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Abstract. Neutrophils are predominant immune cells that 
protect the host from microbial infection. The roles of neutro-
phils in tumor have long been ignored due to their short life 
span and terminal differentiation phenotype. In recent years, 

emerging evidence indicates that neutrophils have phenotypic 
and functional plasticity. Neutrophils eliminate malignant cells 
by releasing the antimicrobial and cytotoxic contents in their 
granules or secreting immune mediators to recruit and activate 
other antitumor effector cells. On the contrary, tumor derived 
factors can convert neutrophils into a pro-tumor phenotype. 
Neutrophils have been shown to facilitate tumorigenesis, 
promote tumor growth and metastasis, stimulate tumor angio-
genesis, and mediate immunosuppression. The number of 
neutrophils in blood and tumor tissues of cancer patients is 
associated with disease progression and patient outcome. In 
this review, we summarize the recent progress of neutrophils 
in the pathogenesis of cancer with an emphasis on neutrophil 
polarization. Better understanding of the mechanisms that 
regulate the dichotomy of neutrophils will not only shed light 
on their roles in cancer but also provide new approaches for 
cancer diagnosis and treatment.
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1. Introduction

Neutrophils are innate immune cells that protect the host from 
infection by eliminating the invading pathogens. In recent 
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years, these cells have been shown to play important roles in 
other pathological conditions including cancer. Neutrophils 
make up a significant portion of the inflammatory cell infiltrate 
in cancer, whereby they show high functional plasticity and 
display both antitumor and pro-tumor activities (1). The anti-
tumor effects of neutrophils are related to their cytotoxicity and 
the regulation of antitumor immune responses, which has been 
denominated as N1 neutrophils. In addition, tumor derived 
signals can induce a pro-tumor phenotype in neutrophils, 
which supports tumor growth and metastasis (N2 neutrophils). 
N2 polarized neutrophils promote the proliferation, migration, 
and invasion of tumor cells, stimulate angiogenesis, as well 
as mediate immunosuppression (2,3). Moreover, increased 
number of neutrophils in blood and tumors has been linked 
to poor clinical outcome. Strategies designed to inhibit the 
pro-tumor activities of neutrophils have shown promising 
anticancer effects. In this review, we summarize the recent 
findings on the functional roles of neutrophils in cancer. We 
mainly focus on the molecular mechanisms that modulate the 
phenotypic and functional plasticity of neutrophils. The diag-
nostic value and therapeutic potential of neutrophils in cancer 
is also discussed.

2. The antitumor roles of neutrophils

The antitumor activities of neutrophils are supported by 
several lines of evidence. Neutrophils limit tumor growth and 
metastasis through distinct mechanisms including direct and 
antibody-dependent cytotoxic activity as well as the activation 
of other innate and adaptive immune cells such as T cells, 
B cells, natural killer (NK) cells, and dendritic cells (DCs).

3. The direct cytotoxicity of neutrophils

Neutrophils produce a number of antimicrobial mediators that 
have potential tumoricidal activity, including reactive oxygen 
species (ROS), myeloperoxidase (MPO), hydrogen peroxide 
(h2O2), and proteases. Neutrophils from healthy donors have 
potent cytotoxicity against tumor cells (4). The administration 
of neutrophils from healthy donors reduces experimental tumor 
growth and extends the survival of tumor-bearing animals (5). 
After stimulation with cytokines, neutrophils release ROS to 
trigger oxidative damage and consequent apoptotic cell death 
in melanoma cells (6). In addition, neutrophils could inhibit 
the metastatic potential of tumor cells. Granot and colleagues 
demonstrated that neutrophils generate h2O2 to suppress meta-
static seeding of breast cancer cells in the lungs of mice (7), 
suggesting that neutrophils could prevent tumor metastasis via 
the generation of cytotoxic substances (8).

