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Abstract. Gastric cancer (GC) is the fifth most common cancer 
and the third leading cause of cancer-associated mortality 
worldwide. In the current study, comprehensive bioinformatic 
analyses were performed to develop a novel scoring system 
for GC risk assessment based on CAP-Gly domain containing 
linker protein family member 4 (CLIP4) DNA methylation 
status. Two GC datasets with methylation sequencing informa-
tion and mRNA expression profiling were downloaded from 
the The Cancer Genome Atlas and Gene Expression Omnibus 
databases. Differentially expressed genes (DEGs) between 
the CLIP4 hypermethylation and CLIP4 hypomethylation 
groups were screened using the limma package in R 3.3.1, 
and survival analysis of these DEGs was performed using the 
survival package. A risk scoring system was established via 
regression factor-weighted gene expression based on linear 
combination to screen the most important genes associated 
with CLIP4 methylation and prognosis. Genes associated with 
high/low-risk value were selected using the limma package. 
Functional enrichment analysis of the top 500 DEGs that 
positively and negatively associated with risk values was 
performed using DAVID 6.8 online and the gene set enrich-
ment analysis (GSEA) software. In total, 35 genes were 
identified to be that significantly associated with prognosis and 

CLIP4 DNA methylation, and three prognostic signature genes, 
claudin-11 (CLDN11), apolipoprotein D (APOD), and chordin 
like 1 (CHRDL1), were used to establish a risk assessment 
system. The prognostic scoring system exhibited efficiency in 
classifying patients with different prognoses, where the low-
risk groups had significantly longer overall survival times than 
those in the high-risk groups. CLDN11, APOD and CHRDL1 
exhibited reduced expression in the hypermethylation and low-
risk groups compare with the hypomethylation and high-risk 
groups, respectively. Multivariate Cox analysis indicated that 
risk value could be used as an independent prognostic factor. 
In functional analysis, six functional gene ontology terms and 
five GSEA pathways were associated with CLDN11, APOD 
and CHRDL1. The results established the credibility of the 
scoring system in this study. Additionally, these three genes, 
which were significantly associated with CLIP4 DNA meth-
ylation and GC risk assessment, were identified as potential 
prognostic biomarkers.

Introduction

Gastric cancer (GC) is the fifth most common cancer in both 
sexes and the third most common cause of cancer-associated 
mortality worldwide (1). Due to the advances in diagnostic 
and therapeutic approaches, long-term survival for patients 
with early stage of GC has improved; however, the outlook for 
individuals with advanced GC is still disappointing because 
of poor prognosis and limited treatment options (2,3). Poor 
prognosis is frequently explained by the lack of early diag-
nostic biomarkers and effective therapeutic treatments (3). As 
the prognosis of GC is closely associated with the stage of 
the disease at diagnosis, novel diagnostic modalities for early 
stages and novel therapeutics are urgently required (4). Several 
diagnostic biomarkers, such as aberrantly methylated DNA, 
have aided the diagnoses and disease monitoring efforts in 
GC.

Changes in DNA methylation have crucial roles during the 
early stages of GC; therefore, aberrant DNA methylation is 
highlighted as the main change differentiating GC subtypes 
from the very first stage (2,5,6). Over 550 studies have demon-
strated that aberrant epigenetic changes of >100 genes have 
crucial roles during the early stages of GC (7,8). For example, 
a recent report associated promoter methylation of CAP-Gly 
domain containing linker protein family member 4 (CLIP4) 
with the increase in severity of gastritis with no metaplasia to 
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gastritis with metaplasia and GC, which may be a potentially 
useful molecular tool for GC risk stratification in endoscopic 
biopsies (9).

