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Abstract. The aim of this study was to identify long 
non-coding RNAs (lncRNAs) which may prove useful for 
risk-classifying patients with melanoma. For this purpose, 
based on a dataset from The Cancer Genome Atlas (TCGA), 
we selected and analyzed samples from melanoma stages I, 
II, III and IV, from which differentially expressed lncRNAs 
were identified. The lncRNAs were classified using two-way 
hierarchical clustering analysis and analysis of support vector 
machine (SVM), followed by Kaplan-Meier survival analysis. 
The prognostic capacity of the signature was verified on an 
independent dataset. lncRNA-mRNA networks were built 
using signature lncRNAs and corresponding target genes. The 
Kyoto Encyclopedia of Genes and Genomes pathway enrich-
ment analysis was conducted on the target genes. A total of 
48 differentially expressed lncRNAs were identified, from 
which 6 signature lncRNAs (AL050303 and LINC00707, 
LINC01324, RP11-85G21, RP4-794I6.4 and RP5-855F16) 
were identified. Two-way hierarchical clustering analysis 
revealed that the accuracy of the six-lncRNA signature in 
risk-stratifying samples was 84.84%, and the accuracy of 
the SVM classifier was 85.9%. This predictive signature 
performed well on the validation dataset [accuracy, 86.76; area 
under the ROC curve (AUROC), 0.816]. A total of 720 target 
genes of the 6 lncRNAs were selected for the lncRNA-mRNA 
networks. These genes were significantly related to mitogen-
activated protein kinase (MAPK), the neurotrophin signaling 
pathway, focal adhesion pathways, and several immune and 
inflammation-related pathways. On the whole, we identified 
a six-lncRNA prognostic signature for risk-stratifying patients 
with melanoma. These lncRNAs may affect prognosis by regu-
lating the MAPK pathway, immune and inflammation-related 

pathways, the neurotrophin signaling pathway and focal adhe-
sion pathways.

Introduction

Melanoma develops from pigment-containing cells known as 
melanocytes. It is the most aggressive type of skin cancer and 
caused 59,800 deaths globally in 2015 (1,2). When the disease 
is detected at an early stage (stages I and II), prognosis is favor-
able; however, the survival rates for patients with melanoma at 
stages III and IV are low (3). Therefore, the development of 
precise tests for the detection of melanoma at an early stage 
are required. To aid in this effort, there is an urgent need to 
identify novel signature molecules that can be used as prog-
nostic biomarkers of melanoma.

Long non-coding RNAs (lncRNAs) are defined as a class 
of non-protein-coding RNAs which are >200 nucleotides in 
length. They are implicated in a variety of transcriptional and 
post-transcriptional gene regulatory processes, and can there-
fore affect cellular homeostasis (4). There is also mounting 
evidence to indicate that lncRNAs may play a role in the 
cancer paradigm (5,6). Increasing attention has been paid to 
the potential role of lncRNAs in the molecular mechanisms of 
melanoma (7). There is evidence to suggest that the lncRNA 
HOTAIR is linked to melanoma cell motility and invasion (8). 
Li et al reported that the lncRNA BANCR increased malig-
nant melanoma cell proliferation, and that its expression was 
indicative of a higher mortality rate (9). Moreover, Chen et al 
suggested a four-lncRNA signature for predicting the prog-
nosis of patients with cutaneous melanoma (10). Despite these 
advancements, the association of lncRNAs with the prognosis 
of patients with remains elusive.