4. The antibody-dependent cell cytotoxicity of neutrophils

Neutrophils are critical effector cells that mediate the antitumor 
effects of mAb-mediated immunotherapy. Antibody-targeting 
cells could be destroyed by immune cells that express Fc 
receptors (FcR). Neutrophils express the family members of 
FcγR. The interactions between neutrophils and mAb through 
FcR induce the release of tumoricidal mediators (9,10). In 
several tumor models mAb-induced tumor reduction is abol-
ished in mice with depleted neutrophils. In FcR-deficient mice, 

the transfer of normal neutrophils or transgenic expression 
of FcR restore the antitumor effects of mAb, suggesting that 
neutrophils are required for effective, mAb-induced cancer 
immunotherapy.

5. The recruitment and activation of innate and adaptive 
immune cells by neutrophils

In addition to direct and antibody-dependent cytotoxic 
effects on tumor cells, neutrophils could also recruit and 
activate immune cells to elicit antitumor immune responses 
(11-15). Neutrophils release a wide array of factors including 
cytokines, chemokines, and proteases that have promoting 
roles in the proliferation and cytokine production of T cells. 
Neutrophils isolated from the surgically resected human lung 
cancer tissues could stimulate T cell proliferation and IFN-γ 
release (16). Neutrophils could efficiently process and present 
antigens to directly stimulate immune response. Moreover, 
TLR-stimulated neutrophils induce enhanced cytotoxicity and 
cytokine production in NK cells and trigger the maturation 
of dendritic cells, promoting T cell proliferation and IFN-γ 
production (17).

6. The pro-tumor roles of neutrophils

There is mounting evidence showing that neutrophils are criti-
cally involved in the development and progression of cancer 
(18). Neutrophils play important roles in neoplastic transfor-
mation, tumor growth and metastasis, angiogenesis, and the 
modulation of immunosuppression (Fig. 1).

7. Neutrophils and tumorigenesis

The accumulation of genetic instability is associated 
with increased cancer risk. Neutrophils release genotoxic 
substances to inflict DNA damage on epithelial cells and 
initiate carcinogenic response (19-22). Exposure to activated 
neutrophils increases the number of replication errors in colon 
epithelial cells (23). In colitis-associated colon cancer (CAC) 
mouse model, depletion of neutrophils markedly reduces the 
number and size of tumors, indicating a crucial role for neutro-
phils in the initiation and progression of CAC (24-26). Lakritz 
et al demonstrate that neutrophils are critical for mammary 
tumor development because systemic depletion of neutrophils 
entirely inhibits tumorigenesis (27). Wilson and colleagues 
demonstrated that neutrophils stimulate the production of 
ROS and telomere DNA damage in hepatocytes and promote 
diethylnitrosamine (DEN)-induced hepatocellular carcinoma 
(hCC) (28). Yan et al further demonstrated the promoting role 
of neutrophils in hepatocarcinogenesis by using a zebrafish 
model (29).

8. Neutrophils and tumor growth

Neutrophils generate and release a wide spectrum of factors to 
support tumor cell growth in vitro and in vivo (30). Neutrophil 
elastase (NE) was able to enter into tumor cells to degrade 
insulin receptor substrate-1 (IRS-1), resulting in increased 
interaction between PI3K and PDGFR and accelerated tumor 
cell proliferation (31,32). Neutrophils could promote tumor 
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cell proliferation through COX-2-mediated prostaglandin E2 
(PGE2) synthesis (33,34). Antonio et al suggested that acute 
wound (such as tumor biopsy) induces rapid recruitment of 
neutrophils to interact with nearby neoplastic cells, leading to 
increased proliferation of the neoplastic cells through PGE2 
(35). Neutrophils enhanced the proliferation of glioblastoma-
initiating cells through the upregulation of S100A4 expression 
(36). Neutrophils could promote the proliferation of renal cell 
carcinoma (RCC) cells via modulating androgen receptor 
(AR)/c-Myc signals (37). Moreover, neutrophils from B-cell 
lymphoma patients induce stromal cell activation to promote 
the growth of germinal center B-cell lymphoma cells (38). 
Neutrophils were able to promote multiple myeloma (MM) 
survival from doxorubicin and melphalan by secretion of 
soluble factors (39).

