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Abstract. Lung cancer remains a major health problem 
with a low 5-year survival rate of patients. Recent studies 
have shown that dysregulation of microRNAs (miRNAs) 
are prevalent in lung cancer and these aberrations play a 
significant role in the progression of tumour progression. 
In the present study, bioinformatics analyses was employed 
to predict potential miR-608 targets, which are associated 
with signaling pathways involved in cancer. Luciferase 
reporter assay identified AKT2 as a novel target of miR-608, 
and suppression of its protein levels was validated through 
western blot analysis. Zebrafish embryos were microinjected 
with cells transfected with miR-608 to elucidate the role 
of miR-608 in  vivo, and immunostained with antibodies 
to detect activated caspase-3. We present the first evidence 
that miR-608 behaves as a tumour suppressor in A549 and 
SK-LU-1 cells through the regulation of AKT2, suggesting 
that selective targeting of AKT2 via miR-608 may be devel-
oped as a potential therapeutic strategy for miRNA-based 
non-small cell lung cancer (NSCLC) therapy.

Introduction

Cancer is the leading cause of death worldwide, with lung 
cancer being the most common type of cancer, with an 
estimated 1.8 million new cases in 2012 (1). Even with admin-
istration of treatment, the 5-year survival rate for lung cancer 
is very low (17.7%) in comparison to other leading cancer sites 
such as colon (64.4%), breast (89.7%) and prostate (98.9%) (2). 
While control for early stage localized lung cancer has 
improved (3,4), early stage diagnosis only accounts for ~16% 
of lung cancer (2), with majority of patients being diagnosed at 
an advanced or metastatic stage of disease. Thus, it is of grave 

importance to further understand the molecular mechanisms 
regulating lung carcinogenesis and to explore and identify 
novel diagnostic biomarkers for treatment strategies.

MicroRNAs (miRNAs) are a subset of non-coding RNAs 
of ~19-23 nucleotides in length, which post-transcriptionally 
regulate gene expression (5). miRNAs play a role in crucial 
biological processes including proliferation (6,7), differentia-
tion (8), chemosensitivity (9,10) and apoptosis (11,12). Studies 
have shown that aberrations in the expression of certain 
miRNAs may cause or contribute to human diseases, including 
cancer (13). Evasion of apoptosis is a major contributor to 
tumour progression, and past studies have elucidated that 
manipulation of the apoptotic process is one way by which 
miRNAs influence the development of lung cancer (11,14-17).

miR-608 is a novel prognostic marker in carcinogenesis, 
its expression is dysregulated in various cancers (18-21). A 
previous study by our group demonstrated that downregulation 
of B-cell lymphocyte xL (BCL-XL), the other major prototype 
of the anti-apoptotic bcl-2 gene, dysregulates various miRNAs 
in lung adenocarcinoma cell line A549, including miR-608. 
The study further shows that ectopic expression of miR-608 
was able to increase cell death in non-small cell lung cancer 
(NSCLC) cells, and co-transfection of siRNA targeting 
BCL-XL (siBCL-XL) followed by miR-608 inhibitors was 
able to block siBCL-XL induced cell death, suggesting that 
miR-608 plays an important role in cell death processes (22).

In the present study, we evaluated the role of miR-608 
NSCLC and the molecular mechanisms by which it regulates 
apoptosis. Our data identified miR-608 as a tumour suppressor 
in NSCLC, through identification of a novel direct target 
responsible for mediating the activity of miR-608 in NSCLC.

Materials and methods

Bioinformatics analyses of miRNA gene targets. In silico anal-
yses was performed to identify the putative miRNA targets 
using TargetScan Human V5.2 (http://www.targetscan.org/) 
(Whitehead Institute for Biomedical Research, Cambridge, 
MA, USA), a database of conserved 3'UTR targets. TargetScan 
provides accurate ranking of the predicted targets of miRNA 
based on total context+ score, which is the sum of the contribu-
tion of six targeting factors including site type, site number, site 
location, local AU content, 3'-supplementary pairing, target 
site abundance and seed-pairing stability. The total context+ 
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score predicts the relative repression of mRNA with 3'UTR, 
with low context scores being more favorable (23). The web 
tool Database for Annotation, Visualization and Integrated 
Discovery (DAVID) v6.7 (http://david.abcc.ncifcrf.gov/
summary.jsp) (SAIC-Frederick, Inc., Frederick, MD, USA), 
which is made up of an integrated biological knowledgebase 
and analytic tools  (24), was then employed, using default 
parameters, to perform gene-annotation enrichment analyses 
on TargetScan's predicted miRNA targets that has a total 
context+ score of <0. Data from TargetScan and DAVID were 
combined to generate a hypothetical pathway of the relation-
ship between the miRNAs and their gene targets.

