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Abstract. Cancer stem cells (CSCs), also known as tumor-
initiating cells, are a subpopulation of tumor cells that exhibit 
properties similar to those of normal stem cells. Oxygen is an 
important regulator of cellular metabolism; hypoxia-inducible 
factors (HIFs) mediate metabolic switches in cells in hypoxic 
environments. Hypoxia clearly has the potential to exert a 
significant effect on the maintenance and evolution of CSCs. 
Both HIF‑1α and HIF‑2α may contribute to the regulation of 
cellular adaptation to hypoxia and resistance to cancer thera-
pies. This review provides an overview of the roles of HIFs 
in CSCs. HIF‑1α and HIF‑2α have significant prognostic and 
predictive value in the clinic and the concept of personalized 
medicine should be applied in designing clinical trials for HIF 
inhibitors.

Contents

1.	 Brief history of CSCs
2.	 Origin of CSCs
3.	 Properties of CSCs
4.	 The roles of HIFs in cancer
5.	 The roles of HIFs in CSCs
6.	 Future perspectives

1. Brief history of CSCs

The original hypothesis of CSCs was proposed several 
decades ago (Fig. 1). Virchow first proposed that some tumors 
may arise from embryo-like cells and that cancer cells have 
properties reminiscent of stem cells reported in 1855 (1). In 
1937, Furth and Kahn confirmed that a single leukemic cell 
from a mouse tumor could initiate a new tumor in a recipient 
mouse  (2). Southam and Brunschwig harvested recurrent 

cancer cells from patients and demonstrated the differential 
tumor-forming ability of these cells in 1961  (3). In 1977, 
Hamburger and Salmon found that tumor stem cell colonies 
arising from different types of cancer have differing growth 
characteristics and colony morphology (4). Lapidot et al (5) 
defined a new leukaemia-initiating cell from human acute 
myeloid leukemia (AML) by using a mouse model in 1994. 
Bonnet and Dick first demonstrated the existence of CSCs 
in AML in 1997 (6). This is the most notable and definitive 
evidence regarding the existence of CSCs. Following research 
into leukemia, the first CSCs identified in solid tumors were 
demonstrated in breast cancer by Al-Hajj and colleagues in 
2003 (7). Since then, numerous studies have provided evidence 
of the existence of CSCs in solid tumors of a number of tissue 
types, including the brain (8), breast (9) and prostate (10).

2. Origin of CSCs

According to the somatic stem cell hypothesis, mutations or 
chromosomal rearrangements in dormant stem cells present 
in organs may induce the formation of CSCs (11). It has been 
demonstrated that the implantation of embryonic stem cells 
or the induction of pluripotent stem cells in mice results in 
cancer (12). Another view on the origin of CSCs is that cancer 
cells with genetic instability may generate CSCs (13). Cancer 
cells transfected with Oct3/4, Sox2, Klf4 and c-Myc have been 
reported to transform into CSCs (14).

In most scenarios, CSC subpopulations have emerged 
following the accumulation of epigenetic and/or genetic 
alterations in normal stem cells or cancer cells. However, in 
2013, Wang et al (15) hypothesized that CSCs develop de novo 
from the misplaced somatic stem cells and proposed a new 
theory of carcinogenesis; the stem cell misplacement theory. 
This theory stated that misplaced epithelial stem cells, which 
reach the wrong tissue stroma by accident undergo malignant 
transformation and become CSCs.

3. Properties of CSCs

CSCs, also known as tumor-initiating cells or tumor-propa-
gating cells are a subpopulation of tumor cells that demonstrate 
properties similar to normal stem cells (16). Tumor-initiating 
cells may better describe these cells; however, we have referred 
to these cells as CSCs in this review. At the 2006 meeting of 
the American Association for Cancer Research, Reya et al (17) 
proposed the definition of a cancer stem cell as a cell within 
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a tumor that possesses the capacity to self-renew and produce 
the heterogeneous lineages of cancer cells that comprise the 
tumor.