Compared to the study by Chen et al, the current study not 
only screened for signature lncRNAs that may predict the prog-
nosis of patients with melanoma, but also attempted to unravel 
the underlying mechanisms. By using a The Cancer Genome 
Atlas (TCGA), an mRNA dataset containing 376 melanoma 
samples, differentially expressed lncRNAs were identified 
between melanoma samples at stages I and II, and melanoma 
samples at stages III and IV. Out of these differentially expressed 
lncRNAs, optimal signature lncRNAs were identified using the 
random forest method and were used to construct a support 
vector machine (SVM) classifier. By using the SVM classifier, 
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all samples were then classified into an early-stage-like group 
and an advanced-stage-like group, and were then subjected to 
Kaplan-Meier survival analysis. Furthermore, the predictive 
capability of the lncRNA signature was verified on an indepen-
dent dataset, and Cox univariate and multivariate regression 
analyses were employed to search for independent predictors 
of prognosis. In addition, lncRNA-mRNA networks were 
constructed using signature lncRNAs and corresponding target 
genes. The Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analysis was performed for these target 
genes. The aim of this study was to provide promising prog-
nostic candidates, and to enhance our understanding of the 
etiology and genetic underpinnings of melanoma.

Data collection and analysis

Data sources. An mRNA-seq expression dataset was accessed 
from the TCGA data portal (https://portal.gdc.cancer.gov/proj-
ects/TCGA-SKCM), which included 376 primary melanoma 
samples with complete clinical charateristics (Illumina HiSeq 
2000 RNA Sequencing platform). The TCGA data were in 
the form of RNA sequencing data on an Illumina HiSeq 2000 
RNA Sequencing platform.

Another mRNA expression dataset (E-MTAB-4725, 
A-GEOD-13369-I l lumina Human Whole-Genome 
DASL HT platform) consisting of 204 primary mela-
noma samples was downloaded from EBI ArrayExpress 
(https://www.ebi.ac.uk/arrayexpress/) and used as a valida-
tion set in this study. mRNA expression was assessed using 
the Illumina Human Whole-Genome DASL HT 12.4 whole 
genome array, followed by normalization using the quantile 
method following background correction (11). Demographic 
and clinical characteristics of the training set and the valida-
tion set are shown in Table I, which were compared using the 
Student's t-test or Chi-square test.

Screening for differentially expressed lncRNAs and hierar-
chical clustering analysis. The 376 samples in the training 
dataset were classified according to pathological stage as 
follows: The early-stage group (stages I and II) and the 
advanced-stage group (stages III and IV). Subsequently, differ-
entially expressed lncRNAs were screened using the DEseq 
package (12) and edgeR package (13) in R3.1.0, with a strict 
cut-off set as a false discovery rate (FDR) of <0.05 and |logFC| 
of >0.263. The overlapping lncRNAs that were significantly 
differentially expressed were selected for further analysis.

Two-way hierarchical clustering analysis was performed on 
the expression values of the significantly overlapping lncRNAs 
using centered Pearson's correlation metric (14) via the pheatmap 
package (15) in R. The number of samples at the early or advanced 
stages was compared between clusters using the Chi-square test 
with the chisq.test function in R. Patient survival was estimated 
using the Kaplan-Meier method (16) in the survival package 
in R, and survival was compared using the log-rank test.

Determination of optimal lncRNA signatures. Random forest 
models are non-parametric, non-linear models characterized by 
less overfitting and robust performance, among other reliable 
features (17). To identify lncRNA signatures that discriminate 
between patients with the early and advanced stages of the disease 

in the training set, the random forest method was used via the 
bootstrap procedure (18) and estimated using out-of-bag (OOB) 
testing (18). Based on the expression values of the identified 
lncRNAs signature, two-way hierarchical clustering analysis 
was performed on the 376 samples in the training set.

Classifying samples using the SVM classifier. To determine 
whether the signature lncRNAs can distinguish between 
the two types of melanoma samples, an SVM classifier was 
constructed based on the expression values of the signature 
lncRNAs using the SVM function in e1071 package of R (19), 
with the Sigmoid Kernel function and a 10-fold cross-valida-
tion. By using the SVM classifier, the samples in the training 
set were classified into two groups as follows: the early-stage-
like group and the advanced-stage-like group. The survival of 
the two groups was analyzed using the Kaplan-Meier method.

Verification using an independent set. The signature lncRNAs 
were further verified on the test set (EBI set). Two-way 
hierarchical clustering analysis, SVM classifier analysis and 
Kaplan-Meier survival analysis were conducted sequentially 
on all samples in the EBI set, based on the lncRNA signature.