9. Neutrophils and tumor metastasis

Neutrophils play a key role in cancer metastasis (40). 
Neutrophils could promote tumor metastasis by increasing 
the migratory and invasive potential of tumor cells, degrading 
extracellular matrix, and promoting the colonization of tumor 
cells (41-43).

Neutrophils recruited by LPS-induced inflammation could 
release proteinases such as catheptin G and elastase to degrade 

thrombospondin-1 (Tsp-1) and facilitate lung metastasis (44). 
When stimulated with GM-CSF from breast cancer cells, 
neutrophils release a high level of oncostatin M (OSM), 
which in turn promotes the detachment of breast cancer cells 
(45). Wu et al demonstrate that hyaluronan (hA) from tumor 
cells activates neutrophils, which in turn effectively enhances 
the motility of tumor cells via a cell contact-dependent 
mechanism (46). Macrophage migration inhibitory factor 
(MIF) from human head and neck squamous cell carcinoma 
(hNSCC) cells could activate neutrophils, which in turn 
enhances the migratory properties of hNSCC cells (47). 
Moreover, G-CSF from breast cancer cells expand and mobi-
lize neutrophils to release of Bv8, resulting in the promotion 
of metastasis (48).

Neutrophils could induce epithelial-to-mesenchymal 
transition (EMT) in tumor cells, which significantly increases 
the migratory and invasive capacity of tumor cells (49-52). 
Neutrophils increase bladder cancer cell invasion through the 
modulation of androgen receptor (AR)/MMP13 signals (53). In 
addition, neutrophils could promote renal cell carcinoma cell 
migration and invasion via the activation of VEGFa/hIF2α 
and estrogen receptor β signals (54). Moreover, neutrophils 
could also diminish immune protection to promote metastasis. 
Coffelt et al demonstrate that gamma delta (γδ) T cell-derived 
IL-17 induce G-CSF-dependent expansion and activation of 

Figure 1. The roles of neutrophils in cancer development and progression. Neutrophils are recruited, expanded, and N2 polarized by tumor derived factors. 
Neutrophils promote tumorigenesis by inducing genomic instability. Neutrophils could enhance tumor growth via the production of soluble factors and 
proteinases. Neutrophils promote tumor metastasis by acting as carriers for tumor cells, inducting EMT in tumor cells, and establishing pre-metastatic niche. 
Neutrophils produce a wide spectrum of pro-angiogenic factors to stimulate tumor angiogenesis. Neutrophils inhibit the proliferation and function of effector 
T cells and NK cells and recruit regulatory T cells and macrophages to promote tumor growth and metastasis.
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neutrophils, which inhibits cytotoxic CD8+ T lymphocytes and 
helps establish metastases (55).

Neutrophils may serve as a carrier to assist tumor cell 
extravasation. Tumor-elicited neutrophils bind to tumor cells 
and facilitate tumor cell migration, which is dependent on the 
expression of intercellular adhesion molecule-1 (ICAM-1) on 
tumor cells and CD11b on neutrophils (56,57). In vivo, neutro-
phils regulate lung metastasis through physical interaction 
and anchoring of circulating tumor cells to endothelium (58). 
Neutrophils promote cancer cell adhesion within liver sinu-
soids, however, neutrophil depletion impairs the formation of 
liver metastasis (59,60).

10. Neutrophils and tumor angiogenesis

Neutrophils synthesize and release a number of molecules 
to activate endothelial cells and induce angiogenesis (61,62). 
Shojaei et al suggest that tumor derived G-CSF upregulates 
Bv8 expression, which mobilizes neutrophils to promote 
angiogenesis (63). MMP-9 is implicated in VEGF activation 
to induce and maintain angiogenesis. Neutrophils are found 
to be the major sources of MMP-9 (64-66). human neutro-
phils uniquely release TIMP-free MMP-9 to provide a potent 
stimulator of angiogenesis (67). Tumor infiltrating neutrophil-
derived MMP-9 coordinately regulate tumor angiogenesis 
and tumor cell intravasation. Specific inhibition of neutrophil 
accumulation results in the coordinated inhibition of tumor 
angiogenesis and intravasation (68).