CLIP4, also known as UBASH3A or TULA, is a member of 
the T-cell ubiquitin ligand family. These proteins can suppress 
T-cell signaling, facilitate growth factor withdrawal-induced 
apoptosis in T-cells and promote the accumulation of various 
activated target receptors, such as T-cell receptors and 
epidermal growth factor receptors (EGFRs), which can induce 
cell invasiveness and metastasis (10-12). Additionally, CLIP4 
is involved in regulating the expression of several tumor-asso-
ciated genes, such as spleen associated tyrosine kinase, a 
member of the protein tyrosine kinase family associated with 
cell motility and increased cell migration (13-15), and Cbl 
proto-oncogene, which downregulates EGFR and activates 
the epithelial-mesenchymal transition-associated EGFR 
signaling pathway (10,16). CLIP4 expression is also suggested 
to stimulate tumor metastasis in certain tumor types (17).

Considering the involvement of CLIP4 in tumor metastasis 
and the association between its promoter methylation and GC, 
it is worth exploring the CLIP4 DNA methylation-associated 
genes that may facilitate further understanding of the func-
tion of CLIP4 in the pathogenesis of GC and provide potential 
diagnostic biomarkers for clinical treatment.

In the present study, large quantities of methylation 
sequencing information and the mRNA expression profiling 
data from GC samples published in The Cancer Genome 
Atlas (TCGA) database were used to screen out the signifi-
cant differentially expressed genes (DEGs) associated with 
CLIP4 DNA methylation. A prognostic scoring system was 
established based on the screened genes and simultane-
ously validated by the datasets from the independent Gene 
Expression Omnibus (GEO) database. The reliability of the 
prognostic scoring system was further validated by correla-
tion analysis between clinical characteristics and prognosis. 
Functional enrichment analysis of DEGs related to prognosis 
was performed using gene ontology (GO) and gene set enrich-
ment analysis (GSEA).

Materials and methods

Samples and datasets. Information of the samples in the 
training dataset. The training dataset, containing 393 GC 
samples with both methylation sequencing information 
(Illumina Human Methylation 450 platform) and mRNA 
expression profiling data (Illumina platform), was downloaded 
from the TCGA database (https://portal.gdc.cancer.gov/) 
on February 10, 2017. The 393 patients with GC consisted 
of 258 males and 135 females with 65.761±10.706 years 
[mean ± standard deviation (SD)]. There were 251 Caucasian 
patients, 107 non-Caucasian patients, and the race of the 
remaining patients was unavailable. There were 52 stage I, 125 
stage II, 173 stage III, 32 stage IV cases and the remaining 
cases were at unknown stages. A total of 152 patients had 
succumbed to disease when data was submitted, with an 
average survival time of 438.88±384.35 days. Information of 
the samples in the training dataset is summarized in Table I.

Information of the samples in the validation dataset. 
The validation dataset, containing 157 GC samples with 

methylation sequencing information (GSE30601; Illumina 
HumanMethylation27 BeadChip; ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE30601) and mRNA expression profiling data 
(GSE15460; Affymetrix GeneChip Human Genome U133 
Plus 2.0; ;ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE15460), 
was downloaded from the GEO database (18). The 157 GC 
patients consisted of 100 males and 57 females with 
63.242±12.607 years (mean ± SD). There were 23 stage I, 25 
stage II, 59 stage III and 20 stage IV cases, and the remaining 
stages were unavailable. The average survival time for 81 
patients was 699.88±728.17 days (mean ± SD). Information on 
the samples in the validation dataset is summarized in Table I.

Selection of candidate expression factors. Samples were 
divided into CLIP4 hypermethylation and CLIP4 hypomethyl-
ation groups according to the median CLIP4 methylated value 
of 0.326. The gene expression differences between the two 
groups were compared using the limma package in the R soft-
ware 3.3.1 (19), and genes with |log fold change (FC)| >1 and 
Benjamini-Hochberg (BH)-adjusted P<0.01 were considered to 
be significant DEGs. Subsequently, survival analysis associated 
with these DEGs was performed by Kaplan-Meier analysis and 
univariate Cox regression analysis using the ‘survidiff’ func-
tion in the survival package of R 3.3.1 (20,21) and P<0.05 was 
set as the significance threshold. As mortality of patients with 
an overall survival (OS) of <30 days may due to other factors, 
these patients and those without survival data were excluded 
from the survival analysis. The KM diagram was generated 
using ‘ggsurvplot’. The top three genes that were significantly 
associated with OS (P<0.005) were selected as signature genes.

