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Abstract. Clinical trials using antiangiogenic drugs revealed 
their potential against cancer. Unfortunately, a large percentage 
of patients does not yet benefit from this therapeutic approach 
highlighting the need of diagnostic tools to non-invasively 
evaluate and monitor response to therapy. It would also allow 
to predict which kind of patient will likely benefit of antian-
giogenic therapy. Reasons for treatment failure might be due 
to a low expression of the drug targets or prevalence of other 
pathways. Molecular imaging has been therefore explored as a 
diagnostic technique of choice. Since the vascular endothelial 
growth factor (VEGF/VEGFR) pathway is the main respon-
sible of tumor angiogenesis, several new drugs targeting either 
the soluble ligand or its receptor to inhibit signaling leading to 
tumor regression could be involved. Up today, it is difficult to 
determine VEGF or VEGFR local levels and their non-invasive 
measurement in tumors might give insight into the available 
target for VEGF/VEGFR-dependent antiangiogenic therapies, 
allowing therapy decision making and monitoring of response.
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1. Introduction

Angiogenesis is the process that leads to the formation of 
new blood vessels, and, if induced by tumors, may also 
contribute to the growth of the disorganized vasculature able 
to sustain cancer progression over 2-3 mm and metastasis (1). 
The events that trigger tumor angiogenesis derive from the 
interaction between cancer cells and host microenvironment 
that includes immune cells, connective tissue and soluble 
factors. Vascular endothelial growth factor (VEGF) and its 
receptor (VEGFR) are the main contributors to proliferation 
of endothelial cells, thus representing suitable targets for 
antiangiogenic therapies (2).

2. Vascular endothelial growth factor (VEGF)

Vascular endothelial growth factor is the most important 
mediator of angiogenesis. It is overexpressed in various 
tumors, stimulating endothelial cell proliferation and migra-
tion, and leading to the formation of new blood vessels from 
pre-existing ones (3-8). The VEGF family is composed of 
five glycoproteins (VEGF-A, VEGF-B, VEGF-C, VEGF-D 
and VEGF-E). VEGF-A is a homodimeric, disulfide-bound 
glycoprotein, which exists in several isoforms with different 
numbers of amino acid residues, such as VEGF121, VEGF189 
and VEGF165. Different VEGF-A isoforms exhibit varying 
biological properties, such as the ability to bind to cell surface 
heparin sulfate proteoglycans. VEGF121, commonly existing 
as a homodimer, is freely diffusible without heparin binding. 
The angiogenic actions of VEGF are mediated primarily via 
two closely related endothelium-specific receptor tyrosine 
kinases, Flt-1 (VEGFR1) and Flk-1/KDR (VEGFR2) (9). Both 
are largely restricted to vascular endothelial cells and are 
overexpressed on the endothelium of tumor vasculature, yet 
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they are almost undetectable in the vascular endothelium of 
adjacent normal tissues (10). All of the VEGF-A isoforms bind 
to both VEGFR1 and VEGFR2.

VEGF and its receptors are overexpressed in a variety of 
solid tumor biopsy specimens, and overexpression of VEGFR2 
or VEGF-A has been considered as a poor prognostic marker 
in various clinical studies (11-13). Indeed, new vasculature 
allows tumor cells to grow by supplying nutrients and oxygen, 
enabling disposal of metabolic waste products and providing 
a route for metastatic spreading. VEGF production by tumor 
cells is thought to be regulated by hypoxemia, growth factors 
signaling, cytokines, and cell differentiation (8).

Given the role of VEGF and VEGFR in several oncological 
and non-oncological diseases, pharmaceutical companies 
and researchers are deeply involved in developing agents 
potentially useful in the prevention of VEGF-A binding to 
its receptors (14), or antibodies blocking VEGFR2 (11) or 
small molecules that inhibit the kinase activity of VEGFR2 
(7,15) and thereby block growth factor signaling. Indeed, 
VEGF/VEGFR targeting has already been proved successful 
in many cancer types (16).

