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Abstract. In order to study the role of long non-coding 
RNAs (lncRNAs) in predicting platinum-based chemo-
resistance in patients with high-grade serous ovarian 
carcinoma (HGS-OvCa), a=7-lncRNA signature was devel-
oped by analyzing 561 microarrays and 136 specimens 
from RNA-sequencing (RNA-seq) obtained from online 
databases [odds ratio (OR), 2.859; P<0.0001]. The upregulated 
lncRNAs (RP11-126K1.6, ZBED3-AS1, RP11-439E19.10 and 
RP11-348N5.7) and downregulated lncRNAs [RNF144A-AS1, 
growth arrest specific 5 (GAS5) and F11-AS1] exhibited high 
sensitivity and specificity in predicting chemoresistance in the 
Gene Expression Omnibus and the Cancer Genome Atlas (area 
under curve >0.8). The lncRNA signature was independent of 
clinical characteristics and 4 HGS-OvCa molecular subtypes. 
This signature was negatively associated with disease-free 
survival (n=47; log-rank, P<0.01). Furthermore, the expression 
of the 7 lncRNAs was consistent with microarray (GSE63885, 
GSE51373, GSE15372 and GSE9891) and RNA-seq data. In 
in vitro experiments, ZBED3-AS1, F11-AS1 and GAS5 were 
differentially expressed in cell lines that are known to be 
resistant and non-resistant to platinum-based drugs, which 
was consistent with the results in the present study. This 
lncRNA signature may be used as a prognostic marker for 
predicting resistance to platinum-based chemotherapeutics in 
HGS-OvCa. These findings may contribute to individualized 
therapies in patients with HGS-OvCa in the future.

Introduction

In the past 30 years, ovarian cancer has exhibited the highest 
mortality rate of all types of lethal gynecological cancer 
worldwide, with a 5-year survival rate of <30% (1,2). The 

characteristics of ovarian carcinoma encompass the devel-
opment of chemoresistance (3), recurrence (4) and poor 
prognosis (5), which pose huge challenges for drug develop-
ment and therapeutics (6). Once chemoresistance occurs, 
patients may not only experience adverse effects, but they may 
also eventually relapse (7). Although ~75% of patients initially 
respond to the platinum-based chemotherapy, the majority 
relapse with resistance, which leads to treatment failure and 
causes >90% of mortalities (8). To date, patients with ovarian 
cancer have been defined as treatment-resistant if the duration 
of disease-free survival (DFS) or the platinum-free interval 
was <6 months, while patients with longer durations have been 
defined as treatment-sensitive (3,9). However, this approach 
cannot provide guidance for individualized treatment of 
patients with drug resistance.

Long non-coding (lnc)RNA is a type of RNA that has no 
protein coding potential (10). However, lncRNAs have been 
reported to be critical in multiple stages of tumorigenesis and 
progression, including apoptosis, DNA damage response and 
metastasis (11,12).

lncRNAs may also be potential markers for the prediction 
of platinum-based chemoresistance (11,12). LncRNA ABHD11 
antisense RNA 1 (tail to tail) was demonstrated to promote 
the proliferation, invasion and migration of ovarian cancer 
cells (13). LncRNA nuclear enriched abundant transcript 1 
was reported to interact with BAI1-associated protein 1, which 
may contribute to the sensitivity against gemcitabine in chol-
angiocarcinoma (14). The role of lncRNAs in drug resistance 
of high-grade serous ovarian cancer (HGS-OvCa) remains to 
be fully investigated. Therefore, examining the possibilities 
of individualized treatment in patients with chemoresistance 
to platinum-based therapeutics and ovarian cancer from 
the perspective of lncRNAs may be useful to improve our 
understanding of drug resistance (15,16). The present study 
investigated the role of lncRNAs in platinum-based chemo-
resistance and survival in patients with HGS-OvCa in order 
to contribute to current research on individualized therapies.