Association of clinical factors with prognosis. In the training 
set, Cox univariate and multivariate regression analyses were 
performed to determine the association of survival with 
the following clinical variables: Age, sex, pathologic_M, 
pathologic_N, pathologic_T, new tumors, radiation therapy 
and SVM prediction. The melanoma samples were strati-
fied by each clinical variable, and further classified into the 
early-stage-like group and advanced-stage-like group using 
the SVM classifier. Subsequently, the survival of the two 
groups was analyzed using Kaplan-Meier survival analysis.

Construction of lncRNA-mRNA networks and KEGG pathway 
enrichment analysis. In the training set, correlations between 
each signature lncRNA with corresponding target genes were 
computed using the COR function of R. Genes that showed 
correlations with one or more lncRNA were retained, and 
then numbered according to the absolute value of correla-
tion co-efficient (R), in descending order. The top 1% target 
genes were selected for the construction of lncRNA-mRNA 
networks using the STRING database (http://string-db.
org) (20), with the cut-off set at a string score of >0.8. Using 
The Database for Annotation, Visualization and Integrated 
Discovery (DAVID) software (21), KEGG pathway enrichment 
analysis was performed for the genes positively or negatively 
related to the signature lncRNAs, respectively. Pathways with 
a P-value <0.05 were selected as significant pathways.

Results

Selection of differentially expressed lncRNAs. The training 
set included 191 early-stage samples and 185 advanced-stage 
samples. A total of 107 differentially expressed lncRNAs were 
selected between the early-stage samples and advanced-stage 
samples using the edge R package, while 55 differentially 
expressed lncRNAs were selected using the DEseq package. 
The 48 overlapping, differentially expressed lncRNAs were 
selected for further analysis.
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Hierarchical clustering analysis of differentially expressed 
lncRNAs. Based on the expression values of the 48 lncRNAs, 
the samples in the training set were subjected to two-way hierar-
chical clustering analysis. Two clusters were identified, and these 
are presented in Fig. 1A. Cluster 1 consisted of 175 early-stage 
samples and 28 advanced-stage samples, and cluster 2 contained 
16 early-stage samples and 157 advanced-stage samples. As the 
28 advanced-stage samples in cluster 1, and the 16 early-stage 
samples in cluster 2 were incorrectly clustered, the accuracy was 
88.3% (332/376). A number of early- and advanced-stage samples 
were differed markedly between the two clusters (χ2=218.2596, 
P-value =2.2e-16). Kaplan-Meier survival analysis revealed that 
survival in cluster 1 was significantly greater compared to that 
in cluster 2 (log-rank P-value =2.805e-08). Similarly, the mean 
survival time in cluster 1 was significantly longer compared to 
that in cluster 2 (79.88±64.70 months vs. 33.31±30.09 months, 
P-value =1.025e-17) (Fig. 1B).

Identification of optimal signature lncRNAs using the random 
forest method. Using the random forest method, six lncRNAs 
with the smallest OOB error (0.162) were identified as an 
optimal set of lncRNAs and a potential signature for use in 

patient classification (Fig. 2). The 6 signature lncRNAs are 
shown in Table II. Among the six signature lncRNAs, the expres-
sion of AL050303 and LINC00707 was significantly elevated 
in the early-stage group compared with the advanced-stage 
group, while LINC01324, RP11-85G21, RP4-794I6.4 and 
RP5-855F16 expression was significantly lower in the 
early stage-group compared with the advanced-stage group 
(P-value <0.05) (Fig. 3).