3. The VEGF/VEGFR pathway

VEGF-A and its receptors are the best-characterized signaling 
pathway in developmental angiogenesis as well as tumor 
angiogenesis (10). VEGFR2 appears to be the most important 
receptor in VEGF-induced mitogenesis, angiogenesis, and 
permeability increase, whereas the role of VEGFR1 in endo-
thelial cell function is less clear (17). During the exponential 
growth stage, VEGFR expression is highly upregulated on 
the newly developed tumor vasculature. Being the naturally 
existing VEGFR ligand, VEGF121 offers several advantages 
over the synthetic small-molecule VEGFR ligands or anti-
VEGFR antibodies. It has much higher binding affinity to 
VEGFR (nanomolar range) than reported peptidic VEGFR 
inhibitors (submicromolar to micromolar range) (18,19). If 
compared to antibody-based radiopharmaceuticals, VEGF121 
clears much faster from the blood pool and the non-targeting 
organs because of its smaller size.

Regulation of inflammatory cell recruitment by VEGFR1 
appears to be exerted mainly through placental growth factor 
(PGF). notably, the expression of PGF is very low under 
physiological conditions, but it may be strongly upregulated 
in various cell types by different pathological stimuli such as 
hypoxia, inflammatory cytokines, or oncogenes (20-22). PGF 
has recently been regarded as an attractive candidate for anti-
angiogenic therapy. Indeed, it has been shown that PGF plays 
a key role in promoting pathological angiogenesis associated 
with tumor progression (23) and overexpression of PGF in a 
mouse melanoma model resulted in increased tumor growth 
and metastasis (24). Tumor cells may also express VEGFR2, 
although epithelial and mesenchymal tumor cells typically 
express VEGFR1 rather than VEGFR2 (25,26) (Fig. 1). 
nevertheless, increased expression of VEGFR2 on tumor 
cells has been described for melanoma and hematological 
malignancies (27). It has been shown that VEGFR2-mediated 
signaling allowed survival of cancer cells under chronic 
hypoxic conditions and might contribute to a more aggressive 
phenotype (28) (Fig. 2).

4. VEGF and cancer related inflammation

Growing evidence supports an important link between chronic 
inflammation and tumor development. Induction of VEGFR2 
expression in tumor cells, and also in intestinal epithelium 
during colitis, is mediated by the pro-inflammatory cytokine 
interleukin-6, which is a strong promoter of tumor growth in 
experimental colitis-associated colon cancer (29). A soluble 
form of the VEGFR2 (sVEGFR2) has been also described and 
may have important biological roles. sVEGFR2 binds VEGF-C 
and prevents activation of VEGFR3, consequently inhibiting 
lymphatic endothelial cell proliferation (30). notably, regula-
tion of sVEGFR2 in advanced metastatic neuroblastoma may 
promote lymphogenic spread of metastases (31). The expression 
of VEGFR3 in tumor cells is still controversial (32); however, it 
has been ascertained that inhibition of VEGFR3 activity arrests 
tumor vascularization, leading to decreased vascular density in 
several tumor models (33). The axis VEGFC/VEGFR3 plays a 
fundamental role in the tumor microenvironment by promoting 
the formation of new lymphatic vessels from pre-existing ones 
(34). VEGFC, produced by neoplastic cells, induces lymphatic 
endothelial destabilization, resulting in endothelial sprouting as 
well as leakage and enlargement of the vessels. These modifi-
cations induce entry of tumor cells into the lymphatics vessels 
and further dissemination of metastasis to sentinel lymph 
nodes (35,36).

High expression of VEGFs and/or VEGFRs in various 
tumor biopsy specimens is indicative of poor prognosis for 
cancer patients (2,37,38). Therefore, non-invasive imaging and 
quantification of VEGFR expression is of relevant importance 
in cancer patient management. Many strategies have been 
adopted to block the VEGF/VEGFR signaling pathway for 
cancer treatment, such as agents that can bind to VEGF-A to 
prevent its interaction with VEGFRs (such as bevacizumab, 
and VEGF-trap) (39,40) antibodies/antibody fragments that 
target VEGFR-2 (ramucirumab, and CDP791) (41,42) and 
small molecule inhibitors that interrupt the downstream 
signaling of VEGFR-2 (axitinib, sunitinib, and sorafenib) 
(43,44). Many of these agents have been approved by the Food 
and Drug Administration (FDA) for various medical indica-
tions in cancer therapy (2,45).