Cell lines and culture conditions. Human lung adenocarci-
noma cell line A549 [Cancer Research Initiative Foundation 
(CARIF), Subang Jaya Medical Centre, Subang Jaya, 
Malaysia] was cultured in RPMI-1640 (SH30027.01; Hyclone 
Laboratories-GE Healthcare Life Sciences, Pittsburgh, PA, 
USA) whereas SK-LU-1 cells (LA-HL-045; AseaCyte, Pvt. Ltd., 
Kuala Lumpur, Malaysia) were cultured in MEM-α (32561-
037; Gibco, Waltham, MA, USA). All cells were supplemented 
with 10% fetal bovine serum (FBS) (SV30160.03; Hyclone 
Laboratories-GE Healthcare Life Sciences) and maintained at 
37˚C in a humidified incubator containing 5% CO2.

miRNA transfection. Cells were seeded 24 h prior to transfec-
tion with miR-608 mimics (C-300933-01-0010; GE Healthcare 
Dharmacon, Lafayette, CO, USA), non-specific mimic controls 
(mimic NC) (CN-001000-01-20; GE Healthcare Dharmacon), 
miR-608 inhibitors (IH-300933-03-0010; GE Healthcare 
Dharmacon) or non-specific antimiR controls (inhibitor 
NC) (IN-001005-01-20; GE Healthcare Dharmacon) at a 
final concentration of 80.0 nM using DharmaFECT reagent 
(T-2001-03; GE Healthcare Dharmacon), as per the manufac-
turer's protocol.

Dual-luciferase reporter assay system. Wild-type 3'UTR 
of AKT2 containing predicted miR-608 binding sites 
and/or its corresponding mutant sequences were cloned into 
the pmirGLO Dual-Luciferase miRNA expression vector 
(E1330; Promega, Madison, WI, USA). A549 cells were 
plated 24 h prior to co-transfection with 40.0 ng of pmirGLO 
constructs and 80.0 nM of miR-608 mimic/inhibitor or mimic 
NC/inhibitor NC using DharmaFECT reagent. Luciferase 
activity was analyzed 48 h post-transfection using the Dual-
luciferase reporter assay system (E2920; Promega), as per 
the manufacturer's protocol and detected on the GloMax 
Multi Luminescence Multimode Reader (Promega). Relative 
luciferase activity was normalized against Renilla luciferase 
activity.

Protein extraction and western blotting. Protein was 
extracted using the NE-PER® Nuclear and Cytoplasmic 
Extraction kit (78833; Thermo Fisher Scientific, Waltham, 
MA, USA) 48 h post-transfection, as per the manufacturer's 
protocol. Protein lysates were separated by electrophoresis 
in 12% SDS-PAGE and then electrophoretically transferred 
to nitrocellulose membranes. Membranes were blocked in 
1X Tris-buffered saline (TBS) with 0.05% Tween-20 and 5% 
non-fat skim milk powder (115363; Merck, Kenilworth, NJ, 

USA) for 1 h at room temperature and then immunostained 
overnight at 4˚C with primary monoclonal rabbit antibodies: 
AKT (4691, 1:1,000 dilution; Cell Signaling Technology, 
Danvers, MA, USA) or GAPDH (2118, 1:10,000 dilution; Cell 
Signaling Technology). The following day membranes were 
washed and incubated with secondary goat anti-rabbit IgG 
HRP-linked antibody (7074, 1:1,000 dilution; Cell Signaling 
Technology) and anti-biotin HRP-linked antibody (7075, 
1:1,000 dilution; Cell Signaling Technology). Bands were 
visualized using WesternBright Quantum (K-12042-D10; 
Advansta, Inc., Menlo Park, CA, USA) on the Fusion FX7 
system (Vilber Lourmat GmbH, Eberhardzell, Germany) 
and quantified using the ImageJ Analyst software (National 
Institutes of Health, Bethesda, MD, USA), with band intensi-
ties normalized to GAPDH.