11. Neutrophils and tumor immunosuppression

Tumor-elicited neutrophils could inhibit the proliferation 
of T cells through the release of arginase 1 (ARG1) and the 
modulation of PD-L1/PD-1 signaling (69-72). Neutrophils 
isolated from the circulation of tumor-bearing mice contribute 
to the survival of tumor cells by suppressing peripheral leuko-
cyte activation (73). A subset of neutrophils with low density is 
enriched in the peripheral blood of cancer patients and display 
immature phenotype similar to that of MDSCs (74). Fridlender 
and colleagues have compared tumor-associated neutrophils 
(TANs) with granulocytic myeloid-derived suppressor cells 
(G-MDSCs) by using transcriptomic analysis and found that 
the two cell populations are significantly different in their 
mRNA profiles, pointing out the differences between TANs 
and MDSCs (75). hypoxia within the primary tumor sites 
induce increased infiltration of immunosuppressive neutro-
phils into the lung, where these cells compromise NK cell 
cytotoxicity, resulting in a reduced antitumor response that 
allows metastasis formation (76). Neutrophils inhibit NK cell 
function to increase the intraluminal survival of tumor cells, 
facilitating tumor cell extravasation and metastatic dissemina-
tion (77). In addition, neutrophils isolated from murine tumor 
tissues secrete significant amounts of CCL17 to progressively 
attract Tregs during tumor development (78). CCL17 secretion 
is relevant to the number of tumor infiltrating neutrophils in 
human lung cancer patients, suggesting that neutrophils may 
suppress antitumor immunity and promote tumor growth by 
regulating Tregs. Zhou et al demonstrated that TANs recruit 
macrophages and Treg cells to promote hCC growth, progres-
sion, and resistance to sorafenib (79). The expansion of myeloid 

cells contributes to tumor progression. Using a multistage 
mouse model of breast cancer, Casbon et al demonstrate that 
the invasive breast cancer reprograms early differentiation of 
myeloid cells in the bone marrow to generate immunosuppres-
sive neutrophils (80).

12. Neutrophil extracellular traps in cancer

Neutrophil extracellular traps (NETs) is a web-like structure 
to trap and kill invading microorganisms (81). The contri-
bution of NETs to tumor has recently been demonstrated 
(82-84). Cancer-associated thrombosis is linked to a poor 
prognosis and represents the second-leading cause of death 
in cancer patients. Using a murine model of chronic myelo-
genous leukemia, Demers et al demonstrated that cancers 
predispose the release of NETs to cause cancer-associated 
thrombosis (85,86). Cools-Lartigue et al have shown that 
circulating tumor cells are trapped within NETs in vitro under 
both static and dynamic conditions. In a murine model of 
lung cancer, deposition of NETs and consequent trapping of 
circulating lung carcinoma cells are associated with increased 
hepatic metastasis (87). Neutrophils isolated from mouse 
models of pancreatic ductal adenocarcinoma (PDA) have 
shown an increased ability to form NETs (88). Guglietta et al 
showed that increased circulating lipopolysaccharide induces 
upregulation of complement C3a receptor on neutrophils and 
activation of the complement cascade, which leads to NETosis 
and N2 polarization of neutrophils, inducing coagulation 
and promoting spontaneous intestinal tumorigenesis (89). 
Moreover, neutrophil extracellular traps have been shown to 
promote the development and progression of liver metastases 
after surgical stress (90).