VEGFR-2 mediates the majority of VEGF-A signaling 
in the tumor microenvironment including microvascular 
permeability and endothelial cell proliferation (8,10). Several 
agents, including antibodies and soluble receptor constructs, 
have been developed to target the VEGF system. The drug 
that is currently most widely used in the clinical practice to 
modulate VEGF-A is the humanized monoclonal antibody. It 
blocks VEGF-induced endothelial cell proliferation, perme-
ability, and survival, and it inhibits human tumor cell line 
growth. The likely mechanism is that bevacizumab binds to 
VEGF both soluble and bound to the extracellular matrix and 
thereby prevents VEGF binding to its receptors, blocking the 
biologic pathways induced after VEGF binding. Bevacizumab 
is approved both by the United States Food and Drug 
Administration (FDA) and the European Medicines Agency 
(EMA) for the treatment of metastatic colorectal cancer, 
non-small cell lung cancer, breast cancer and glioblastoma 
multiforme in combination with chemotherapy (46,47). one of 
the greatest challenges in bevacizumab therapy is the lack of 
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predictive biomarkers and tools that can predict the efficacy of 
anti-VEGF therapy (47).

5. Anti-VEGF drugs

Development of anti-angiogenic therapy including anti-VEGF 
antibodies and VEGF-tyrosine kinase receptors has been a 

major landmark in cancer therapy leading to improvement 
in survival in several cancers. The pharmacologic inhibi-
tion of angiogenesis via the VEGF pathway is an important 
therapeutic approach that prevents cancer growth and 
metastasis formation. In addition to anti-VEGF antibodies, 
other strategies have been explored and include the blocking 
of its signaling receptor, receptor tyrosine kinase inhibitors 

Figure 1. IHC analysis. Expression of VEGFR1 in mouse subcutaneous tissue implanted and colonized by human HT-29 colon carcinoma cells. VEGFR1 
appears heterogeneously distributed between tumor cells (x10; boxed area, x20).

Figure 2. IHC analysis. Expression of VEGFR2 in mouse subcutaneous tissue implanted and colonized by human HT-29 colon carcinoma cells (x10). VEGFR2 
immunoreactivity is present between tumor cells and it is particularly expressed in the wall of the blood vessels (boxed area, x40).
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(16,48-50), and gene therapy approaches, in which the vector 
produces an antisense molecule or a soluble receptor that acts 
in a dominant-negative manner (51).

Several studies have shown that anti-VEGF treatment, in 
association with chemotherapy (52) or radiation therapy (53,54), 
results in greater antitumor effects than either treatment alone. 
An issue that is now being debated is the mechanism of such 
potentiation, and a variety of hypotheses, which are not mutu-
ally exclusive, have been put forward. Klement et al proposed 
that chemotherapy, especially when delivered at low dose, 
preferentially damages endothelial cells and the blockade of 
VEGF blunts a key survival signal for endothelial cells, thereby 
amplifying the antitumor-cell effects of chemotherapy (52). 
Jain suggested that antiangiogenic therapy ‘normalizes’ the 
tumor vasculature, leading to pruning of excessive endothelial 
cells and perivascular cells, reduction in vessel tortuosity 
and drop in interstitial pressure and consequent improved 
oxygenation and delivery of chemotherapy to tumor cells (55). 
These effects are accompanied by a reduction in permeability 
of macromolecules (56,57). Willett et al have recently shown 
that VEGF blockade by bevacizumab decreases tumor perfu-
sion, vascular volume, microvascular density, interstitial fluid 
pressure and the number of viable circulating endothelial and 
progenitor cells in colorectal cancer patients (58). Surprisingly, 
these studies have also shown that permeability to small 
molecules actually increases following VEGF blockade (58).