Tumorigenicity and self-renewal. The core definition of 
CSCs comprises their ability to induce tumor formation (17). 
Tumorigenicity is defined as the capacity of a cell popula-
tion inoculated into an animal model to produce a tumor by 
proliferation (18). The process of tumorigencity has been long 
known to resemble organogenesis; most tumors are hetero-
geneous, containing many cells that vary phenotypically 
and functionally (19). The current hypothesis is that tumor 
growth and progression are driven by minority populations of 
tumorigenic cells, and that other cancer cells have little or no 
capacity to contribute to tumor growth (20). The proportion of 
tumorigenic cells in cancer is very low. For example, both in 
the study by O'Brien et al (21) and Hope et al (22), only one cell 
in 104-106 unsorted human cancer cells was able to generate a 
tumor following xenotransplantation into immunosuppressed 
mice. In the study by Xia et al (23), they also found that the 
tumorigenic cell fraction comprised only 0.28% of Lewis lung 
carcinoma cells.

Two main approaches have been used to identify 
tumorigenic cells in published studies: One method is termed 
‘spheroid colony formation; and is considered the most appro-
priate in vitro assay to detect the malignant transformation of 
cells (25), and the other one is an in vivo method involving 
implantation of tumorigenic cells in immunodeficient 
mice (26).

The hallmark of stem cells is their dual ability to self-renew 
and to generate multiple cell lineages with more differenti-
ated characteristics (26). Self-renewal is the ability of a CSC 
to sustain itself and continue to give rise to cells with equal 
abilities of tumorigenicity (27). CSCs can self-renew through 
asymmetric cell division in which one daughter cell possesses 
stem cell properties  (28). Prior to asymmetric division, 
unequally distributed cellular components are differentially 
enriched at either the apical or basal pole, in which the mitotic 
spindle apparatus and centrosomes are unequally aligned (29).

Drug resistance. Anticancer drugs have been applied alone or 
in combination to prolong life or to alleviate the symptoms of 
cancer for decades (30,31). However, these drugs have failed 
to completely eradicate cancers. Multidrug resistance (MDR) 
plays an important role in preventing drug absorption (32). 
Various factors can contribute to MDR, including the exis-
tence of CSCs (33). CSCs possess multiple mechanisms of 
drug resistance: A high expression of ABC transporters and 
anti-apoptotic factors, and the maintenance of a quiescent 
state to avoid the induction of apoptosis (34). The ABC trans-
porter family acts by pumping drugs into the extracellular 
domain (35). To date, 49 human ABC genes have been identified 
and are clustered in seven subfamilies (ABCA-ABCG) (36). 
There are three major transporters correlated with MDR, 
including P-glycoprotein (MDR1/ABCB1), MDR-associated 
protein (MRP/ABCC1) and breast cancer resistance protein 
(BCRP/ABCG2) (37).

P-glycoprotein (ABCB1). P-glycoprotein (P-gp) is a 170 kDa 
phosphoglycoprotein constituting two transmembrane 

domains and two cytosolic nucleotide-binding domains 
(Fig.  2)  (38). P-gp overexpression is related to negative 
clinical outcomes, including treatment failure, relapse and 
survival. An increased P-gp expression has been observed 
in breast tumor biopsies treated with conventional chemo-
therapy (39). In a previous study on AML, the relapse rates 
were associated with elevated P-gp expression levels (40). 
A similar observation was reported in a study on multiple 
myeloma, in which 6% of patients expressed P-gp at diag-
nosis, and >43% of patients exhibited overexpressed P-gp 
following treatment  (41). The patients with osteosarcoma 
that did not overexpress P-gp had significantly better relapse-
free rates and improved survival rates of 5 to 14 years (42). 
P-gp plays a significant role in transporting a diverse array 
of molecules, including anionic, and neutrally charged drugs 
and toxins (43-45).

MRP/ABCC1. MRP1/ABCC1 was the first gene to be identified 
in the ABCC subfamily and was cloned from an MDR small 
cell lung cancer cell  (46). Numerous studies have demon-
strated the upregulation of MRP1 in a variety of solid tumors, 
such as those of the lung, breast and prostate (47-49). MRP1 
is potentially an important target for reversing chemotherapy 
resistance in many cancers (50).

Breast cancer resistance protein (BCRP/ABCG2). Human 
BCRP is encoded by the ABCG2 gene which is located 
on chromosome 4q22  (51). ABCG2 is the second member 
of subfamily G within the large human ABC transporter 
superfamily  (49). BCRP is believed to exhibit important 
physiological and pathophysiological functions in tissues and 
is involved in cellular protection and in mediating the homeo-
stasis of physiological substrates (52).

