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Abstract. Curcumin shows growth-inhibition against tumor 
cells through multi-target mechanisms. Nevertheless, the 
poor stability and pharmacokinetics considerably limit its 
clinical functions. Increased effort has been put into the 
chemical alteration of curcumin to find potential analogues 
with improved bioavailability and antitumor activities. In this 
study, the antitumor activity of a novel curcuminoid (B63) in 
nasopharyngeal carcinoma (NPC) was examined. The MTT 
and colony formation assays were used to detect NPC cell 
viability and proliferation. Flow cytometry was used to detect 
cell cycle distribution. The Annexin V/PI staining assay and 
cleavage PARP and cleavage caspase-3 expression were used 
to examine apoptosis. Western blotting was used to examine 
the protein expression of endoplasmic reticulum (ER) stress 
pathway markers, XBP-1, ATF-4 and CHOP. The suppres-
sive effect of B63 on tumor growth was examined in vivo by 
subcutaneously inoculated NPC in a tumor model using nude 
mice. Treatment with B63 potentially caused growth inhibi-
tion and apoptosis in NPC cells in a dose- and time-responsive 
manner. Its antitumor effect was associated with the ER stress 
activation. Nevertheless, the same dose of curcumin did not 

activate ER stress. In addition, knockdown of CHOP attenu-
ated B63-induced cell viability inhibition, suggesting that the 
apoptotic pathway is ER stress-dependent. The tumor volume 
and weight were significantly reduced by pretreating the 
NPC cells with B63 before implantation in the in vivo mouse 
model. B63 exhibited a more potent antitumor action than 
curcumin in NPC. These observations on the novel compound 
B63 indicate a novel candidate for NPC therapy.

Introduction

Nasopharyngeal carcinoma (NPC) is the most prevalent 
malignant cancer in Southeast Asia particularly in South 
China (1). Radiotherapy and cisplatin based chemotherapy are 
the main therapy for NPC (2,3). Unfortunately, most patients 
suffering from NPC do not benefit much from simultaneous 
chemoradiotherapy; as 30-40% develop distant metastases 
within 4 years (4), and once metastasis occurs, the prognosis 
is very poor. Therefore, it is critical to look for new treatments 
for NPC.

An increasing amount of attention has been given to 
the utilization of complementary and alternative medicine 
as a part of the therapy for various cancers associated with 
current treatments (5). Curcumin has been reported to arrest 
the cell cycle, induce apoptosis and prevent the propagation 
and metastasis of tumor cells including NPC (6,7). It has 
been reported that curcumin exerts its proapoptotic effects by 
producing endoplasmic reticulum (ER) stress in cancer cells 
(8,9). Curcumin is notably non-toxic and possesses promising 
anticancer activities, however, preclinical and clinical studies 
showed its low bioavailability and pharmacokinetic profiles as 
a result of its instability under physiological conditions which 
have limited its utilization in anticancer treatments (9,10).

Substantial work was done in modifying curcumin struc-
ture to determine analogues with stronger antitumor activities 
and better bioavailability (11,12). A series of mono-carbonyl 
analogues of curcumin have been synthesized by removing the 
β-diketone moiety (13,14). Studies have shown that some mono-
carbonyl analogues possess enhanced stability and antitumor 
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activities in vitro as well as improved pharmacokinetic profiles 
in vivo. One such compound, 1,5-bis(2-methoxyphenyl)-penta-
1,4-dien-3-one (B63) (Fig. 1B) was developed as part of a 
series of novel curcuminoids (15). Previous studies have shown 
that B63 exhibited stronger antitumor activtity than curcumin 
in human lung cancer cells (15). In this study, the biological 
activity of B63 on NPC cells was characterized. The data 
obtained demonstrated that B63 prevent cell viability, arrest 
cell cycle and induce apoptosis. B63 demonstrated a specificity 
for activating ER stress greater than curcumin. B63 therapy 
also showed improved growth-suppressive effects in vivo. The 
data obtained gave an indication that B63 could be further 
optimized for development for NPC therapy.