Bevacizumab was initially approved for the treatment of 
metastatic colorectal cancer in combination with intravenous 
5-fluorouracil-based chemotherapy (59). Subsequently, bevaci-
zumab was approved for various indications in non squamous 
cell lung carcinoma (nSClC), metastatic renal cell carci-
noma, and glioblastoma multiforme (38,60-63). The antitumor 
activity of bevacizumab is primarily manifested in combina-
tion with chemotherapy, except for renal cell carcinoma, 
where it has shown efficacy as a single agent (64). Presently, 
bevacizumab is being used in nearly 1,000 clinical trials, and 
despite promising results, its effects in many types of cancer 
are modest or even irrelevant (65). Furthermore, recent studies 
have raised the possibility that treatment with bevacizumab 
may be associated with a more aggressive invasive tumor 
phenotype, particularly in glioblastoma (66,67), which is often 
a greatly vascularized brain tumor. Although the clinical 
impact of these results is far from clear, it is obvious that anti-
angiogenic therapy will have to be closely evaluated depending 
on disease stage and molecular profile of different patients and 
tumors. Preclinical data with anti-VEGFR2 antibodies have 
demonstrated a reduction in VEGF-induced signaling as well 
as angiogenesis and primary or metastatic growth in a variety 
of different tumor models (7,68,69); therefore, the specific 
antibody-based blockade of VEGFR2 has also received special 
attention in clinical trials.

Ramucirumab (IMC-1121B; Imclone Systems) is currently 
being tested in several clinical trials, including breast cancer, 
gastric cancer, and HCC (70). Basing on preliminary results, 
this antibody has shown activity in patients previously treated 
with other antiangiogenic agents, suggesting a more efficient 
antitumor response by direct targeting of VEGFR2.

Small molecule inhibitors of VEGFR tyrosine kinase 
activity represent another major approach to blocking VEGF-
mediated angiogenesis. Several tyrosine kinase inhibitors have 

been developed to selectively inhibit VEGFR2, but they have 
also activity on other VEGFRs and tyrosine kinase recep-
tors, including basic fibroblast growth factor (FGF) receptor, 
EGFR family members, PDGFR-a, PDGFR-b, c-kit, and Flt3. 
Sunitinib was approved in 2006 for its clinical use in imatinib-
resistant gastrointestinal stromal tumors and advanced 
metastatic renal cell carcinoma (71,72), whereas sorafenib 
received FDA approval for the treatment of metastatic renal 
cell carcinoma (73) and HCC (74). Sunitinib and sorafenib 
have shown clinical efficacy as single agents, possibly due to 
their ability to inhibit multiple RTKs and in particular those 
regulating tumor angiogenesis. Additional clinical trials aimed 
to evaluate combinations of sorafenib and sunitinib with 
different chemotherapeutic agents and other antiangiogenic 
agents are under evaluation.

There has been a worldwide research program to develop 
antiangiogenic agents for the treatment of cancer. Many 
families of antiangiogenic drugs now exist, but their clinical 
development has been hampered by scarce data concerning 
the optimal biologically active dose. In addition, although 
the classical phase I study design focuses on toxicity as an 
endpoint to establish the maximum tolerated dose, many 
humanized monoclonal antibodies have no clinically signifi-
cant toxicity, which precludes identification of the maximum 
tolerated dose. Furthermore, biologic dose-response relation-
ships may follow a bell-shaped curve (75) and therefore the 
maximum tolerated dose may not even be the best dose for 
clinical applications. To overcome these issues, biologic 
pharmacodynamic investigations (76) have entered phase I 
clinical trial design with the goal of establishing the optimum 
biologically active dose.

6. Efficacy of anti-VEGF therapy

Antiangiogenic therapies are promising approaches for cancer 
treatment. However, their systematic application remains 
problematic because of poor understanding of mechanisms of 
action and occurrence of resistance (77). Indeed, a significant 
fraction of patients do not respond to antiangiogenic drugs 
(78), whereas those who respond have relatively modest bene-
fits, mostly in progression-free survival rather than in overall 
survival. In addition, a number of significant toxicities have 
been observed in patients treated with antiangiogenic agents, 
emphasizing that a careful assessment of the risk-benefit ratio 
needs to be conducted in individual patients. Despite disease 
stabilization and increase in the proportion of patients with 
progression-free survival, tumors eventually become resistant 
to antiangiogenic agents and relapse (79-82).

