood 4433 3,660 12
Kidney 13,675 4,964 34

The number of entries by tissue type is given either as numbers derived
directly from the studies analysed, or after merging all datasets based on
unique identifiers assigned by our database.

unrelated to cancer. This reduced dataset of 268 proteins (data
not shown) was further condensed by removing any entries
which did not have a spectral count of at least two, resulting
in 44 proteins, of which 24 were found uniquely in our study
(in comparison to all other datasets), and 20 which were also
found in the other tissues (Table III). All 44 of these proteins
were then analysed by searching the Online Mendelian
Inheritance in Man (OMIM) database for publications where
these molecules were reported to be directly associated with
human disease or cancer. Fourteen proteins were annotated in
OMIM to be causative for a disease, and 30 were known to be
involved in cancer.

Discussion

Proteomic large-scale analysis of tissues to define a cancer state
can be time- and resource-consuming, especially in light of an
unknown end-point. Therefore, it could be helpful to compare
a novel dataset with known data in order to establish whether

potential disease markers are observable, and thereby analyse
a simplified dataset for the disease in question. This approach
does not address the issue of quantitative comparisons, but it
is rather a qualitative approach. However, the resulting list of
potential candidate molecules will have a specificity of 100%.
Here, we test this hypothesis by applying a subtractive analysis
method in conjunction with large-scale meta-analysis of
urinary datasets to screen for potential novel cancer markers
observable in human urine.

An initial comparison of functional profiles of urine, blood
and kidney proteomes showed no major discernible difference
between those datasets. This finding, in itself is not surprising,
since it is expected that these systems should reflect an overall
similar composition through a combination of immediate envi-
ronment and source. Blood, containing a substantial amount of
cells, is also expected to show a reasonably uniform functional
composition profile compared with other tissues e.g. kidney.
Our novel urinary dataset, having an expected bias towards
an aberrant functional profile due to overexpressed molecules
associated with disease, contains more molecules involved in
cellular contacts, morphology and cytoskeletal aspects, as well
as transcriptional/translational components, which may be
directly linked to abnormal and uncontrolled cellular growth.

Comparison of our dataset with known non-cancer urinary
proteomes yielded a set of only 44 molecules specific for our
cancer data, of which 68% are already known to be involved in
cancer. The functional profile of those 44 proteins in compar-
ison to the merged urinary proteome profile showed mainly an
enrichment of developmental proteins (5%), signaling molecules
(7%) and, most strikingly, transcriptional/ translational proteins
(20%). The known cancer-associated molecules described have
been suggested to be involved in hepatocellular carcinoma
[k actin (POTEKP) (25); BolA-like protein 2 (BOLA2) (26);
fragile X mental retardation 1 protein (FMRI) (27)]; mammary
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carcinogenesis [polypeptide N-acetylgalactosaminyltrans
ferase 6 (GALNT6) (28); protein Daple (CCDC88C) (29);
G-protein-signaling modulator 2 (GPSM2) (30); phospho-
lipase DDHD2 (DDHD?2) (31); downstream of tyrosine
kinase 7 (DOK?7) (32); suppressor of tumorigenicity 14 protein
(ST14) (33); coronin-1A (CORO1A) (34)], lung cancer [tight
junction protein ZO-1 (TJP1) (35)], prostate cancer [phos-
pholipase A1 member A (PLA1A) (36); transcriptional
enhancer factor TEF-4 (TEAD2) (37); nuclear receptor
corepressor 1 (NCORI) (38)], ovarian cancer [A-kinase
anchor protein 2 (AKAP2) (39)], colorectal cancer [sterile a
and TIR motif-containing protein 1 (SARM1) (40); neuron
navigator 2 (NAV2) (41); histone-lysine N-methyltransferase
MLL3 (MLL3) (42)], pancreatic cancer [pleckstrin homology
domain-containing family G member 2 (PLEKHG2) (43);
glial cell line-derived neurotrophic factor (GDNF) (44);
carboxypeptidase B (CPBI) (45); a-actinin-2 (ACTN2) (46)],
gastric cancer [nNRNA-decapping enzyme 1A (DCP1A) 47),
a co-activator in TGF-f signaling (48)], melanoma [DNA
polymerase o subunit B (POLA2) (49)], multiple myeloma
[TEL2-interacting protein 1 homolog (TTI1) (50)], endome-
trial cancer cells [Histone H1.4 (HISTIHIE (51)], laryngeal
squamous cell carcinoma [protocadherin-17 (PCDH17) (52)],
and adenocarcinoma [microsomal triglyceride transfer protein
large subunit (MTTP) (53)]. Additionally, the latter protein was
also described to be a pivotal element in the cancer-associated
muscle-wasting disease cachexia (54). Some of these proteins
may be differentially regulated across a range of different
cancer types and may therefore represent key cancer markers.
For example, receptor tyrosine-protein kinase erbB-2 (ERBB2)
has been described to be a marker for various cancer types, such
as gastroesophageal (55), breast (56), lung (57), gallbladder (58)
and pancreatic cancer (59), as well as uterine serous adenocarci-
noma (60), and others. Another known protein to be involved in
cancer progression is the mitochondrial cytochrome ¢ oxidase
subunit 4 isoform 2 (COX412), which is part of the Warburg
effect, where cancer cells show higher propensity to produce
lactate independent of oxygen presence or absence (61).

Of the proteins not previously described in association
with cancer, transcription factor Bax antagonists selected in
Saccharomyces 1 (SON), homeobox protein Mohawk (MKX)
and CUGBP Elav-like family member 5 (CELFS5) may represent
other potential lead candidates in cancer stratification. Other
important markers may include developmental molecules,
such as guanylate-binding protein 4 GBP4, which is a nega-
tive regulator of virus-triggered cellular responses (62) and is
involved in GTP hydrolysis, or neuron navigator NAV1, which
has been reported to be a neuronal guidance molecule (63).
However, its role in cancer or outside the neuronal environ-
ment remains to be elucidated.

In conclusion, we have demonstrated that a subtractive
analysis of proteomic datasets can yield a number of potential
diagnostic cancer targets in human urine. Further specific
screening of urine, based on our findings, using, for example,
an antibody-based approach, will establish whether our poten-
tial markers are associated with a general cancer status, or if
they are specific for a defined cancer type such as pancreatic or
esophageal cancer. Additionally, since the data in our database
can easily be expanded to contain further datasets, there are
other, as yet undefined diseases, which can be addressed by
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establishing and comparing a relatively small disease-specific
dataset. This approach also has the advantage of rapid turn-
over and increased cost-effectiveness relating to large-scale
analyses of tissue and cell proteomes for the discovery of
novel molecular markers. In this regard, we are encouraging
researchers to submit their published datasets to be incorpo-
rated in the LSSR database. All data will be freely available
through the PADB portal at www.PADB.org.
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