Materials and methods

Training and validation datasets. Raw human microarray 
expression profiles were retrieved and downloaded from 
Gene Expression Omnibus (GEO; http://www.ncbi.nlm.nih.
gov/geo/). First of all, the key words ‘high-grade serous ovarian 

A panel of 7 prognosis-related long non-coding RNAs to improve 
platinum-based chemoresistance prediction in ovarian cancer
JING SONG1,  WANFENG ZHANG1,  SEN WANG1,  KUN LIU1,  FANGZHOU SONG2  and  LONGKE RAN1,2

1Department of Bioinformatics, The Basic Medical School of Chongqing Medical University;  
2Molecular and Tumor Research Center, Chongqing Medical University, Chongqing 400016, P.R. China

Received January 25, 2018;  Accepted May 2, 2018

DOI: 10.3892/ijo.2018.4403

Correspondence to: Professor Longke Ran, Department of Bioinfor-
matics, The Basic Medical School of Chongqing Medical University, 
1 Yixueyuan Road, Yuzhong, Chongqing 400016, P.R. China
E-mail: longkeran@aliyun.com

Key words: high-grade serous ovarian cancer, long non-coding RNA, 
drug resistance, platinum-based chemotherapy, disease-free survival



SONG et al:  CHEMORESISTANCE PREDICTION OF HGS-OvCa 867

cancer’ and ‘chemotherapeutic resistance’ were used to search 
for samples. Secondly, as more lncRNAs could be detected 
using the Affymetrix Human Genome U133 Plus2.0 micro-
array (Affynetrix; Thermo Fisher Scientific, Inc., Waltham, 
MA, USA), the samples not from that platform were filtered. 
Finally, the samples with data associated with chemothera-
peutic response were selected. In total, 328 microarray profiles 
with corresponding clinical information [i.e. age, tumor grade, 
International Federation of Gynecology and Obstetrics (FIGO) 
stage (17), residual tumor size and platinum sensitivity] were 
downloaded. The accession numbers of GEO for the datasets 
were as follows: GSE63885 (18) (n=70); GSE51373 (19) (n=28) 
and GSE15372 (20) (n=10). Another dataset GSE9891 (21) 
(n=220) was used as a GEO validation dataset. The expression 
levels were normalized using the robust multi-array average 
(RMA) algorithm (22). Batch effects were removed using the 
Combat algorithm (23).

The expression profiles and clinical information of 
233 patients with HGS-OvCa were downloaded from The 
Atlas of Noncoding RNAs in Cancer (24) and cBioportal (25) 
databases, respectively, as The Cancer Genome Atlas (TCGA) 
validation dataset. The expression levels were processed 
using the same methods as aforementioned. All datasets were 
analyzed to determine the differences in expression (Table I).

Integration and probe annotation of lncRNA datasets. 
LNCipeida (26) is a publicly available database for anno-
tated human lncRNA transcript sequences and structures. 
The public repository produced by Du et al (27) provides a 
resource of clinically relevant lncRNAs for the development 
of lncRNA biomarkers and the identification of lncRNA 
therapeutic targets. The present study integrated the records of 
lncRNAs from GENCODE (28), LNCipedia, NONCODE (29), 
TCGA and the public repository by Du et al (27). In total, 
24,372 lncRNAs were included in the present study. To avoid 
inaccurate annotations, the probes were cross-referenced 
by gene name and Ensembl transcript ID (release 89). For 
multiple probes of a single lncRNA, the median expression of 
the unique transcript ID was preserved. Finally, the expression 
profiles of 6,955 lncRNAs were obtained.

Clustering and differential expression analysis. The platinum-
based sensitivity of patients with HGS-OvCa varies greatly, 
and the DFS ranged from 180 days to several thousand days. 
In this context, unsupervised hierarchical clustering based 
on Pearson distance for platinum-sensitive samples were 
performed using the ConcensusClusterPlus package in R (30).

The differential expression analysis was performed using 
R/Limma package (31). The common differentially expressed 
lncRNAs between each sensitive subgroup and resistant group 
were screened [differential expressed (DE) set A]. The differ-
entially expressed lncRNAs between the complete sensitive 
group and the resistant group were obtained (DE set B); DE 
sets A and B were then merged.