Antiangiogenic therapy depends on several factors, 
including the tumor stage, the nature of the tumor vascular 
bed and the origin and genotype of the neoplastic cells. 
Tumorigenesis (17), and progression (83) are often associated 
with a modified expression of different angiogenic factors (83) 
(Figs. 3 and 4). Advanced human breast cancers may express 
different pro-angiogenic factors, including VEGF, acidic 
and basic fibroblast growth factors (aFGF and bFGF), trans-
forming growth factor β1 (TGFβ1), platelet-derived growth 
factor (PDGF), placental growth factor (PGF) and pleiotro-
phin (83). The mechanism of action of certain drugs is also 
different at various stages of tumorigenesis. For example, the 
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release of VEGF, following the remodeling of the extracellular 
matrix by matrix metalloproteinase 9 (MMP9), is reported to 
be a component of the RIP1-Tag2 angiogenic switch (84-88). 

Inhibition of VEGF is not effective against established β-cell 
islet tumors (85,89), and this finding may lead to hypothesize 
that the vasculature matures with increased pericyte coverage, 

Figure 3. Immunohistochemical staining for VEGF-A in human glioblastoma (GBM) in a 7-year old patient. numerous tumor cells show strong cytoplasmic 
staining for VEGF-A. Human GBM stem-like cells (giant multinucleated proliferating cells) form three typical rings (GBSCs) (x40).

Figure 4. Immunohistochemical staining for VEGF-A in a case of nasopharyngeal angiofibroma (age of patient, 14 years). Marked immunoreactivity is visible 
in the fibrous tissue and in pathological vessels. IHC for VEGF demonstrates expression in >50% of stromal cells (boxed area, x40).
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thereby reducing dependence on VEGF2. The success of 
targeted therapies, such as trastuzumab (Genentech), is often 
dependent on the expression of the drug target by the tumor 
(90). Given that bevacizumab is a monoclonal antibody with 
a well-defined target, VEGF2, it is logical that VEGF expres-
sion might predict benefit. However, in retrospective subset 
analyses, VEGF expression by primary tumors of metastatic, 
treatment-refractory breast cancers (91,92) or metastatic 
colorectal cancers did not predict benefit from the addition of 
bevacizumab (93). The reasons responsible for this behavior 
are not entirely clear. Perhaps VEGF expression by primary 
tumors is not representative of metastatic disease, but detailed 
research indicates that they are equivalent (44).

7. Imaging of tumor angiogenesis

CT remains still a fundamental imaging technique in the 
diagnosis of neoplastic human pathologies. Positron emis-
sion tomography (PET), very sensitive technique (down to 
10-12 molar) and quantitative with superb tissue penetration, 
has been widely used in clinical oncology for tumor staging 
and treatment monitoring, where 18F-FDG was used as the 
tracer for measuring tumor glucose metabolism (47). High-
resolution PET scanners continue to be developed and made 
available for imaging small animals, improving the capacity 
for in vivo studies in mice, primates, and humans.

As already discussed, antiangiogenic targeted therapies are 
a promising approach for the treatment of cancer. However, 
clinical trials showed variable response due to intra- and 
inter-tumor heterogeneity and non-invasive tools to monitor 
treatment response and drug efficacy are needed. Several 
methods have been developed to image tumor angiogenesis, 
but there is no general agreement as to which strategy is the 
most suitable for monitoring antiangiogenic therapy in single-
center and multicenter trials. There is also evidence that 
angiogenic imaging data may be a useful predictor of response 
to chemo-radiotherapy, the success of which depends on good 
perfusion of the tumor. Personalized medicine allows to iden-
tify the suitable patient population for the appropriate therapy 
at the right time, as well as to provide quantitative, non-inva-
sive, and accurate information on the therapeutic responses 
in real-time. In this scenario nuclear medicine offers several 
radiopharmaceuticals for ‘in vivo’ imaging of angiogenic 
markers, but to date, none emerged as a gold standard. As an 
example, radiolabeled bevacizumab is one of the most studied 
radiopharmaceuticals since it is able to bind VEGF with high 
affinity. Indeed, development of a bevacizumab-based imaging 
agent can play important roles in these aspects, as well as 
elucidating the function and modulation of VEGF/VEGFR 
signaling during cancer development/intervention.