Annexin V-FITC apoptosis assay. FITC annexin V apoptosis 
detection kit (556547; BD Biosciences, San Jose, CA, USA) 
was used to detect cell death 72 h post-transfection, as per the 
manufacturer's protocol. Signals were detected from 1.0x104 
cell population using the BD FACSCanto™ II flow cytometer 
(BD Biosciences) and examined on the BD FACSDiva™ soft-
ware (BD Biosciences).

Caspase-3/7 activity assay. Caspase-Glo 3/7 assay kit (G8090; 
Promega) was utilized to analyze caspase-3 and -7 activity, 48 h 
post-transfection as per the manufacturer's protocol. Samples 
were incubated at 25˚C for 1 h in the dark and luminescence 
was then detected using the GloMax Multi Luminescence 
Multimode Reader.

Cell cycle analysis. Flow cytometry was used to analyze cell 
cycle using the BD Cycletest™ Plus DNA kit assay (340242; 
BD Biosciences) 48 h post-transfection, as per the manu-
facturer's protocol. Signals were detected from 1.0x104 cell 
population using the BD FACSCanto™ II flow cytometer and 
examined on the BD FACSDiva™ software. Results were then 
analyzed using the ModFit LT v3.2.1 (Verity Software House, 
Inc., Topsham, ME, USA) and the percentage of the cells in 
G0/G1, S and G2/M phase were counted and compared.

Zebrafish care and use. Experiments involving zebrafish were 
approved by the University of Malaya, Faculty of Medicine, 
Institutional Care of Use Committee (FOM IACUC) (Ethics 
reference number: 2015-181006/IBS/R/NO) and complied 
with all relevant animal welfare laws, guidelines and policies. 
Wild-type Danio rerio zebrafish embryos were cared for and 
maintained using standard husbandry practices.

Zebrafish microinjection. Zebrafish embryos were injected 
with A549 cells transfected with 80.0 nm miR-608 mimics, 
inhibitors, or their corresponding negative controls at the 
superficial location of the yolk near to the perivitelline space 
of the embryos using a FemtoJet Microinjector (Eppendorf, 
Hamburg, Germany) and InjectMan NI 2 Micromanipulator 
(Eppendorf) with constant injection pressure and injection 
time. The injection volume and cell suspension was cali-
brated to be ~100-200 cells/injection in each embryo. After 
transplantation, embryos were immediately placed at 37˚C 
overnight.
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Whole mount caspase-3 immunofluorescence. Embryos were 
fixed in 4% paraformaldehyde at 4˚C overnight followed by 
2-h dehydration in methanol at -20˚C. Following rehydration, 
embryos were washed with 1% dimethyl sulfoxide (DMSO), 
0.1% Triton in PBS (1X PDT) and blocked with 10% FBS, 2% 
BSA in PBST (blocking buffer) for 1 h at room temperature. 
Embryos were then stained with purified rabbit anti-active 
caspase-3 antibody (559565, 1:500 dilution; BD Biosciences)  
for 2  h at room temperature followed by washes in PDT. 
Again embryos were incubated with blocking buffer, and then 
stained with anti-rabbit IgG Fab2 Alexa Fluor 647 Conjugate 
(4414, 1:500 dilution; Cell Signaling Technology) overnight 
at 4˚C. The following day, embryos were washed with PDT 
before visualization and imaging using the Leica confocal 
laser-scanning microscope SPII and Leica Application Suite 
(LAS) software v5.0 (Leica Microsystems, Wetzlar, Germany). 
Fluorescence was quantified using ImageJ Analyst software. 
Threshold was set to eliminate background fluorescence and 
embryos were analyzed to generate arbitrary fluorescence 
units.

siRNA silencing of AKT2. Silencing of the AKT2 gene was 
performed using a set of three unique 27 mer siRNA duplexes 
at a final concentration of 10.0 nM (siRNA A: GCAUCAUA 
AAUUGGUAGUUUCCUGC, siRNA B: AGCGUGUGAAUA 
CAUCAAGACCTG, siRNA C: ACAGCAAAGCAGGAG 
UAUAAGAAAG) (SR300144; Origene Technologies, Inc., 
Rockville, MD, USA). A universal scrambled negative control 
siRNA (siRNA NC) was used as a control. At 48 h post-
transfection, silencing efficiency was assessed by western blot 

analysis. Amongst the three siRNAs utilized, the siRNA with 
the greatest silencing efficiency was selected for further down-
stream work and referred to as siAKT2. The effects of miR-608 
mediated apoptosis via AKT2 was validated through transfec-
tion of 80.0 nM miR-608 inhibitors, followed by transfection 
with 10.0 nM siAKT2 directed against the human AKT2 gene 
(siAKT2) 6 h later. AKT2 protein levels were determined via 
western blot analysis 48 h post-transfection while apoptosis 
was detected using the FITC Annexin V apoptosis detection 
kit and caspase-Glo 3/7 assay kit.