Univariate and multivariate logistic regression analysis and 
survival analysis. To investigate the platinum-based chemore-
sistance-associated lncRNAs and the clinical characteristics 
of patients with HGS-OvCa, an independent univariate logistic 
regression was performed on 6,955 lncRNAs and clinical 

characteristics. The lncRNAs and clinical characteristics with 
P<0.05 were considered statistically significant and associated 
with chemoresistance. The survival package in R (32) was used 
to investigate DFS-associated lncRNAs. The Kaplan-Meier 
survival curves of highly expressed and weakly expressed 
lncRNAs were constructed. The median expression level was 
used as a cut-off for determining high and low expression.

The lncRNAs and clinical characteristics that were statisti-
cally significant in the univariate logistic regression were used as 
candidate parameters for constructing the multivariate logistic 
regression model. A best multivariate logistic regression model 
was generated after fitting the model thousands of times. The 
expression levels of each lncRNA and its coefficient in the best 
multivariate logistic model were used to calculate the platinum-
based chemoresistance risk score of patients with HGSC-OvCa. 
The risk score was computed by the following formula:

where n is the number of prognostic lncRNAs in the model, 
‘expri’ is the expression level of lncRNAi and coefi is the esti-
mated regression coefficient of lncRNAi in the multivariate 
logistic regression model. Patients who have higher risk scores 
are expected to have higher probability of platinum-based 
chemoresistance. The median risk score was used as a cut-off 
to divide the patients in the GEO validation dataset into 
low-risk and high-risk groups. Furthermore, the multivariate 
logistic regression analysis was performed to test whether the 
risk score was independent of clinical covariates.

Subtype classification of patients with HGS-OvCa. The 
100-gene set containing four gene signatures corresponding 
to four HGS-OvCa subtypes (differentiated, immunoreac-
tive, proliferative and mesenchymal) (33) were used to train 
the support vector machine for subtype classification. The 
univariate and multivariate logistic regression were performed 
to investigate whether the HGS-OvCa subtypes were associ-
ated with platinum-based chemoresistance, and whether these 
subtypes associated with our signature, respectively.

Classifier performance evaluation. To assess the sensitivity 
and specificity of the risk scores in prediction of chemore-
sistance in patients with HGS-OvCa, ROC (34) and ROCR 
package (35) in R software were used to construct the receiver 
operating characteristic curve and perform the area under 
curve (AUC) analysis, respectively. Furthermore, the predictive 
performance of the risk score and three signatures previously 
developed by Zhou et al (36), Liu et al (37) and TCGA mRNA 
signatures (38) was compared.

Verification of the expression level of 7 lncRNAs. Microarrays and 
RNA-seq data were used to validate the expression of lncRNAs. 
The RNA-seq data of 136 patients with HGS-OvCa and platinum-
based chemosensitivity was derived from the Gaucher Disease 
Advisory Committee (39). The reads per kilobase per million 
mapped reads were obtained by chromosome location (GRCH37, 
hg19) of lncRNAs and normalized using Z-scores.

First, the gene expression in the Cancer Cell Line 
Encyclopedia (CCLE) (40) database had been pre-processed 
using the RMA algorithm. The chemotherapeutic status 
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of 52 ovarian cancer cell lines was investigated. The data 
regarding the cell lines of clear cell, granulosa cell, undif-
ferentiated cell, mixed cell, endometrioid cell, Brenner cell, 
mucinous cell and cross-contaminated cell were filtered. The 
cell lines that were treated with cisplatin or carboplatin under-
went >3 cycles of treatment. The cell lines exhibited resistance 
to platinum and the degree of resistance varied. Secondly, gene 
expression levels in 46 ovarian cancer cell lines with or without 
cisplatin treatment were obtained from GSE47856 (41). To 
investigate the changes in the expression of lncRNAs that was 
induced by platinum, cell lines from the CCLE were analyzed 
using the Integrative Genomics Viewer (IGV) software 
(version 2.3) (42). In addition, cell lines from GSE47856 with 
≥3 replicates were analyzed. For multi-probe lncRNA, the 
median expression was calculated.

Functional prediction analysis. To investigate the biological 
processes and cellular components implicated in the drug 
resistance mechanisms, the enriched Gene Ontology (GO) (43) 
terms of 7 lncRNAs were identified using the NONCODE data-
base and were visualized using Cytoscape (version 3.2.1) (44). 