8. Targeting vascular endothelial growth factor (VEGF)

Being the most important angiogenic effector and already 
established therapeutic target, many VEGF-targeting radio-
pharmaceuticals were developed and studied in vitro and 
in vivo. In particular, the mAb bevacizumab is one of the most 
studied radiolabelled anti-VEGF drugs and, to date, it has 
been labeled with a number of PET isotopes such 89Zr (94), 
124I (95), 86Y (96), and 64Cu (97). In addition, it has also 

been investigated with various other imaging techniques such 
as single photon emission computed tomography (SPECT) 
(98), ultrasound (99), and optical imaging (100). Studies with 
radiolabeled bevacizumab for imaging tumor angiogenesis 
were performed in preclinical models proposing that its 
accumulation in the tumor was due to interactions with 
the VEGF-A-165 and -189 isoforms, associated with the 
tumor cell surface and/or the extracellular matrix (101,102). 
However, in a clinical study with 111In-bevacizumab in 
patients affected by colorectal cancer liver metastases, there 
was a lack of correlation between radiolabeled bevacizumab 
uptake and VEGF-A expression in the lesions (103). Authors 
speculated that the accumulation of the mAb was due to 
enhanced vascular permeability leading to unspecific uptake 
in the tumor. This could limit the usefulness of radiolabeled 
bevacizumab in imaging tumor angiogenesis. However, this 
radiopharmaceutical showed promising results in many other 
cancers such as breast cancer. Various studies have reported 
overexpression of VEGF-A in the breast cancer microenvi-
ronment, compared with normal breast tissue (104-106). All 
VEGF-A splice variants are bound by the clinically used 
monoclonal antibody bevacizumab. When labeled with the 
PET isotope 89Zr, it preserves its VEGF-A-binding proper-
ties. Thus, tracer dosages of radiolabeled bevacizumab can be 
used for tumor-specific, whole-body imaging of VEGF-A. In 
preclinical studies (94,101) and in a study in renal cell cancer 
patients (107), we have already shown an excellent tumor-to-
background ratio with an optimum at 4 d after tracer injection 
when using 89Zr-bevacizumab. 89Zr-bevacizumab might be 
potentially valuable for biologic characterization of tumors 
and for prediction and evaluation of the effect of VEGF-A-
targeting therapeutics. VEGF-A is reported in several studies 
to be over-expressed in malignant breast tumors and in ductal 
carcinoma in situ (106,108), thus covering the full spectrum 
from early-stage breast cancer to more advanced stages. More 
frequent VEGF-A staining was found to be related to aggres-
siveness as assessed by VEGF-A staining in a study with 
1,788 breast tumors (106). 89Zr-bevacizumab PET proved to 
be able to detect a broad range of VEGF-A expression levels. 
Quantitative tumor analyses showed a >10-fold difference 
between individual SUVmax measurements, suggesting 
large differences in VEGF-A tumor levels between patients, 
89Zr-bevacizumab might be potentially valuable for biologic 
characterization of tumors and for prediction and evaluation 
of the effect of VEGF-A-targeting therapeutics. Because of 
better and more accurate scatter and attenuation corrections 
associated with PET, 86Y-labeled bevacizumab was developed 
for imaging VEGF-A tumor angiogenesis and as a surrogate 
marker for 90Y-based RIT. The 111In and 89zr-labeled probes 
have been proposed as surrogate imaging markers for 90Y 
therapy, however, deviations were observed due to subtle differ-
ences in the metalchelate complexes and metabolism (102,109) 
highlighting the need for the development of isotopically 
matched 86Y-labeled probes for 90Y. However, 86Y possesses 
its own set of challenges, in particular, its high positron energy 
(Emax 1⁄4 3.1 MeV) and emission of 1.08 MeV (83% abun-
dance), which can significantly affect the image quality and 
recovery coefficients due to spurious coincidences. When 
appropriate corrections are performed, the image quality is 
greatly improved and is quantifiable (110,111).
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PET imaging with 86Y-CHx-A00-DTPA-bevacizumab 
may have a useful role in patient selection for bevacizumab-
related therapy as it would indicate accessibility of the antibody 
to VEGF-A target sites. However, 86Y-CHx-A00-DTPA-
bevacizumab imaging by itself may not predict the response 
to therapy as it is only indicative of how much bevacizumab 
reaches the tumor and not the overall tumor microenviron-
ment and the biomolecular characteristics. The primary use of 
86Y-CHx-A00-DTPA-bevacizumab will be for the selection 
of patients for 90Y-CHx-A00-DTPA-bevacizumab RIT, moni-
toring of those patients during therapy as well as to provide 
information for dosimetry calculations (102,112). To achieve 
the long-term goal of clinical translation of 86Y-CHx-A00-
DTPA-bevacizumab, PET/CT and MRI studies are currently 
being performed with mice bearing orthotopic and dissemi-
nated ascites forming colorectal and ovarian tumors.