Based on expression values of the 6 lncRNAs, two-way 
hierarchical clustering analysis was performed on the training 
set. As shown in Fig. 4A, all samples were classified into 
cluster 1 and cluster 2. Specifically, 172 out of the 210 samples 
in cluster 1 were early-stage samples, and 147 out of the 
166 samples in cluster 2 were advanced-stage samples. The 
accuracy was 84.84% (319/376), similar to the accuracy of the 
clustering analysis based on the 48 differentially expressed 
lncRNAs (88.3%). Moreover, cluster 1 had a significantly 
better survival (log-rank P-value =8.451e-04) and a markedly 
longer survival time in comparison with cluster 2 (76.08±63.45 
months vs. 35.86±35.61 months, P-value =9.509e-14) (Fig. 4B). 
These results imply that the 6 signature lncRNAs may repre-
sent the 48 differentially expressed lncRNAs.

Figure 1. Results of two-way hierarchical clustering analysis based on 48 differentially expressed long non-coding RNAs (lncRNAs). (A) A heatmap for cluster 
analysis on the training set. All samples are classified into cluster 1 and cluster 2. (B) Kaplan-Meier survival curves of cluster 1 (blue) and cluster 2 (red) 
obtained from the two-way hierarchical clustering analysis. Survival time is compared between cluster 1 and cluster 2 using the log-rank test.
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Sample classification using an SVM classifier. Based on the 
expression values of the six signature lncRNAs, an SVM classi-
fier was built and used to classify the samples in the training set 
into early-stage-like samples and advanced-stage-like samples. 
As a result, 23 early-stage samples and 30 advanced-stage 
samples were incorrectly classified. The accuracy was 85.9% 
with a sensitivity of 87.29%, a specificity of 84.62%, a posi-
tive predictive value (PPV) of 84.04%, a negative predictive 
value (NPV) of 87.77% and an area under the receiver operating 
characteristic curve (AUROC) of 0.962 (Fig. 5A). Similarly, as 
shown in Fig. 5B, the early-stage-like samples had a more favor-
able survival (log-rank P-value =1.619e-03) and a longer mean 
survival time compared to the advanced-stage-like samples 
(67.71±61.76 vs. 48.95±49.29 months, P-value =0.0012).

Validation using an EBI set. The predictive power of the six 
signature lncRNAs identified using the training set was tested on 
an EBI set (E-MTAB-4725). The results of two-way hierarchical 

clustering analysis revealed that the samples in the validation 
dataset were classified into cluster 1 and cluster 2 (Fig. 6A). 
Specifically, 1 advanced-stage sample was incorrectly clustered 
into cluster 1, and 47 early-stage samples were incorrectly clus-
tered into cluster 2. The accuracy was 71.57%. Fig. 6B shows 
that cluster 1 exhibited a better survival compared to cluster 2 
(log-rank P-value =2.716e-03; mean survival time, 78.84±39.43 
vs. 65.23±40.14 months, P-value =0.0187).

The performance of an SVM classifier based on the 
six-lncRNA signature was tested on the EBI set. The results 
revealed that 1 advanced-stage sample and 26 early-stage 
samples were incorrectly classified by the SVM classifier with an 
accuracy of 86.76% and an AUROC of 0.816 (sensitivity, 95.65%; 
specificity, 85.64%; PPV, 75.83%; NPV, 87.08%) (Fig. 7A). 
Likewise, the survival of early-stage-like patients (n=156) was 
much improved in comparison with the advanced-stage-like 
patients (n=48) (log-rank P-value =1.397e-03; mean survival time, 

Table I. Clinical characteristics of patients in the TCGA and E-MTAB-4725 datasets.

Clinical characteristics TCGA (n=376) E-MTAB-4725 (n=204) P-value

Age (years; means ± SD) 57.64±5.44 55.73±12.97 0.1157a

Sex (male/female) 235/141 100/104 0.0023b

Pathologic_M (M0/M1/-) 351/19/6 202/2 0.0211b

Pathologic_N (N0/N1/N2/N3/-) 182/71/43/56/24 182/6/13/3 2.2E-16b

Pathologic_T (T1/T2/T3/T4/-) 62/73/80/128/33 6/66/72/59 1.72E-08b

Pathologic_stage (I/II/III/IV/-) 80/111/166/19 58/123/21/2 2.2E-16b

Radiation therapy (yes/no) 40/336 - -
New tumor (yes/no) 220/153/3 - -
Deceased (deceased/alive) 179/197 120/102 0.6192b

Overall survival (months; means ± SD) 58.33±56.59 73.57±40.16 0.0001a

Clinical characteristics between TCGA and E-MTAB-4725 were compared using the aStudent's t-test or bChi-square test. SD, standard devia-
tion. The hyphen (-) indicates that data were unavailable. TCGA, The Cancer Genome Atlas.