The potential functions of the lncRNAs were further analyzed 
using non-coding RNA in the Drug Resistance (ncDR) data-
base (45); P<0.05 was used to identify resistant compounds of 
lncRNAs in cancer.

Statistical analysis. The empirical Bayes method and a two-
tailed Student's t-test were used in differential expression 
analysis. The log-rank test was used for survival analysis, with 
Kaplan-Meier curves. Clinical characteristics and molecular 
subtypes of three datasets were tested using the χ2 tests or 
two-way analysis of variance, where appropriate. In multivariate 
logistic regression, the χ2 test was used to add or filter features 
and avoid overdispersion. The features were also filtered using 
the methods of Watt et al (46). P<0.05 was considered to indi-
cate a statistically significant difference. All statistical analyses 
were conducted using the R software (version 3.2.1).

Results

Cluster analysis of chemosensitive patients reveals three 
subgroups. The results of unsupervised hierarchical clustering 

Table I. Patient characteristics in GEO and TCGA datasets.

Characteristics GEO training dataset GEO validation dataset TCGA validation dataset P-value

Sample size, n 108 328 233
Mean age (SD), years 59.3 (8.3) 60.4 (9.8) 59.8 (11.4) 0.714
Tumor grade, n (%)    <0.001
  G2 9 (12.9) 105 (32.0) 32 (13.7)
  G3 46 (65.7) 170 (51.8) 197 (84.5)
  G4 15 (21.4) 15 (4.6) 0 (0)
  Unknown 38 (35.2) 38 (11.6) 4 (1.7)
FIGO stage, n (%)    0.073
  II 8 (7.4) 34 (10.4) 11(4.7)
  III 78 (72.2) 255 (77.7) 190 (81.5)
  IV 12 (11.1) 29 (8.8) 32 (13.7)
  Unknown 10 (9.3) 10 (3.0) 0 (0)
Residual tumor size, n (%)    <0.001
  R0 (1-10 mm) 14 (13.0) 14 (4.3) 116 (49.8)
  R1 (10-20 mm) 35 (32.4) 35 (10.7) 15 (6.4)
  R2 (>20 mm) 21 (19.4) 21 (6.4) 41 (17.6)
  Unknown 38 (35.2) 258 (78.7) 61 (26.2)
Platinum sensitivity, n (%)    0.021
  Sensitive 59 (54.6) 217 (66.2) 163 (70.0)
  Resistance 49 (45.4) 111 (33.8) 70 (30.0)
  Molecular subtypes, n (%)    0.114
Differentiated 28 (25.9) 77 (23.5) 66 (28.3)
  Immunoreactive 26 (24.1) 94 (28.6) 44 (18.9)
  Mesenchymal 18 (16.7) 59 (18.0) 56 (24.0)
  Proliferative 36 (33.3) 98 (29.9) 67 (28.8)

P-values for the difference among the GEO and TCGA cohorts were calculated using analysis of variance (for age) and the χ2 test (for tumor 
grade, FIGO stage, residual tumor size, platinum sensitivity, and molecular subtypes). GEO, Gene Expression Omnibus; TCGA, The Cancer 
Genome Atlas; SD, standard deviation; FIGO, International Federation of Gynecology and Obstetrics.
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were obtained when clustering center k was set from 2 to 5 (Fig. 1). 
The specimens were perfectly divided into two clusters (Fig. 1A); 
a third cluster was observed when k=3 (Fig. 1B). However, 
fourth stable clusters were not found when the number of cluster 
centers k continued to increase (Fig. 1C and D). These results 
indicate that there may be three stable subgroups with different 
expression patterns in chemosensitive patients.