Materials and methods

Materials. Cell culture reagents were purchased from 
Invitrogen. The antibodies: CHOP, XBP-1, ATF-4, Lamin B, 
and Jab1 were from Santa Cruz, PARP and P27 were from 
BD Biosciences Pharmingen, caspase-3 and Cyclin B1 were 
from Cell Signaling Technology. Apoptosis (Annexin V/PI) 
staining kit was purchased from BD Biosciences. Curcumin 
and 3-(4,5)-dimethylthiahiazol-(-zy1)-3,5-di-phenyltetra-
zolium bromide (MTT) were from Sigma-Aldrich. B63 was 
from the School of Pharmacy, Wenzhou Medical University 
and stored in DMSO at a concentration of 50 mM. The final 
concentration of DMSO in the experimental system was 
≤0.1%.

Cell culture. NPC cells CNE1, CNE2 cells (16) and radiore-
sistant NPC cell line CNE2R were cultured in RPMI-1640 
medium as previously described (17).

MTT assay. To detect cell viability, we used MTT assay as 
previously described (16). Briefly, the cells seeded in 96-well 
plates (4,000 cells per well) were treated with B63 or curcumin 
for 24 or 48 h. MTT (final concentration, 0.5 mg/ml) was 
added to each well and incubated for 3.5 h. The medium was 
discarded and 150 µl of DMSO was added to each well, and 
incubated for 10 min. The absorbance was read at 570 nm. 
Half-Maximal inhibitory concentrations (IC50), were used as 
the drug concentration to acquire half maximal inhibition of 
cell viability.

Colony formation assay. The colony formation assay was 
performed as described previously (18). Generally, cells 
(300 cells per well) seeded in a 6-well plate were treated with 
indicated doses of B63 for 24 h. The NPC cells were cultured 
for 10 days and then stained with Giemsa dye and colonies of 
≥50 cells were counted by a microscope.

Cell cycle analysis by flow cytometry. PI staining was 
performed as previously described (18). Briefly, after applying 
5 µM of B63 or curcumin treatment, NPC cells were collected 
and fixed at 4˚C in 75% ethanol. Cells were washed two times 
in PBS, stained with PI, and analyzed immediately after 
staining using a flow cytometer (BD Biosciences).

Apoptosis measurement. To examine viable cells, nuclear 
staining was performed. Cells were exposed to 5 µM B63 or 

curcumin for 48 h and were washed two times and fixed with 
methanol. After 15 min, cells were rewashed and stained with 
Hoechst 33342 for 15 min and then detected using a fluores-
cence microscope (Olympus, DX50).

For Annexin V and PI staining, cells were treated with 
5 µM B63 or curcumin for 48 h, and then collected and resus-
pended in 100 µl binding buffer containing Annexin V-FITC 
and PI according to the manufacturer's instructions. Flow 
cytometer was used for the quantification of Annexin V-FITC 
and PI binding.

Lentiviral infection for CHOP siRNA. The CHOP siRNA 
sequence was designed as: 5'-GCAGGCAGGAAATCGAG 
CGCCTGAC-3'. The recombinant lentiviruses were produced 
by transfection of 293T cells with FuGENE 6 Transfection 
reagent as described previously (15). Briefly, the subconfluent 
cells in a 10-cm culture dish were co-transfected with lentiviral 
vector (10 µg), lentiviral packaging vectors pRSV-REV (2 µg) 
and pMDLg/pRRE (5 µg) and the vesicular stomatitis virus G 
glycoprotein (VSVG) expression vector pMD2G (3 µg). The 
viruses were collected from the culture supernatants on days 2 
and 3 post-transfection, concentrated by ultracentrifugation 
for 1.5 h at 25,000 rpm and suspended in PBS. After infecting 
the NPC cells for 48 h, knockdown of CHOP were further 
confirmed by immunoblot analysis.

Western blot analysis. After curcumin or B63 treatment whole 
cell lysate and nuclear and cytosolic extracts were isolated as 
described previously (15). Antibodies against the following 
proteins were used: CHOP, ATF-4, XBP-1, Lamin B. 
Immunoreactive bands were visualized with a secondary 
antibody and Western Lightning Chemiluminescence Plus 
reagent.

Tumorigenicity assay in nude mouse. NPC xenograft model 
was used to examine B63's antitumor activity as previously 
described (15). Four-week-old athymic nude (nu/nu) mice 
were obtained from the Animal Center of Sun Yat-Sen 
University. CNE2 and CNE2R were treated with either 
curcumin (10 µM), B63 (5 and 10 µM), or DMSO for 12 h 
and then injected subcutaneously into the right flank of each 
mouse (3x106 cells/mouse, 6 mice/group). Mice were checked 
every 2 days for xenograft  development. After tumors became 
obvious (~0.1 mm3), tumor volumes was calculated using the 
following formula: length x width2/2 every 3 days. At the end 
of the experiments the mice were sacrificed, and the tumors 
extracted for weighing. All the animal work was approved 
by the Institutional Animal Care and Use Committee of Sun 
Yat-sen University.