Statistical analysis. All in vitro experiments were performed 
in triplicate independent experiments. In vivo experiments 
were performed with sample size of 15 zebrafish embryos per 
treatment group. All data were presented as mean ± standard 
deviation (25). Paired Student's t-test was used to determine 
the statistical significance of results, whereby a p-value of 
≤0.05 was considered significant.

Results

miR-608 is predicted to bind to AKT2 3'UTR. A previous 
study conducted by our laboratory determined that the expres-
sion of miR-608 was significantly downregulated following 
the silencing of BCL-XL in lung adenocarcinoma cell line 
A549. Results also indicated that miR-608 played a tumour 
suppressor role in regulating the apoptotic properties of A549 
and a secondary lung adenocarcinoma cell line SK-LU-1 (22). 
To determine the molecular mechanism by which miR-608 
regulates the apoptotic properties in NSCLC cell lines, we 

Figure 1. A hypothetical signaling network depicting the interactions of miR‑608 and its putative targets. miR-608 is predicted to play a role in various 
biological processes including apoptosis, proliferation and angiogenesis. Numbers in red indicate total context score for that specific target with miR-608.
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performed an in  silico bioinformatics analysis to identify 
the putative miR-608 gene targets through the use of the 
TargetScan Human v5.2 algorithm, followed by functional 
annotation using the web tool DAVID v6.7, which lists the 
predicted targets of miR-608 according to their apoptosis-
related pathways. miR-608 was found to be associated with 
various signaling pathways involved in cancer, including the 
phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT), 
wingless-type MMTV integration site family (WNT), trans-
forming growth factor (TGF-β), mitogen activated protein 
kinase (MAPK) and the intrinsic and extrinsic pathway (Fig. 1).

Identification of AKT2 as a direct target of miR-608 in 
NSCLC cells. The 3'UTR of V-Akt Murine Thymoma Viral 
Oncogene Homolog 2 (AKT2) contains two miR-608 binding 
sites, and is involved with apoptosis and proliferation and 
was thus chosen for further validation. To verify whether 
AKT2 3'UTR was a direct target of miR-608, the wild-type 
and mutated AKT2 3'UTR were cloned into the pmirGLO 
Dual-luciferase miRNA target expression vector (Fig. 2A). 
Luciferase reporter assay confirmed that miR-608 mimics 

had a significant inhibitory effect on wild-type 3'UTR but 
not on the mutant 3'UTR of AKT2 luciferase activity, while 
mimic NC had no effect on either the wild-type or mutant 
luciferase activity (Fig. 2B). This result suggests that miR-608 
directly binds to the binding sequence of AKT2 3'UTR, and 
this was further verified by a decrease in AKT2 protein levels 
in response to miR-608 mimic transfection, as analyzed by 
western blot analysis. Conversely, the expression of AKT2 was 
significantly increased when miR-608 was inhibited (Fig. 2C).

siRNA-mediated silencing of AKT2 restores miR-608 induced 
effects in NSCLC cells. We have previously demonstrated that 
miR-608 plays an important role in the regulation of apop-
tosis, and presently identified miR-608 as a direct regulator 
of AKT2. It was thus hypothesized that low expression of 
miR-608 in NSCLC may result in suppression of its inhibi-
tory effects towards AKT2 causing AKT2 expression to be 
upregulated, which in turn blocks apoptosis. To investigate 
this hypothesis, co-transfection of miR-608 inhibitors and 
siRNA inhibiting AKT2 was performed in A549 and SK-LU-1 
cells. siRNAs were provided as a set of three siRNA duplexes; 