Identification and assessment of chemoresistance-associated 
lncRNA signature. In the present study, 386 differential 
expressed lncRNAs were obtained subsequent to merging 262 
lncRNAs in DE set A and 365 lncRNAs in DE set B (Fig. 2A). 
In univariate regression, 337 lncRNAs (288 plus 43 plus 7 
minus 1) were associated with platinum-based chemoresistance 

after merging the lncRNA transcripts corresponding to the 
same lncRNA gene, 50 lncRNAs (43 plus 7) (Fig. 2B) were 
associated with DFS (log-rank P<0.05). Next, a 7-lncRNA 
signature was identified (Table II and Fig. 2C), which was 
associated with platinum-based chemoresistance in the 
univariate and multivariate logistic regression model. The risk 
scores based on the 7-lncRNA signature for the prediction of 
platinum-based chemoresistance in patients with HGS-OvCa 
were also calculated. According to the risk scores, patients 
in the GEO training dataset were divided into low-score and 
high-score groups using the median risk score as a cut-off in 
the multivariate logistic regression model (Fig. 2D). The high-
score group exhibited a higher probability of drug resistance 
[univariate model: Odds ratio (OR), 2.675; 95% confidence 

Figure 1. Unsupervised hierarchical clustering of the platinum-based chemotherapeutic sensitive specimens in the GEO training dataset. (A) A total of two 
dominant clusters are present and identified as cluster 1 and cluster 2 by gene expression patterns. (B) A solid third cluster (identified as cluster 3) emerged when 
k=3. (C and D) Consensus matrices for the GEO training array do not show more than three definitive clusters even though additional clustering (k=4 and 5) was 
performed. Red color indicates the similarity between samples, and the samples that were clustered together are displayed. GEO, Gene Expression Omnibus.
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interval (CI), 1.841-3.897; P=6.36x10-7; multivariate model: 
OR, 2.859; 95% CI, 1.801-5.257; P=9.36x10-5). The results 
of Kaplan-Meier curves also indicated that the high risk 
score was significantly associated with the poor survival of 
patients with HGS-OvCa and drug resistance (n=47; log-rank, 
P<0.05; Fig. 2E).

Risk score can be used as an independent predictor for drug 
resistance. In the multivariate logistic regression model of 
the training datasets, platinum-based chemosensitivity was 
a dependent variable. Platinum-based chemosensitivity has 
multiple covariates, including tumor stage, grade, tumor size, 
molecular subtypes and risk score. However, the results indi-
cated that the risk score was an independent variable when 
adjusting using the covariates as aforementioned (OR, 2.859; 
95% CI, 1.801-5.257; P=9.36x10-5; Table III).

The results of the univariate and multivariate logistic 
regression analysis for the GEO validation set (n=220) and the 
TCGA validation set (n=233) confirmed that the risk score of 
the training set was associated with platinum-based chemore-
sistance of patients with HGS-OvCa (univariate model of the 
GEO dataset: OR, 4.190; 95% CI, 2.974-4.685; P<4.68x10-14; 
multivariate model of the GEO dataset: OR, 4.210; 95% CI, 
2.967-6.366; P<1.15x10-13; univariate model of TCGA dataset: 
OR, 2.315; 95% CI, 1.852-2.956; P=2.33x10-5; and multivariate 
model of TCGA dataset: OR, 2.514; 95% CI, 1.817-3.354; 
P=2.65x10-5; Table III). Furthermore, clinical characteristics 
and HGS-OvCa subtypes (differentiated, immunoreactive, 
proliferative and mesenchymal) were not associated with plat-
inum-based resistance in two validation datasets. Collectively, 
these results suggest that risk score has the potential to be 
an independent predictor for chemoresistance of HGS-OvCa 
cancer.

Predictive lncRNA signature performance evaluation. 
The risk score of the 7-lncRNA signature indicated a high 
sensitivity and specificity in predicting platinum-based 
chemoresistance in the GEO training (AUC=0.848), GEO 
validation (AUC=0.901) and TCGA validation (AUC=0.818) 
datasets (Fig. 3A). Compared with the lncRNA signature of 
the study by Liu et al (37), the lncRNA signature developed in 
the study by Zhou et al (36) and the TCGA mRNA signature, 
the 7-lncRNA signature exhibited an improved predictive 
performance (Fig. 3B-D).

Verification of the expression level of 7 lncRNAs in microarray 
and RNA-seq data. A total of 7 lncRNAs were observed in 
the GEO validation dataset, while F11-AS1 and RP11-348N5.7 
were not observed in the TCGA validation dataset and 
RNA-seq dataset, respectively. However, all of the 7 lncRNAs 
were covered by validation datasets. Notably, the expression 
levels of 7 lncRNAs were concordant in at least two validation 
datasets (P<0.05; Fig. 3E).