4. The roles of HIFs in cancer

Hypoxia is an important factor that affects clinical outcomes 
by promoting genetic instability, tumor cell metastasis and 
invasiveness (53). The HIF protein is a heterodimeric complex 
formed by an oxygen-dependent α subunit and an oxygen-
insensitive β subunit (53). The three HIFα subunits (HIF-1α, 
HIF-2α and HIF-3α) with a HIF‑1β subunit act as key mediators 
of cellular adaptation to low oxygen (54). The carboxy-terminal 
domain of HIF‑1α and HIF‑2α consists of domains that 
regulate its stability (the oxygen-dependent degradation 
domain, ODD) and transcriptional activity (two transactiva-
tion domains  (TADs), N-TAD and C-TAD (Fig.  3)  (55). 
Furthermore, both the C- and N-termini of the α subunits have 
nuclear localization signals (N-NLS and C-NLS, respectively) 
that direct them to the nucleus (Fig. 3) (56). The stability of 
HIF‑1α and HIF‑2α is regulated by oxygen tension (57). HIF‑1α 
and HIF‑2α have been extensively studied and are ubiqui-
tously expressed in normal tissue (58). C-TAD regulates most 
hypoxia-induced genes, although a subset of genes depended 
solely on N-TAD initiation, and N-TAD contributes to target 
gene specificity of HIF‑1α and HIF‑2α (59). An increased 
HIF‑1α or HIF‑2α expression has been observed in many types 
of cancer, such as breast (60), colon (61), lung (62), pancreatic 
(63) and ovarian cancers (65) (Figs. 4 and 5). Upon exposure 
of the cells to hypoxia, the HIFα subunits accumulate in the 
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Figure 1. The timeline of cancer stem cell research.

Figure 2. Ideograph of ABCB1 protein generated using Peptide Atlas (https://db.systemsbiology.net/sbeams/cgi/PeptideAtlas/Search). P-glycoprotein (P-gp) is 
a 170 kDa phosphoglycoprotein constituting two transmembrane domains and two cytosolic nucleotide-binding domains.

Figure 3. Structure of HIF‑1α and HIF‑2α was downloaded from PDB. HIF‑1α and HIF‑2α protein contain a bHLH region, a PAS region and an ODD domain. 
HIF, hypoxia inducible factor; bHLH, basic-helix-loop-helix; PAS, Per/Arnt/Sim; ODD, oxygen-dependent degradation; PDB, protein database.
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Figure 4. Expression profile for HIF‑1α in human cancers found by the SAGE 
DGED (http://www.ncbi.nlm.nih.gov/SAGE/). HIF‑1 is expressed highly in 
the brain, thyroid, breast, pancreas, stomach and in prostate cancer. HIF, 
hypoxia inducible factor.

Figure 5. Expression profile for HIF‑2α in human cancers found by the SAGE 
DGED (http://www.ncbi.nlm.nih.gov/SAGE/). HIF‑2 expressed highly in 
brain, pancreas, and stomach cancer. HIF, hypoxia inducible factor.
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nucleus and bind to their target genes, such as BNIP3, PGK1, 
HK1 and TP11 (Fig. 6) (65). The target genes participate in the 
proliferation, apoptosis, metabolism and invasion, as well in 
the and resistance of cancer cells to therapy (66-68).

Genetic polymorphisms of HIF‑1α or HIF‑2α in human 
cancers have been found in previous studies (69-74). The 
single nucleotide polymorphisms 1772C/T (rs11549465) and 
1790 G/A (rs11549467) have been shown to be significantly 
associated with the overall risk of developing lung, breast, 
oral, prostate, cervical and renal cancers (69). Frank et al (70) 
demonstrated a significant association between rs2057482 in 
HIF‑1α with the risk of rectal cancer. Guo et al (71) found 
that rs2057482 was associated with worse clinical outcomes 

of patients with hepatocellular carcinoma. Han et  al  (72) 
observed that rs9679290, rs4953346 and rs12617313 of HIF‑2α 
were associated with the risk of developing renal cell carci-
noma. Yamamoto et al (73) reported that HIF‑2α rs13419896 
was associated with a decreased risk of developing lung 
cancer. HIF2A rs11125070 and rs4953352 are associated with 
the disease-free and overall survival of patients with colorectal 
cancer (74).