Figure 2. Out-of-bag (OOB) error. The selected OOB error is marked by the 
red line.

Figure 3. Expression of six signature long non-coding RNAs (lncRNAs) in 
the early-stage group and the advanced-stage group. Expression in the early-
stage group is shown in green; expression in the advanced-stage group is 
shown in red. *P<0.05 and **P<0.005.



INTERNATIONAL JOURNAL OF ONCOLOGY  52:  1178-1188,  20181182

76.96±37.31 vs. 62.54±47.05 months, P-value <0.050 (Fig. 7B). 
These results confirmed the reliability of the six signature 
lncRNAs in distinguishing different stages of melanoma samples.

Correlation of clinical characteristics with survival. Using 
Cox univariate and multivariate regression analyses, we found 
that based on the six-lncRNA signature SVM prediction, 

Pathologic_N, Pathologic_T, and new tumors were indepen-
dent predictors of prognosis of melanoma in the training 
set (Table III and Fig. 8).

Furthermore, the samples were stratified by clinical char-
acteristics and classified using the six-lncRNA signature-based 
SVM classifier. As shown in Table IV, the SVM classifier was 
also effective in distinguishing the early-stage samples from 

Table II. Six signature lncRNAs.

 edgeR test Deseq

Gene name Chromosome location logFC P-value FDR logFC P-value FDR

AL050303 Chromosome 21: 13,769,932-13,771,740(+) -0.4022 0.0002 0.0051 -0.4617 3.01E-05 0.0024
LINC00707 Chromosome 10: 6,779,598-6,842,906(+) -0.3735 7.63E-05 0.0018 -0.3905 3.95E-06 0.0003
LINC01324 Chromosome 3: 164,714,095-164,831,480(-) 0.5550 4.98E-08 1.17E-06 0.5727 1.72E-06 0.0001
RP11-85G21 Chromosome 1: 157,232,231-157,237,136(-) 0.3565 0.0002 0.0058 0.4001 0.0002 0.0148
RP4-794I6.4 Chromosome 20: 3,239,705-3,245,382(+) 0.3301 0.0001 0.0037 0.3499 6.13E-05 0.0050
RP5-855F16 Chromosome 7: 10,940,423-10,940,735(+) 0.4914 1.31E-08 3.08E-07 0.4639 5.01E-06 0.0004

lncRNAs, long non-coding RNAs; FDR, false discovery rate; FC, fold change.

Figure 4. Results of the two-way hierarchical clustering analysis based on six signature long non-coding RNAs (lncRNAs) in the training set. (A) A heatmap 
for clustering analysis. All samples in the training set are stratified into cluster 1 and cluster 2. (B) Kaplan-Meier survival curves of cluster 1 (blue) and cluster 2 
(red) obtained from the two-way hierarchical clustering analysis.
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Figure 5. Performance of the support vector machine (SVM) classifier based on the six-long non-coding RNA (lncRNA) signature in the training set. (A) ROC 
analysis of the SVM classifier. All samples in the training set are classified into early-stage-like group and advanced-stage-like group via the SVM classifer. 
(B) Kaplan-Meier survival curves for early-stage-like samples (blue) and advanced-stage-like samples (red).