Predicted function of the 7 lncRNAs may be associated with 
drug resistance mechanisms. With several cycles of cisplatin 
or carboplatin treatment, ZBED1-AS1 was upregulated, 
while F11-AS1 was downregulated by platinum in OV56 
and OVKATE cell lines (P<0.05; Fig. 3F). Growth arrest 
specific 5 (GAS5) was downregulated by cisplatin in A2008, 
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DOV13B and HeyA8 cell lines (P<0.05; Fig. 3G). This indi-
cates that these lncRNAs may be involved in drug resistance 
mechanisms. Therefore, the functional prediction analysis 
of 7 lncRNAs based on NONCODE database was further 
performed. The results showed that a total of 42 GO terms 
were involved in the biological functions of 7 lncRNAs, which 
were distributed in ‘biological processes’ (91.3%) and ‘cellular 
components’ (8.7%). Furthermore, 16 of the 42 GO terms 
was associated with >1 lncRNA (Fig. 4). Based on ncDR, the 
aberrant regulation of lncRNAs was predicted to be resistant 
to dozens of compounds across various cancer types. For 
example, the upregulation of ZBED3-AS1 is associated with 

resistance to cisplatin, dasatinib and bicalutamide in low-grade 
glioma. The downregulation of RNF144A-AS1 is associated 
with resistance to dacinostat in sarcoma, and the downregu-
lation of GAS5 is associated with resistance to cisplatin and 
cytarabine in pancreatic adenocarcinoma.

Discussion

The compilation of multiple datasets offers a unique oppor-
tunity to discover transcriptional variation in HGS-OvCa. 
This type of combinatorial computational analysis must 
take the context of numerous confounding factors, including 

Figure 2. Heatmap of 7 lncRNAs and the distribution and DFS survival of risk score. (A) Differential expression analysis of the clusters. (B) The core steps 
involved in the identification of the 7 lncRNAs. (C) A heatmap based on the 7 lncRNAs (rows) of patients with ovarian cancer (columns) in the GEO training 
dataset. Red and blue indicate high and low expression levels, respectively. (D) The range of risk scores in the GEO training dataset. The median risk score was 
used as a cut-off value. Red and blue indicate high and low risk scores, respectively. (E) The Kaplan-Meier curve of DFS between low- and high-risk patients. 
Patients with high-risk scores had lower survival rates. Risk scores of each patient in the GEO entire dataset were sorted by risk score. DFS, disease-free 
survival; GEO, Gene Expression Omnibus. HR, hazard ratio; R, resistance; lncRNA, long non-coding RNA.
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distinct platforms, different protocols of sample collection 
and processing, and different normalization algorithms of 
expression level, which may not associate with tumor biology 
or consider cancer behavior (45). Therefore, in the present 
study, the independent analysis of multiple datasets was 
performed, and batch effect was removed. Furthermore, the 
verification of the expression levels of the identified lncRNAs 
was conducted using multiple datasets and cell lines. The 
results from multiple datasets were concordant and verified 
that the 4 upregulated lncRNAs (RP11-126K1.6, ZBED3-AS1, 
RP11-439E19.10 and RP11-348N5.7) and 3 downregulated 
lncRNAs (RNF144A-AS1, GAS5 and F11-AS1) were differ-
entially expressed in response to platinum. In addition, not 
only the 7-lncRNA signature, but also the individual lncRNAs 
themselves were associated with the prognosis of patients with 
HGS-OvCa.

The molecular mechanisms of drug resistance in ovarian 
cancer are mainly involved in apoptosis evasion, escape from 
immune surveillance and natural killer cell-mediated oncol-
ysis, promotion of DNA repair, and sustained angiogenesis, 
proliferation, invasion and metastasis (6,47,48). To date, the 
majority of the lncRNAs reported have not been functionally 
characterized in drug-resistant ovarian cancer.