A non-coding RNA (ncRNA) is a functional RNA 
molecule that is not translated into a protein (75). miRNAs 
are the perfect candidates for controlling HIF expression 
during hypoxia (76). These so-called hypoxamiRs contribute 
to HIF‑1 accumulation and the maintenance of HIF‑2 and 

Figure 6. Interaction genes of HIF‑1α and HIF‑2α were analyzed using STRING (https://string-db.org/cgi/input.pl). HIF‑1α could interact with EGLN1-3, 
AKT1, TP53, and VHL. HIF‑2α could interact with EGLN1-3, EPO, SIRT1, and VHL. HIF, hypoxia inducible factor.

Figure 7. HIF‑1α and HIF‑2α in the driver seat of tumorigenesis. HIF, hypoxia inducible factor.
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HIF‑3 (77,78). For example, the hypoxic induction of miR-18a 
may allow HIF‑1α level decreases and thus contribute to the 
HIF switch (79). miR-17, miR-20a and miR-20b have been 
reported to be involved in the HIF‑related response during 
hypoxia in cancer cells (80). lncRNA HIF‑1A-AS2 negatively 
regulates HIF‑1α and is upregulated in non-papillary clear cell 
renal carcinomas (81). lncRNA sONE or NOS3AS regulates 
the expression of endothelial nitric oxide synthase (eNOS), 
under normal oxygen conditions and hypoxic conditions (82).

5. The roles of HIFs in CSCs

Increasing evidence indicates that HIFs regulate the sub-
populations of CSCs (83,84). The activation of HIF‑1α not only 
increases the number of cluster of differentiation (CD)133-
positive glioma stem cells, but also enhances the stem-like 
phenotype of cell lines (85). CSCs within several brain tumors 
are preferentially located in hypoxic niches (86). HIFs induce 
the self-renewal capacity and inhibit the differentiation of 
glioblastoma CSCs (87). The impact of hypoxia is mediated by 
HIF‑1α, but not by HIF‑2α, and is associated with the induc-
tion of the Hippo signaling pathway in breast CSCs (88). One 
key regulator of BCSC activity is a Hippo pathway effector, 
TAZ, which is a direct target of HIF‑1α (89). HIF activity can 
promote a stem-like phenotype and increase the number of 
leukemia stem cells (90). In AML, HIF‑1α is overexpressed 
and selectively activated in CD34+CD38- subsets (91). In lung 
cancer, hypoxia-induced CD133 expression is associated with 
the binding of OCT4 and SOX2 to the PROM1 promoter (92). 
The targeting of HIF‑1α or HIF‑2α by short hairpin RNA in 
CD133+ cells from a patient with glioblastoma inhibited their 
neurosphere-forming ability and proliferation, induced the 
caspase-dependent apoptotic effect in vitro and attenuated 
their tumor-initiating potential in vivo (93). The expression of 
CD44 and Oct4 stem cell markers is decreased in colorectal 
cancer cells in response to HIF‑1α knockdown (94). CD24 
expression is strongly induced by hypoxia in a human bladder 
cancer cell line (95). In addition, combined HIF‑1α and CD24 
immunostaining in human urothelial cancer samples showed 
a statistically significant association (95). HIF‑2α expression 
stimulates Oct-4 expression and promotes c-Myc activity, 
which powerfully impact cancer stem cell formation  (96). 
HIF‑2α mRNA is significantly transcriptionally upregulated 
under normoxia and hypoxia in glioma stem cells (GSCs) (97).

6. Future perspectives

Hypoxia has notable potential to exert significant effects on 
the maintenance and evolution of CSCs. Both HIF‑1α and 
HIF‑2α contribute to the regulation of cellular adaptation to 
hypoxia and the resistance to cancer therapies (Fig. 7). The 
simultaneous targeting of the HIF‑1α and HIF‑2α pathways 
may improve clinical responses within the hypoxic tumor 
microenvironment. Therefore, the concept of personalized 
medicine should be applied in designing clinical trials for HIF 
inhibitors.
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