Statistical analysis. Results are shown as means ± standard 
deviation. Statistical analysis for the results was performed 
using Student's t-test for only two groups, or one-way analysis 
of variance for more than two groups. Differences between 
groups were considered statistically significant at P<0.05.

Results

B63 shows stronger antitumor activity than curcumin in 
suppressing NPC cell viability. In this study, the antitumor 
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activities of B63 and curcumin in NPC cells were examined. 
After treatment for 24 h, both B63 and curcumin showed 
suppression of cell viability in all three NPC cell types (Fig. 1). 
However, B63 exhibited greater inhibition than curcumin. IC50 
values of B63 were 51, 55 and 38 µM in CNE1, CNE2, and 
CNE2R, respectively, which are substantially more powerful 
than curcumin (IC50 values 80, 88 and 69 µM). In this study, 
B63 showed growth-suppressive activity in the NPC cell lines 

tested in a dose- and time-dependent manner, after 48-h treat-
ment, the IC50 values of B63 were much lower, with 3.3, 4.0 
and 3.0 µM in CNE1, CNE2, and in CNE2R, respectively, 
which are also more powerful than curcumin (IC50 values 7.5, 
8.1 and 6.7 µM).

B63 is more powerful in inhibiting proliferation and 
inducing NPC cell cycle arrest. A colony formation assay to 

Figure 1. B63 inhibits NPC cell viability. The influence of curcumin (A) and B63 (B) on cell viability was determined by MTT assay. Cells were treated with 
indicated concentration of B63 or curcumin for 24 and 48 h. The data represent three independent experiments, mean ± SD. **Compared with curcumin group, 
P<0.01.
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Figure 2.  B63 inhibits cell proliferation in NPC. (A) Colony formation assay was performed to detect the effects of B63 on cell proliferation. Left, 
colonies were stained with Giemsa dye. Right, quantification of colonies. (B) The effects of B63 and curcumin on cell cycle were detected by flow 
cytometry analysis. Right, quantification of NPC cells in G2/M phase. (C) After 36-h treatment, the effect of B63 on Cyclin B and Jab1/P27 pathway was 
detemined by western blotting. Cont, control; Cur, curcumin. The data represent three independent experiments, mean ± SD. **Compared with curcumin 
group, P<0.01.
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test the effect of B63 on NPC cell proliferation was further 
performed. As expected, treatment of curcumin or B63 led to 
decrease in colony formation when compared to the DMSO 
control group (Fig. 2A). Three micromolar (3 µM) curcumin 
produced a decrease of nearly 24% (CNE1) and 20% (CNE2) 
in colony formation, respectively. While 3 µM B63 treatment 
showed 99% in CNE1 and 97% in CNE2 reductions in colony 
numbers. These results showed that B63 was more potent than 
curcumin in preventing cell viability and propagation of NPC 
cells.

Cell cycle distribution of CNE1 and CNE2 was accessed 
following 24-h treatment with B63 (5 µM) or curcumin. 
Therapy of B63 led to an increase in the G2/M phase, from 4 
to 26% in CNE1 and from 4 to 24% in CNE2. Furthermore, 
B63 arrested NPC cells in G2/M phase in a time-dependent 
manner, after 36-h therapy, B63 arrested more cells in G2/M 
phase (47% in CNE1 and 41% in CNE2), whereas, curcumin 

at the same concentration did not induce significant change 
in the cell cycle (Fig. 2B). By 36 h, decrease in cyclin B 
expression was also observed in B63-treated cells relative to 
controls (Fig. 2C). As our previous studies demonstrated Jab1/
P27 pathway plays an important role in the pathogenesis of 
NPC (16), we also evaluated the effect of B63 on this pathway 
and found that B63 inhibited Jab1 and consequently increased 
P27 (Fig. 2C).