13. The recruitment, expansion, and polarization of 
neutrophils in cancer

The origin of the infiltrating neutrophils in tumor has not been 
well characterized. Cortez-Retamozo et al demonstrated that 
the spleen is an important origin of tumor associated neutro-
phils. The precursors of neutrophils relocate from the spleen 
to the tumor stroma during tumor progression. Removal of 
the spleen reduces the number of the infiltrating neutrophils 
and delays tumor growth (91). A large number of molecules 
from tumor cells have been shown to recruit neutrophils. IL-8 
is one of the potent neutrophil chemoattractants. Tumor cells 
with IL-8 overexpression recruit more neutrophils and display 
increased metastatic potential (92). IL-17 recruits blood neutro-
phils into the peritumoral stroma of hepatocellular carcinoma 
by inducing expression of chemokines in epithelial cells (66). 
Wu et al also suggest that tumor-infiltrating DCs induce the 
activation of IL-17 producing γδT cells to promote the accu-
mulation and expansion of immunosuppressive neutrophils in 
colon cancer (93).

Tumor-derived oxysterols could recruit neutrophils to favor 
tumor growth by promoting angiogenesis and immunosup-
pression (94,95). CXCL5 has a direct chemoattractant effect 
on neutrophils. CXCL5 overexpression is positively correlated 
with neutrophil infiltration in hepatocellular carcinoma and 
intrahepatic cholangiocarcinoma patients (96,97). UV irradi-
ation-damaged epidermal keratinocytes release high mobility 
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group box 1 (hMGB1) to recruit and activate neutrophils by 
interacting with toll-like receptor 4 (TLR4), which stimulates 
angiogenesis and promotes the ability of melanoma cells to 
metastasize (98). Leukotriene B4 (LTB4), an inflammation 
mediator, induces the recruitment of neutrophils via interac-
tion with BLT1 on neutrophils (30). Neutrophils from hNSCC 
patients display a significantly reduced apoptosis compared to 
those from healthy donors, which may be associated with the 
secretion of MIF by hNSCC cells (99). hypoxia induces an 
hIF-1α-dependent activation of NF-κB to inhibit neutrophil 
apoptosis (100). Li et al demonstrated that the prolonged 
survival of neutrophils in tumor is associated with increased 
autophagy. Neutrophils in hCC intratumoral regions undergo 
increased autophagy and display long-lived phenotypes and 
sustained production of pro-metastatic factors (101). IFN-β 
negatively regulates the survival and recruitment of neutro-
phils. In the absence of endogenous IFN-β the life span of 
neutrophils from blood and tumors of IFN-β deficient mice 
is remarkably prolonged (102,103). On the contrary, MET is 
required for the recruitment of antitumor neutrophils (104). 
Met deletion in mouse neutrophils enhances tumor growth and 
metastasis.

Tumor-derived factors could modify the phenotype and 
function of myeloid cells (105,106). Neutrophils are polarized 
to N1 and N2 phenotypes in cancer. In general, the N1 and N2 
polarized neutrophils could be distinguished based on their 
phenotype and function. The N1 polarized neutrophils are 
short-lived cells with mature phenotype and display high cyto-
toxicity and immunostimulating activity. The N2 polarized 
neutrophils are long-lived cells with immature phenotype and 
show low cytotoxicity but high pro-angiogenic, pro-metastatic, 
and immunosuppressive activities.

The potent drivers of neutrophil polarization have recently 
been demonstrated. Inhibition of TGF-β increases the expres-
sion of chemokines that recruit neutrophils, resulting in an 
influx of neutrophils that has strong cytotoxic activity to tumor 
cells. Following TGF-β blockade, depletion of these neutro-
phils significantly attenuates antitumor effects of treatment 
and reduces CD8+ T cell activation. In contrast, in control 
tumors, neutrophil depletion decreases tumor growth and 
results in more activated CD8+ T cells within tumor, suggesting 
that tumor associated neutrophils are driven by TGF-β to 
acquire N2 protumoral phenotype. In contrast, TGF-β inhibi-
tion induces an antitumor N1 phenotype (107). The anti- and 
pro-tumor functions of neutrophils imply its diversity and 
plasticity. Sagiv et al have identified a heterogeneous subset of 
low density neutrophils (LDNs) that progressively accumulate 
in tumors. LDNs consist of both immature MDSCs and mature 
cells that are derived from hDNs in a TGF-β-dependent mech-
anism (108). The plasticity of neutrophils has been determined 
in mouse tumor models at different time points during tumor 
progression. Neutrophils are mainly located at the peritumoral 
tissues at early stage of tumor development while these cells 
are found scattered in tumor cells at later stage. Neutrophils 
isolated from tumors at early stage are more cytotoxic toward 
tumor cells and produce higher levels of NO and h2O2. In 
established tumors, these functions are decreased and these 
cells acquire a more protumorigenic phenotype, suggesting the 
critical role of tumor niche in modulating neutrophil pheno-
type and function. In line with this phenotype, only depletion 