Figure 6. Results of the two-way hierarchical clustering analysis based on 6 signature long non-coding RNAs (lncRNAs) in the validation set. (A) A heatmap 
of clustering analysis. All samples are clustered into cluster 1 and cluster 2. (B) Kaplan-Meier survival curves for cluster 1 (blue) and cluster 2 (red). Survival 
time is compared between cluster 1 and cluster 2 using the log-rank test.
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the advanced-stage samples for patients of any age, male 
patients, patients with pathologic_M0 or pathologic_N2-N3 
or pathologic_T3-T4, patients with new tumors, and patients 
who did not receive radiation therapy (P-value <0.05) (Fig. 9). 
It should be noted that some information for several samples 
was not available in the dataset.

Pathway enrichment analysis of the six-lncRNA signature. 
Functional analysis was employed to determine the possible role 
of the six-lncRNA signature in the pathogenesis of melanoma. 
In the training set, the association of each signature lncRNA 
with its target genes was analyzed. A total of 720 genes that were 

associsated with the signature lncRNAs were obtained, 637 of 
which were positively related to the signature lncRNAs and 
83 of which were negatively related to the signature lncRNAs. 
Additionally, lncRNA-mRNA networks were constructed 
using the lncRNA-mRNA pairs (score >0.8) (Fig. 10).

As shown in Fig. 11, the negatively associated genes 
were significantly clustered in 6 pathways, including the 
mitogen-activated protein kinase (MAPK) signaling pathway, 
pathway in cancer, neurotrophin signaling pathway, long-term 
potentiation, and the natural killer cell mediated cytotoxicity 
pathway. The positively related genes were significantly 
enriched in 8 pathways, including the intestinal immune 

Figure 7. Performance of the six-long non-coding RNA (lncRNA) signature-based support vector machine (SVM) classifier in the validation set. (A) ROC 
analysis of the SVM classifier. All samples in the validation set are divided into early-stage-like group and advanced-stage-like group via the SVM classifer. 
(B) Kaplan-Meier survival curves for early-stage-like samples (blue) oradvanced-stage-like samples (red).

Table III. Results of Cox univariate and multivariate regression analyses.

 Univariate analysis Multivariate analysis
 ------------------------------------------------------------------------------------- ----------------------------------------------------------------------------------------
Variables HR 95% CI P-value HR 95% CI P-value

SVM prediction
  Early/advanced stage 1.61 1.194-2.17 0.0016 1.618 1.139-2.299 0.0073
Age (years)
  ≤60/>60 1.528 1.131-2.064 0.0055 1.238 0.878-1.745 0.224
Sex
  Male/female 1.098 0.801-1.505 0.561 1.298 0.9089-1.856 0.152
Pathologic_M stage
  M0/M1 2.278 1.195-4.342 0.0101 1.714  0.723-4.066 0.221
Pathologic_N stage
  N0-N1/N2-N3 1.581 1.111-2.251 0.0103 1.806 1.167-2.794 0.0080
Pathologic_T stage
  T0-T2/T3-T4 1.938 1.405-2.673 4.05E-05 1.91 1.343-2.717 0.0003
New tumor
  Yes/no 2.687 1.831-3.944 1.48E-07 3.125 1.972-4.955 1.25E-06

Radiation therapy
  Yes/no 0.4771 0.271-0.841 0.0088 0.866 0.440-1.703 0.677

HR, hazard ratio; CI, confidence interval; SVM, support vector machine.



YANG et al:  A SIX-lncRNA PROGNOSTIC SIGNATURE FOR MELANOMA 1185

network for IgA production, leukocyte transendothelial 
migration, complement and coagulation cascades, cell adhe-
sion molecules (CAMs), chemokine signaling pathway, 

cytokine-cytokine receptor interaction, the MAPK pathway, 
and keratan sulfate biosynthesis. Notably, the MAPK pathway 
was significantly enriched with 16 positively associated genes 
and 11 negatively associated genes, such as mitogen-activated 
protein kinase kinase kinase kinase 1 (MAP4K1), RAS guanyl 
releasing protein 2 (RASGRP2), mitogen-activated protein 
kinase 8 interacting protein 3 (MAPK8IP3), mitogen-activated 
protein kinase kinase 5 (MAP2K5) and the B-Raf proto-onco-
gene, serine/threonine kinase (BRAF).