B63 promotes apoptosis in NPC cells. Next, it was determined 
if the B63-induced cell viability suppression was followed by 
increases in apoptosis. The effect of B63 on the induction of 
apoptosis using Hoechst fluorescence and flow cytometry was 
analyzed. B63 induced morphological apoptotic characteristic 
in NPC cells (Fig. 3A). Control cells and curcumin treated cells 
showed excellent growth status. Treatment with B63 resulted 
in a remarkable decrease in the number of viable CNE1 cells 

Figure 3. B63 induces apoptosis in NPC cells. Cells treated with B63 or curcumin were stained with Hoechst 33342 and then detected by fluorescence micro-
scope, and the apoptotic cells are indicated with arrows (A) or stained with Annexin V/PI, then detected by flow cytometry (B). quantification of the viable cells 
and apoptotic cells. (C) Treated CNE2 cells were lysed for western blotting and then detected by cleaved PARP and Caspase-3. Cont, control; Cur, curcumin. 
All data represent three independent experiments, mean ± SD. **Compared with curcumin group, P<0.01.
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(76%), CNE2 cells (61%) and CNE2R cells (81%) compared 
with control cells (Fig. 3A).

Flow cytometric analysis confirmed the above morpho-
logical observations. There was no significant difference 
in apoptosis induction between curcumin treated group 
and control group. However, after the same concentration 
of B63 treatment, the ratios of apoptosis were 42% (CNE1), 
27% (CNE2) and 45% (CNE2R), respectively Fig. 3B. Because 
cleavage of PARP and caspase-3 activation are indication of 
the beginning of apoptosis (19,20), the influence of B63 on 
CNE2 cells was further examined. As expected, B63 induced 

more significant PARP and caspase-3 cleavage than curcumin 
(Fig. 3C). These data suggested an enhanced activity of B63 in 
inducing apoptosis in NPC cells.

B63 specifically activated the ER stress pathway. CHOP, 
ATF-4 and XBP-1 are markers of ER stress (21) and prolonged 
activation of CHOP can trigger apoptosis in cells (22). In this 
study, B63 significantly elevated the CHOP, XBP-1, ATF-4 
protein levels, whereas curcumin did not induce any change 
in these markers (Fig. 4A). The data demonstrated that 
B63-induced ER stress may represent a major mechanism of 

Figure 4. Depletion of CHOP attenuates the B63 antitumor activity. (A) NPC cells were treated with B63 (5, 10 and 20 µM) or curcumin (5, 10 and 20 µM) for 
24 h, proteins were measured by western blotting. (B and C) NPC cells were infected with CHOP siRNA virus and then treated with B63 or curcumin for 48 h. 
(B) Knockdown of CHOP was confirmed by western blotting. (C) The figures were obtained using a microscope with x20 amplification. (D) The cell viability 
was detected using MTT assay. Cur, curcumin. All data represent three independent experiments, mean ± SD. **P<0.01.
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anticancer function. For further confirmation that ER stress 
plays a major role in B63-induced apoptosis, lentiviral siRNA 
targetting CHOP gene was produced and used to infect NPC 
cells. The reduction of CHOP expression was proven using 
western blot assay (Fig. 4B). In addition, to prove that CHOP 
levels affected B63 activity in NPC cells, CHOP siRNA-trans-
fected NPC cells were treated with curcumin and B63 and it 
was found that cell apoptosis induced by B63 in the CHOP 
deficient cells was significantly reduced when compared to the 
control cells (Fig. 4C). Besides, depletion of CHOP attenuates 
the cell viability inhibition induced by B63 as measured by 
MTT assay (Fig. 4D). These results pointed out that B63- 
induced cell apoptosis is, at least partly, mediated via the ER 
stress pathway.

B63 represses tumorigenicity of NPC cells. Tumorigenicity 
assay in nude mice was performed to validate the B63 anti-

tumor activity, CNE2 and CNE2R cells were treated with 
B63 (5 or 10 µM), curcumin (10 µM) or vehicle (DMSO) for 
12 h and were then injected subcutaneously into the flank of 
nude mice, and tumor formation was monitored. B63 effec-
tively suppressed the tumor growth in mice bearing CNE2 
and CNE2R cells (Fig. 5), reducing the tumor weight by 30% 
compared with the CNE2 control group. Furthermore, we did 
not observe tumor development in mice bearing CNE2 cells 
with 10 µM B63 pretreatment or CNE2R cells with 5 µM 
B63 pretreatment, supporting that B63 is more powerful than 
curcumin in preventing NPC tumorigenicity.