of neutrophils at later stage of tumor development inhibits 
tumor growth, indicating the functional changes in neutrophils 
with tumor progression (109).

In the absence of endogenous IFN-β, mice develop a fast-
growing tumor accompanied with increased infiltration of 
neutrophils which produce a large amount of VEGF and MMP-9 
to promote tumor angiogenesis and metastasis. In vitro treat-
ment with recombinant IFN-β inhibit the activation of STAT3 
pathway and the upregulation of VEGF and MMP-9 genes in 
tumor infiltrating neutrophils. In addition, the transplantation 
of neutrophils from control mice into IFN-β-deficient mice 
retards tumor growth, suggesting that IFN-β may be a factor 
that maintain the N1 polarization of neutrophils. The conver-
sion of neutrophil phenotype and function may occur in the 
bone marrow of tumor-bearing mice (110).

In addition to tumor cells, the microenvironmental cells 
also participate in the regulation of neutrophil biology in 
cancer. Tumor-resident mesenchymal stem cell (MSC)-derived 
IL-6 induced N2 polarized activation of neutrophils (111). 
Intriguingly, hu et al demonstrated that TNFα-primed mouse 
MSCs could program neutrophils into an immunosuppressive 
and tumor-promoting phenotype (112). Moreover, in response 
to tumor derived IL-1β signal, tumor infiltrating γδ T cells 
release IL-17 to recruit, expand, and activate neutrophils to 
promote cancer metastasis. Taken together, these findings 
indicate that neutrophils are polarized during tumor progres-
sion by the signals from tumor milieu (Table I).

14. Targeting neutrophils for cancer diagnosis and therapy

Cancer-related inflammation plays a key role in tumor 
progression. The increased neutrophil infiltration in tumor is 
associated with poor outcome in renal cell carcinoma (113), 
head and neck squamous cell carcinoma (114), melanoma 
(115), lung carcinoma (116,117), colorectal carcinoma (118), 
gastric carcinoma (119), cholangiocarcinoma (97), hepatocel-
lular carcinoma (120), tongue squamous cell carcinoma (121), 
and esophageal squamous cell carcinoma (122,123). high 
intratumoral neutrophil is positively correlated with lymph 
node metastasis, tumor grade, and tumor stage. high densities 
of neutrophils in tumor are identified as an independent risk 
factor for poor prognosis (124). In addition, a high neutrophil-
to-lymphocyte ratio (NLR) has also been suggested as a 
poor prognostic indicator in cancer (125). Moreover, the high 
numbers of neutrophils and NLR in cancer patients are associ-
ated with poor response to chemotherapy and immunotherapy 
(126).