Figure 2. miR-608 directly targets AKT2. (A) Sequence alignment of miR-608 and AKT2 3'UTR. AKT2 3'UTR contains two predicted miR-608 binding sites 
at nucleotide 96-102 and 150-158. (B) Normalized relative luciferase activity in wild-type and mutant pmirGLO constructs in response to transfection with 
miR-608 mimic or mimic negative control in A549 cells. Samples were normalized to Renilla luciferase activity. (C) Relative AKT2 protein level following 
miR-608 mimic, mimic NC, miR-608 inhibitor and inhibitor NC transfection in A549 cells and SK-LU-1 cells. Statistically significant differences between 
mimic transfected groups and mimic NC groups are denoted with *p≤0.05, while statistically significant differences between inhibitor transfected groups and 
inhibitor NC groups are denoted with #p≤0.05.
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therefore to evaluate the silencing efficiency of the siRNAs, 
densitometry analysis of western blot bands was performed to 
evaluate the AKT2 protein expression in siRNA-transfected in 
comparison to siRNA NC transfected cells. Amongst the three 
siRNAs utilized, siRNA C was able to significantly decrease 
AKT2 protein levels in A549 and SK-LU-1 cells (Fig. 3A). As 
siRNA C (referred to as siAKT2 henceforth) had the greatest 
silencing efficiency amongst the three siRNAs, it was selected 
for further downstream work. Results indicated that silencing 
of AKT2 was able to partially rescue the inhibition of apop-
tosis and caspase-3/7 activation that was induced by miR-608 
inhibitors (Fig. 3B and C). Collectively, these results demon-
strate the tumour suppressor role of miR-608 in NSCLC is at 
least partially through its inhibition of AKT2.

Transfection of miR-608 increases caspase-3 detection in 
zebrafish embryo animal model. The in vivo effect of miR-608 
on apoptosis was determined through utilization of zebrafish 
embryos as an animal model. miR-608 mimic, inhibitor or 
negative control transfected A549 cells were microinjected 
into zebrafish. Embryos were then visualized using a Leica 
confocal microscope following immunostaining with anti-
active caspase-3 monoclonal antibodies (Fig. 4A). Results of 
fluorescent image analysis using the ImageJ software indicated 

that detection of caspase-3 was significantly increased in 
zebrafish injected with miR-608 in comparison to negative 
control injected zebrafish (Fig. 4B). This suggests that miR-608 
is able to induce apoptosis in vivo through caspase activation.

Discussion

While progress has been made in molecular targeted therapies 
and early diagnosis of lung cancer, the 5-year survival rate of 
patients is still very low due to most patients being diagnosed at 
an advanced stage (2). It is therefore essential for identification 
of novel diagnostic biomarkers and to explore more effec-
tive and safe treatment tools. Recent studies have shown that 
dysregulation of miRNA expression contributes to the devel-
opment and progression of cancer (26-28). miRNA profiles can 
also be used as biomarkers for detection of cancer (29-34) and 
to predict chemotherapeutic response (35-38). It is therefore of 
particular interest to investigate the therapeutic application of 
miRNAs in lung cancer.

miR-608 is a novel prognostic marker in carcinogen-
esis with its expression downregulated in various cancers 
including chordoma (18), colon cancer (19), glioblastoma (20) 
and osteosarcoma  (21). Single-nucleotide polymorphisms 
in miR-608 have also been associated with several cancers 

Figure 3. Silencing of AKT2 revives apoptosis inhibited by miR-608 inhibition. (A) Relative AKT2 protein expression following transfection with siRNA 
duplexes in A549 and SK-LU-1 cells. (B) Detection of apoptosis and (C) caspase-3/7 activity in A549 and SK-LU-1 cells co-transfected with miR-608 inhibi-
tors and siAKT2. Statistically significant differences between inhibitor transfected groups and inhibitor NC groups denoted with #p≤0.05, while statistically 
significant differences between siAKT2 transfected groups and siRNA NC groups were indicated by @p≤0.05. *p≤0.05.
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such as nasopharyngeal carcinoma (39), colorectal adeno-
carcinoma (40-42), breast  (43,44) and bladder cancer  (45). 
In recent years evidence has emerged illustrating the role 
miR-608 plays as a tumour suppressor. In chordoma cancer, 
miR-608 induces apoptosis and inhibits cell proliferation via 
regulation of epidermal growth factor receptor (EGFR) and 
B-cell lymphoma-extra large (BCL-XL)  (18). miR-608 has 
also been shown to directly target macrophage migration 
inhibitory factor (MIF), inhibiting proliferation, migration and 
invasion, and inducing apoptosis in both osteosarcoma cell 
lines (21) and glioma stem cells (20). Furthermore, miR-608 
has been demonstrated to repress tumorigenesis of colon 
cancer cells both in vitro and in vivo through the regulation of 
N-a-acetyltransferase 10 protein (NAA10) (19).