Discussion

Curcumin, commonly called turmeric, is a natural polyphenol 
derived from the Curcuma longa, and is capable of inhibiting 
and treating different cancers (23,24). Nevertheless, the anti-

Figure 5. B63 inhibits tumorigenesis. CNE2 (A) and CNE2R (B) were treated with B63 (5 or 10 µM) or curcumin (10 µM) for 12 h. Cells were subcutaneously 
injected into the flank region of female nude mice. The tumor volume was measured on the indicated days. Tumor weight was obtained at the end of the 
experiment.
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tumor activity of curcumin is severely affected by its rapid 
metabolism (10,25,26). Studies have reported the structural 
modification of curcumin and the anticancer activity of its 
analogs (27). Curcumin is unstable at pH >6.5 because of its 
highly reactive β-diketone moiety (28). A series of monocar-
bonyl analogs of curcumin have been designed by removing the 
highly reactive β-diketone moiety in the structure of curcumin. 
One such compound is B63 which displayed a higher chemical 
stability in culture medium (15). B63 exerted antitumor activity 
on lung cancer cells by the induction of apoptosis, which 
involves the ER stress signaling pathway (15). In this study, it 
was demonstrated that B63 is more powerful than curcumin in 
preventing cell viability and propagation and further inducing 
G2/M arrest and apoptosis in NPC cells. The data obtained 
in this study also demonstrated that B63-induced apoptosis 
promoted PARP and caspase-3 activation. Although curcumin-
induced apoptosis through the activation of caspase-3 has been 
previously reported (29), we did not see cleavage of PARP and 
caspase-3 changes in the curcumin treated NPC cells, which 
may due to the low concentration (5 µM).

ER regulates the protein synthesis, folding and trafficking. 
When signals disturb the ER function and cause ER stress, 
the ER stress response is a balance between prosurvival and 
proapoptotic signaling pathways (21). Cells undergo apoptosis 
when the prosurvival responses fail (21,30), which is consis-
tant with our study that B63-induced apoptosis in NPC cells. It 
was found that B63 could increase XBP1, ATF-4 and CHOP, 
triggering ER stress-specific cascade. The upregulations of 
CHOP, XBP-1 and ATF-1 in the nuclei of NPC cells after 
B63 therapy (Fig. 4A) suggest that the B63-induced ER stress 
was developed into the commitment phase toward apoptosis. 
Cleavage and activation of procaspase-3 have been noted in 
different studies on ER stress-induced human cancer cell 
apoptosis (22,31,32). Our data also showed that B63 induced 
caspase-3 cleavage. Collectively, our data demonstrated that 
ER stress markers were induced by B63, suggesting that 
B63-induced apoptosis is associated with ER stress.

CHOP is considered to be a marker of commitment of ER 
stress-induced apoptosis (33). Knockdown of CHOP decreased 
ER stress-mediated apoptosis in human cancer cell (34-36). In 
agreement with these reports, our data also showed that deple-
tion of CHOP attenuated the B63 antitumor activity. Besides 
the cellular effects, B63 prevented tumor growth in the nude 
mouse model.

However, other apoptotic pathways may also participate  
in the B63-induced apoptosis. For example, mitochondria-
mediated apoptotic pathway where caspase-3 activation plays 
an important role (37). Additionally, curcumin has been 
reported to exert anticancer activity through multi-targeting 
mechanisms (12,23,38). Further studies are necessary to detect 
the in vivo pharmacodynamics of B63 as a candidate for inhib-
iting and treating different cancers.

Since many tumor cells are deficient in G1/S cell cycle 
checkpoint, they are more dependent on G2/M checkpoints 
to allow time for DNA repair. Previous studies demonstrated 
that tumor cells in the G2/M phase are more sensitive to 
radiotherapy (39,40). In this study, the number of NPC cells 
in the G2/M phase increased significantly after exposure to 
B63. Thus, the link between B63-induced G2/M arrest and 
hyper-radiosensitivity needs to be investigated in the future. 

A more detailed understanding of the mechanisms of B63 
induced-G2/M checkpoint activation is thus essential for the 
development of radiotherapy sensitizer.

In conclusion, our data indicated that B63 displayed 
enhanced anticancer effects on NPC through an ER stress-
mediated pathway, suggested B63 could become part of an 
effective therapeutic regimen for NPC.
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