The idea of targeting neutrophils represents a new 
approach for cancer therapy (127). Several strategies have 
been proposed to inhibit their recruitment, interfere with their 
survival, or reprogram them into N1 antitumor phenotype 
(Fig. 2). ‘Reeducation’ to activate the antitumor potential of 
cells or elimination of tumor promoting cells is a new strategy 
undergoing preclinical and clinical evaluation. Since tumor 
derived factors contribute to phenotypic and functional plas-
ticity of neutrophils in cancer, modulation of tumor milieu 
can lead to reeducation of neutrophils. The conversion of 
pro-tumor activity of neutrophils into antitumor potential with 
appropriate stimulation and modulation provides new oppor-
tunities for cancer therapy. Sun et al have recently shown that 



ZhANG et al:  NEUTROPhILS IN CANCER DEVELOPMENT AND PROGRESSION862

priming with TNF-α and IFN-γ could convert the potential 
of neutrophils from tumor-promoting to tumor-suppressing 
through the activation of NK cells (128). TGF-β signaling 
regulates neutrophil N2 polarization. Depletion of the receptor 
for TGF-β decreases the production of arginase 1 and iNOS in 
neutrophils, which in turn increases IFN-γ expression in CD8+ 
T cells and inhibits tumor metastasis (129). IFN-β regulates 
the N1 polarization of neutrophils. In mice, the treatment with 
low dose of IFN-β induces antitumor activation of neutrophils 

(130). The chemokine receptor CXCR2 is a key mediator of 
neutrophil recruitment. CXCR2 inhibitor attenuates neutro-
phil recruitment and profoundly suppresses tumor growth 
(131,132). Moreover, pharmacological inhibition of ALOX5, 
a leukotriene-generating enzyme, inhibits the recruitment of 
pro-metastatic neutrophils and reduces lung metastasis (133). 
A recent study from Shrestha et al indicates that the inhibitors 
for angiotensin converting enzyme (ACEis) and the antagonists 
for angiotensin II type 1 receptor (AGTR1) could attenuate 

Table I. Factors that mediate neutrophil recruitment, expansion, polarization, and pro-tumoral function.

Factors Cancer type Function Species Refs.

CXCL5 hCC Recruit neutrophils to promote cancer growth and metastasis human,  (96,136)
   mouse
IL-17 Breast cancer, Recruit neutrophils to promote tumor growth and metastasis Mouse (55,66,137)
 hCC  
hMGB1 Melanoma  Recruit neutrophils to promote tumor angiogenesis and metastasis Mouse (98)
Oxysterol Lung cancer Recruit neutrophils to favor tumor growth  Mouse (94)
GM-CSF Breast cancer Recruit neutrophils to promote tumor angiogenesis and metastasis human (45)
hGF Lung cancer Recruit neutrophils to promote tumor metastasis human,  (138)
   mouse
IL-8 Lung cancer, Recruit neutrophils to promote tumor initiation and progression  human,  (51,92
 skin cancer  zebrafish
G-CSF Breast cancer Recruit and expand neutrophils to promote tumor growth and Mouse (48,80)
  metastasis
hA hCC Recruit neutrophils to promote tumor angiogenesis and metastasis  human (46)
IL-6 hCC, Recruit neutrophils to promote tumor growth and metastasis human,  (110,111)
 gastric cancer  mouse
CXCL2 Colon cancer Recruit neutrophils to promote tumor growth and metastasis Mouse (24)
TGF-β Lung cancer Polarize neutrophils to an N2 phenotype to promote tumor growth Mouse (107)
MIF head and neck Recruit neutrophils to promote tumor cell migration  human (47)
 cancer
LTB4 Lung cancer Recruit neutrophils to promote tumor growth Mouse (30)
a2NTD Breast cancer Recruit neutrophils to promote tumor cell invasion human (139)
PGE2 Lung cancer, Promote tumor cell proliferation human,  (33,35)
 skin cancer  zebrafish
NE Lung cancer, Promote tumor cell proliferation and tumor cell dyshesion Mouse (31,49)
 pancreatic cancer
OSM Breast cancer Promote tumor angiogenesis and metastasis human (45)
Arg-1 Lung cancer Promote tumor immunosuppression human (70)
CCL17 Lung cancer, hCC Promote tumor immunosuppression Mouse (78,79)
PD-L1 hCC Promote tumor immunosuppression human (71)
NET CML, lung cancer Promote tumor-associated thrombosis and tumor metastasis human (85,87)
MMP-9 hCC, lung cancer, Promotes tumor angiogenesis human,  (64,65)
 pancreatic cancer  mouse
IL-1β Colon cancer Promote tumor initiation and progression Mouse (25)
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Figure 2. Targeting tumor-associated neutrophils for cancer therapy. Several neutrophil-targeting approaches have been developed and shown antitumor 
effects in experimental and clinical settings. Pharmacological blockade of tumor derived factors and downstream signaling pathways abrogate the recruitment, 
expansion, and polarization of neutrophils. Selective interference with the pro-tumoral functions of neutrophils represents an alternative cancer treatment 
approach. Reeducation of neutrophils from a tumor-supporting phenotype to a tumor-suppressive phenotype also have therapeutic potential. These strategies, 
when combined with conventional anticancer strategy such as chemotherapy or new anticancer strategy such as immunotherapy would probably show more 
effective therapeutic effects.