Our previous study revealed that downregulation of anti-
apoptotic BCL-XL in lung adenocarcinoma cell line A549 
resulted in a decrease in cell proliferation, an increase in apop-
tosis as well as dysregulation of various miRNAs, including 
upregulation of miR-608. It was further demonstrated via 
overexpression and knockdown studies that miR-608 plays a 
role in BCL-XL induced apoptosis in A549 cells (22). To iden-
tify the molecular mechanism by which miR-608 regulates 
apoptosis in NSCLC cells, in the present study bioinformatics 
analysis was performed, which predicted AKT2 as a novel 
target with two regions containing perfect complementary 
miR-608 binding sites in its 3'UTR. Measurement of relative 
firefly luciferase activity, indicative of translation from the 
plasmid, and quantification of protein levels via western blot 
analysis validated AKT2 as a direct target of miR-608.

AKT2 is a serine/threonine protein kinase that plays 
an essential role in various signaling pathways including 
metabolism, proliferation, cell survival, growth and angiogen-
esis (45,46). Increasing evidence suggests that hyperactivation 
of AKT2 plays an important role in human malignancy, with 
amplification and overexpression being reported in several 
cancers including breast  (47,48), pancreatic  (49), hepato-
cellular  (50), ovarian  (51,52), thyroid  (53), glioma  (54,55), 
colorectal (55) and non-small cell lung cancer (56-58). AKT2 
has been reported to play a role in cell cycle progression in 
breast cancer cell line MDA-MB-231, with silencing of AKT2 
leading to cell cycle arrest through downregulation of Cdk2 
and cyclin D and upregulation of p27. Prolonged inhibition of 
AKT2 was also shown to lead to an increase in the mitochon-
drial volume, eventually leading to cell death by autophagy (48). 
Another study indicates that silencing of AKT2 in neuroblas-
toma disrupts cell migration and invasion and also decreases 
metastasis in the liver (59). Downregulation of AKT2 has also 
been demonstrated to lead to MCL-1 cleavage, collapse of the 
mitochondrial membrane potential, release of cytochrome c 
into the cytosol, followed by activation of the caspase cascade 
in NSCLC (56). Similarly, in glioma cell lines, knockdown of 
AKT2 was able to induce apoptosis via dephosphorylation of 
BAD and the activation of caspase-9 and caspase-3 (55).

As AKT2 is a well-established pro-survival factor, we 
hypothesized that targeting of AKT2 could be a mechanism by 
which miR-608 functions as a tumour suppressor in NSCLC. 
This was further validated when cells were co-transfected with 
miR-608 inhibitors and siAKT2 to partially rescue inhibition 

Figure 4. Overexpression of miR-608 induces caspase-3 activation in vivo. (A) Examination of zebrafish embryos by confocal microscopy following miR-608 
injection. Arrows indicate positive active caspase-3 staining. (B) Fluorescence was quantified and analyzed using ImageJ Analyst software to generate normal-
ized arbitrary fluorescence units. Statistically significant differences between mimic transfected groups and mimic NC groups were indicated by *p≤0.05. 
Statistically significant differences between non-injected group and injected untreated groups are denoted with &p≤0.05.
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of apoptosis induced by miR-608 inhibitors. In a recently 
published study, the relationship between miR-608 and the 
AKT pathway in bladder cancer further supports the tumour 
suppressive role of miR-608. Liang and colleagues (60) demon-
strated that upregulation of miR-608 was able to suppress cell 
cycle progression through direct inhibition of FLOT1 3'UTR, 
which is an upstream regulator of the AKT/FOXO3a signaling 
pathway.

To summarize, in the present study we identified a tumour 
suppressive role of miR-608 in non-small cell lung cancer 
(NSCLC). Its role as a tumour suppressor was attributed to 
identification of a novel direct target, AKT2. In vivo studies 
using the zebrafish animal model also confirmed that miR-608 
could significantly induce activation of caspase-3, a major 
apoptotic effector. AKT2 has been illustrated to have signifi-
cant roles in tumour progression; therefore selective targeting 
of AKT2 via miR-608 may be developed and used as a stra-
tegic treatment for NSCLC cancer.
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