Discussion

Melanoma is an aggressive skin cancer, and the importance of 
lncRNAs in the biology of melanoma has been increasingly 
acknowledged in recent years. To the best of our knowledge, 
the functions of ~13 lncRNAs in melanoma have been deter-
mined (7). Nevertheless, there are limited studies discussing 
the association of lncRNAs with patient prognosis. Based on a 
TCGA dataset that included 376 samples, this study identified 
a potential prognostic six-signature lncRNA. This signature 
included AL050303, LINC00707, LINC01324, RP11-85G21, 
RP4-794I6.4 and RP5-855F16. Of these lncRNAs, AL050303 
and LINC00707 were upregulated, while RP11-85G21, 
RP4-794I6.4 and RP5-855F16 were downregulated in the early-
stage samples compared to the advanced-stage samples.

The classification capability of the signature lncRNAs was 
verified on an independent dataset that included 204 samples. 
Two-way hierarchical clustering analysis, SVM classifier anal-
ysis and Kaplan-Meier analysis achieved consistent results that 
support the conclusion that this six-lncRNA signature exhibited 
reliable predictive accuracy. Furthermore, Cox univariate and 
multivariate regression analyses revealed that the six-lncRNA 
signature-based SVM prediction was an independent predictor 
of prognosis. To the best of our knowledge, the prognostic 
value of this multi-marker signature in melanoma has not been 
previously reported. Therefore, the current study provides new 
insight into the improved risk-stratification and prediction of 
survival in patients with melanoma.

A growing number of studies have demonstrated a key role for 
MAPK dysregulation in melanoma, which largely results from 
mutations in the B-RAF and RAS genes (22,23). Moreover, BRAF 
and MEK inhibitors have been developed and have achieved 
unprecedented treatment outcomes in clinic practice (24). In the 

Table IV. Associations of clinical features with the prognostic 
capability of the SVM classifier.

 Univariate analysis
 ----------------------------------------------------------------------
Variables HR 95% CI P-value

Age (years)
  ≤60 (n=209) 1.755 1.161-2.655 0.0069
  >60 (n=167) 1.642 1.048-2.573 0.0289
Sex
  Male (n=235) 1.746 1.21-2.521 0.0025
  Female (n=141) 1.468 0.869-2.482 0.1491
Pathologic_M stage
  M0 (n=351) 1.547 1.138-2.103 0.0050
  M1 (n=19) 2.990 0.374-3.239 0.2790
Pathologic_N stage
  N0-N1 (n=253) 1.401 0.979-2.007 0.0642
  N2-N3 (n=99) 3.765 1.34-10.58 0.0070
Pathologic_T stage
  T0-T2 (n=135) 1.642 0.978-2.756 0.0582
  T3-T4 (n=208) 1.510 1.019-2.239 0.0387
New tumor
  Yes (n=220) 1.642 1.179-2.288 0.0031
  No (n=153) 1.894 0.901-3.983 0.0873
Radiation therapy
  Yes (n=40) 1.979 0.614-6.378 0.2444
  No (n=336) 1.549 1.137-2.111 0.0052

The patients are stratified by different clinical characteristics and fur-
ther classified into early-stage-like samples and advanced-stage-like 
samples by a six lncRNAs-based SVM classifer. The survival of the 
early-stage-like samples and advanced-stage-like samples was com-
pared using a log-rank test. SVM, support vector machine; HR, hazard 
ratio; CI, confidence interval.