Table II. The clinical value of tumor-associated neutrophils in cancer.

Cancer type Clinical significance Refs.

hepatocellular carcinoma (hCC) The presence of intratumoral neutrophils is an independent prognostic (96,120)
 indicator for overall survival and cumulative recurrence
Cholangiocarcinoma Increased number of intratumoral CD66b+ neutrophils predicts poor survival (97)
 and high risk of recurrence 
Colorectal carcinoma (CRC) high intratumoral neutrophil is associated with shorter survival (118)
Esophageal squamous cell Increased intratumoral neutrophils is associated with decreased disease-free (122,123)
carcinoma (ESCC) survival and overall survival
Gastric carcinoma (GC) Lower density of intratumoral neutrophils suggests a better prognosis (119)
head and neck squamous cell Strong presence of intratumoral neutrophils represent a negative prognostic (114)
carcinoma (hNSCC) factor for hNSCC patients with advanced disease
Lung cancer Elevated levels of neutrophils correlates with poor prognosis in lung cancer (116,117)
 patients
Melanoma Neutrophil infiltration is independently associated with poor prognosis (115)
Renal cell carcinoma (RCC) The presence of intratumoral neutrophils is an independent prognostic factor (113)
 for cancer specific survival and overall survival
Tongue squamous cell carcinoma high neutrophil density is associated with lymph node metastasis, higher (121)
(TSCC) clinical stage and tumor recurrence
Glioma Neutrophil infiltration is correlated with glioma grade and tumor progression (36)
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tumor growth via the polarization of neutrophils toward an 
antitumoral phenotype (134).

15. Concluding remarks

The roles of neutrophils in the pathogenesis of cancer have 
recently become an intense research area. Neutrophils have both 
pro-tumor and antitumor activities. Neutrophils are frequently 
recruited to local tumor sites, whereby neutrophils can be polar-
ized towards distinct phenotypes by tumor derived signals. In 
turn, neutrophils suppress or promote tumor development and 
progression by cell contact-dependent mechanism or secretion 
of soluble factors. herein, we summarize the roles of neutrophils 
in cancer and their potential as cancer diagnosis biomarker and 
therapy target. Although early studies indicate that neutrophils 
have direct cytotoxicity against tumor cells and regulate the 
functions of innate and adaptive immune cells, more recent 
reports have shown that neutrophils promote tumor development 
and progression by enhancing tumor cell growth and metastasis, 
stimulating tumor angiogenesis, and mediating immunosup-
pression. Previous studies have mainly focused on experimental 
animal models of cancer (135), however, more studies are 
needed to elucidate the cellular and molecular mechanisms that 
modulate the phenotype and function of neutrophils in human 
tumor, such as recruitment to the tumor site, prolonged survival 
and enhanced release of tumor-promoting factors. In addition, 
further studies are needed to elucidate the relationship between 
heterogeneous neutrophil subsets. Moreover, novel strategies 
to reeducate the tumor-promoting neutrophils to activate the 
host's innate and adaptive immune responses will provide new 
approaches for tumor therapy.
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