GAS5 has been reported as a biomarker of drug resistance 
in non-small cell lung cancer (49) and breast cancer (50). The 
downregulation of GAS5 promotes the proliferation, migration 
and invasion of ovarian cancer cells, and inhibits apoptosis, 
which leads to a poor prognosis (51,52). From the results of 
functional prediction in the present study, the downregula-
tion of RNF144A-AS1 and GAS5, and the upregulation of 
RP11-126K1.6, RP11-439E19.10 and RP11-348N5.7 in patients 
with ovarian cancer may contribute to platinum resistance 

Figure 3. ROC curves of 4 signatures in 3 datasets and validation of the expression of the 7 identified lncRNAs. (A) ROC curves of the seven-lncRNA signature 
in three datasets. (B) ROC curves of the 4 signatures in the GEO training dataset. (C) ROC curves of the 4 signatures in the GEO validation dataset. (D) ROC 
curves of the 4 signatures in the TCGA validation dataset. (E) The expression levels of 7 lncRNAs in 3 different datasets, including 2 types of data sources 
(microarray or RNA-seq). A total of 6/7 lncRNAs were observed in the TCGA validation dataset and RNA-seq data, respectively. Blue and red boxes indicate 
platinum-based chemotherapeutic sensitive and resistant high-grade serous ovarian carcinoma patients, respectively. (F) The expression levels of lncRNA 
ZBED1-AS1 and F11-AS1 in 23 types of cell lines from CCLE. (G) The expression levels of lncRNA GAS5 in 3 types of cell lines. The best cutoff of each 
ROC curve was calculated and indicated by a small circle. True-positive and false-positive rates indicate sensitivity and one minus specificity, respectively. 
For visualization and comparison, expression levels of 3 datasets and cell lines were previously normalized using Z-score. *P<0.05, **P<0.01 and ***P<0.001. 
GAS5, growth arrest specific 5; lncRNA, long non-coding RNA; RNA-seq, RNA-sequencing; ROC, receiver operating characteristic curve; GEO, Gene 
Expression Omnibus; TCGA, The Cancer Genome Atlas; AUC, area under the curve.
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by affecting the regulation of tumor growth. RNF144A-AS1, 
F11-AS1, ZBED3-AS1, RP11-439E19.10 and RP11-348N5.7 
were predicted to participate in the acute-phase response. The 
acute-phase response serves as a core of the innate immune 
response, which can be triggered by inflammation (53). It has 
been confirmed that inflammation and immunogenic-tumor 
microenvironment interactions will increase the risk of ovarian 
tumor initiation and progression by overexpression of several 
proinflammatory cytokines (54,55). For example, the complex 
formed by the binding of the proinflammatory cytokine inter-
leukin-6 (IL-6) to its receptor IL-6R activates Janus kinase 
and various downstream effectors, including signal transducer 
and activator of transcription 3 and mitogen-activated protein 
kinase, which are critical for cell proliferation, apoptosis evasion, 
survival and drug resistance in ovarian cancer (6,56,57). Taken 
together, the present results indicated that the 5 lncRNAs 
(RNF144A-AS1, F11-AS1, ZBED3-AS1, RP11-439E19.10 and 
RP11-348N5.7) may interact with proinflammatory cytokines to 
promote ovarian tumor initiation and progression. Additionally, 
the ncDR database also indicated that the identified lncRNAs 
were involved in resistance to platinum-based chemotherapeu-
tics across various cancer types.

The present study has a number of limitations. Once 
multiple-transcript probes have been identified as candidate 
features of the multivariate logistic regression model, multi-
collinearity could be a concern for the accuracy of predictors. 
Multicollinearity does not reduce the predictive reliability of 
the entire signature. In the present study, there was no collin-
earity between other lncRNAs and the 7 candidate lncRNAs. 

In addition, lncRNA records vary in well-known biological 
databases. Although in the present study the lncRNAs records 
from multiple databases were re-integrated for lncRNA iden-
tification, the omission of identification of lncRNAs may still 
occur.

In the present study, a 7-lncRNA signature for predicting 
platinum-based chemoresistance in patients with HGS-OvCa 
was developed. The signature is independent of clinical char-
acteristics and molecular subtypes of HGS-OvCa, and can be 
used as a novel prognostic marker, with the potential to be 
a therapeutic molecular target in the future. Further clinical 
studies are required for validating the lncRNAs identified in 
the present study and for investigating the underlying mecha-
nisms of drug resistance in HGS-OvCa.
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