Figure 8. Kaplan-Meier survival analysis for the determined independent prognostic factors in melanoma. (A) Kaplan-Meier survival curves for patients with 
pathologic_N0-N1 or N2-N3 stage; (B) Kaplan-Meier survival curves for patients with pathologic_T0-T2 or T3-T3 stage; (C) Kaplan-Meier survival curves 
for patients with or without new tumors.
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present study, MAP4K1, RASGRP2, MAPK8IP3, MAP2K5 and 
BRAF were identified as target genes of the six-lncRNA signa-
ture, which was significantly enriched in MAPK pathway genes. 
MAP4K1, and MAP2K5 are members of the MAP kinase family. 
MAPK8IP3 has been found to interact with various members 
of the MAP kinase family as well as C-Raf (25). The protein 
encoded by RASGRP2 can activate RAS and RAP1/RAS3. 
These findings suggest that the six signature lncRNAs may affect 
prognosis in melanoma by modulating the MAPK pathway.

A rich body of evidence has demonstrated that the immune 
system and inflammation are closely associated with cancer 
progression, including melanoma (26,27). In this study, target 
genes of the multi-marker signature were identified in several 
immune and inflammation-related pathways including the 
following: Complement and coagulation cascades, leukocyte 
transendothelial migration, the chemokine signaling pathway, 
intestinal immune network for IgA production, and natural 
killer cell-mediated cytotoxicity pathways. Melanocytes express 

Figure 9. Kaplan-Meier survival analysis for patients stratified by different clinical factors. (A) Kaplan-Meier survival curves for patients ≤60 years (left panel) 
or >60 years (right panel) of age. (B) Kaplan-Meier survival curves for female (left panel) or male (right panel) patients. (C) Kaplan-Meier survival curves for 
patients with pathologic_M0 (left panel) or pathologic_M1 stage (right panel). (D) Kaplan-Meier survival curves for patients with pathologic_N0-N1 (left panel) 
or pathologic_N2-N3 stage (right panel). (E) Kaplan-Meier survival curves for patients with pathologic_T0-T2 (left panel) or pathologic_T3-T4 stage (right panel). 
(F) Kaplan-Meier survival curves for patients with (right panel) or without new tumors (left panel). (G) Kaplan-Meier survival curves for patients receiving radiation 
therapy (right panel) or not (left panel). Patients stratified by different clinical factors are further classified into early-stage-like group and advanced-stage-like group 
using the support vector machine (SVM) classifer. Survival curves for early-stage-like group and advanced-stage-like group are labeled in blue and red, respectively.
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Figure 10. Long non-coding RNA (lncRNA)-mRNA networks. Red square nodes indicate lncRNAs, and blue round nodes indicate target genes of lncRNAs. 
(A-F) lncRNA-mRNA networks for AL050303, LINC00707, LINC01324, RP4-794I6.4, RP5-855F16 and RP11-85G21, separately.

Figure 11. Significant KEGG pathways enriched with positively or negatively related genes. Vertical axis, number of genes enriched in each pathway; hori-
zontal axis, and significant KEGG pathways.
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neurotrophins and their receptors, which play an important part in 
modulating melanoma cell proliferation and migration (28). Focal 
adhesion kinases are implicated in regulating melanoma cell 
motility and migration (29,30). The present study found that the 
neurotrophin signaling pathway and the focal adhesion pathway 
were significantly linked to the target genes of the six-lncRNA 
signature. These results imply that the six-lncRNA signature 
may be involved in regulating immune and inflammation-related 
pathways, the neurotrophin signaling pathway, and the focal 
adhesion pathway, thereby influencing the survival of patients.

It should be noted that the results of this study may have been 
influenced by sample heterogeneity and/or differing sample 
collection or RNA extraction methods (31). Additionally, the 
sample size of this study was limited. Further studies with a 
larger cohort of patients and timely follow-up are warranted 
in order to confirm the predictive capacity of this signature in 
melanoma.

In conclusion, in this study, we identified a six-lncRNA 
signature as a useful prognostic biomarker for risk-classifying 
patients with melanoma. The lncRNAs may affect prognosis 
partly by modulating MAPK, immune and inflammation-related 
pathways, the neurotrophin signaling pathway, and the focal 
adhesion pathway. These findings provide novel insight into the 
correlation of lncRNAs with prognosis, and help lay a foundation 
for improving the survival of patients with melanoma. Further 
studies are warranted to validate this prognostic signature.
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