In conclusion, the utility of 86Y-CHx-A00-DTPA-
bevacizumab for noninvasive PET imaging of VEGF-A 
secreting tumors in preclinical models has been demonstrated 
(96) 86Y-CHx-A00-DTPA-bevacizumab may be useful for 
the assessment of bevacizumab uptake and localization, which 
may be important for risk stratification, patient screening and 
appropriate dosage selection. Ultimately, 86Y-CHx-A00-
DTPA-bevacizumab would serve as a surrogate PET marker for 
dosimetry and selection of subjects for 90Y-CHx-A00-DTPA-
bevacizumab RIT of VEGF-A-secreting cancers (96). The 
limiting factor for more general application of imaging with 
radionuclides is the radiation burden. In a study comparing 
the risks of radiation-induced cancer from mammography, 
molecular breast imaging, and positron emitting mammog-
raphy, the cumulative cancer incidence is 15-30 times higher 
for positron emission mammography and molecular breast 
imaging than for mammography (113). The estimated radia-
tion burden of 89Zr-bevacizumab-PET is 19 mSv per tracer 
injection, on the basis of extrapolation from 111In-bevacizumab 
data and a dosimetry study on 89Zr-U36, compared with 5.3 
mSv for 18F-FDG PET (114-117). Besides bevacizumab, other 
radiolabeled anti-VEGF antibodies such as I-labeled VG76e 
(118) and HuMV833 (119) have been reported. Phase I trials 
of the latter revealed that antibody distribution and clear-
ance was quite heterogeneous, not only between and within 
patients but also between and within individual tumors, which 
underscored the importance of patient selection to achieve 
maximum therapeutic effect.

9. Targeting vascular endothelial growth factor receptor 
(VEGFR)

In addition to VEGF, VEGFR is another important target for 
cancer diagnosis and monitoring the therapeutic efficacy of 
anti-angiogenic therapies. over the last decade, imaging of 
VEGFR expression has gained enormous interest not only in 
cancer but also in many other angiogenesis-related diseases 
(120). Examination of the tumor in the same animals or cancer 
patients with both VEGF- and VEGFR-targeted radiophar-
maceuticals or fluorescent probes may give important insight  
into the expression kinetics of VEGF and VEGFRs during 
cancer development and cancer therapy. Substantial effort has 
been devoted to non-invasive imaging of VEGFR expression 
in cancer over the last two decades and various agents have 

been developed for SPECT (120-122), PET (121,123,124), 
optical imaging, magnetic resonance imaging (MRI) and 
ultrasound (US). Because of the high affinity to VEGFRs, 
VEGF121 has emerged as a particularly desirable candidate 
for tracer development in the literature (125). To avoid signifi-
cant interference with VEGFR binding, site-specific labeling 
of VEGF-based proteins has been adopted in many literature 
reports which typically utilizes a cysteine residue for radio-
labeling (121,126). It is important to develop a PET tracer 
for the imaging of VEGFR expression using lysine tagged 
recombinant human VEGF121 (denoted as K3-VEGF121). 
The three lysine residues at the n-terminus, far from the 
VEGFR binding sites, can facilitate radiolabeling without 
affecting the biological activity and receptor binding. In the 
design of novel radiotracers, it is important to minimize the 
radiation dose to normal organs without compromising the 
imaging characteristics.
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