Establishment of the risk assessment model. Each risk 
value was calculated as a linear combination of the mRNA 
expression value (expr) following weighting by regression 
coefficients (β) (22-24). The risk score for each patient was 
calculated according to the following formula:
Risk score = βgene1 x exprgene1 + βgene2 x exprgene2 + βgene3 x exprgene3

β represents the gene risk coefficient, expr represents the gene 
expression level and gene1, gene2 and gene3 represents the 

Table I. Information of samples in training and validation 
datasets.

  GSE30601 and 
 TCGA GSE15460 
Parameter (n=393) (n=157)

Age (mean ± SD) 65.761±10.706 63.242±12.607
Sex (male/female) 258/135 100/57
Stage (I/II/III/IV) 52/125/173/32 23/25/59/20
Overall survival 438.88±384.35 699.88±728.17
(mean ± SD)
Radiotherapy (yes/no) 77/366
Chemotherapy (yes/no) 183/260
Targeted molecular therapy 190/253
(yes/no)

TCGA, The Cancer Genome Atlas; SD, standard deviation.
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three genes. The high- and low-risk groups were classified 
based on the median of the risk values.

Functional annotation of the prognostic genes. BH-adjusted 
P<0.01 was used as the threshold to screen out genes signifi-
cantly associated with high- and low-risk groups using the 
limma package. According to the association between the 
genes and their risk values, the genes positively or negatively 
associated with the risk value were defined as the high-risk 
group and high expression genes, or low-risk group and low 
expression genes, respectively. The top 100 (alternatively 50) 
genes with high and low expression were chosen to generate a 
heatmap plot using the ggplot2 drawing package. Subsequently, 
functional enrichment analysis and mapping of the top 500 
genes with high and low expression levels were performed 
using the DAVID 6.8 online software (https://david.ncifcrf.
gov) (25,26).

Verification of gene functions was performed via the 
screening standard, nominal P<0.05, using the GSEA soft-
ware (software.broadinstitute.org/gsea/index.jsp) (27,28). 
GSEA analysis is a statistical method for calculating the 
enrichment of a gene list in a pathway. Briefly, all the genes 
in a particular gene list are scored and ranked by a statistical 
method based on their expression levels. The primary result 
of GSEA is the enrichment score (ES), which reflects the 
degree to which a pathway is overrepresented at the top or 
bottom of the ranked list of genes. The ES was calculated by 
walking down the ranked list of genes, increasing a running-
sum statistic when a gene is in the pathway while decreasing 
it when it is not. The ES is the maximum deviation from 
zero encountered in walking the list. The score at the peak of 
the plot is the ES for the gene set. Gene sets with a distinct 
peak at the beginning or end of the ranked list are generally 
the most interesting. For this process, the significant P-values 

calculated by permutation 1,000 times determined whether 
the genes were enriched or not.

Statistical analysis. In addition to the statistical methods 
noted above, the statistical method used in this study was 
t-test. Univariate Cox regression was used to analyzed the 
clinical features and risk score for association with patient 
OS. Multivariate Cox regression analysis were conducted to 
evaluate whether the clinical features and risk score was inde-
pendent of other clinical variables, with hazard ratios were 
calculated. P<0.05 was considered to indicate a statistically 
significant difference using R 3.3.1.

Results

Identification and validation of a three-gene prognostic 
signature in two datasets. The workflow of the current study 
is presented in Fig. 1. In the training dataset, the samples 
were divided into the hypermethylated and hypomethylated 
groups, each with 168 individuals, based on 0.326 as the 
median of the CLIP4 methylated values. The gene expres-
sion differences between the two groups were compared 
using the limma package, and 279 DEGs were filtered via 
the threshold |logFC| >1 and BH-adjusted P<0.01. This 
revealed the expression level of 35 genes were significantly 
associated with prognosis, obtained using the univariate Cox 
regression analysis (data not shown). High expression levels 
of 32 genes out of 35 were associated with shorter OS; while 
higher expression levels of the other 3 genes were associ-
ated with longer OS. The top three genes with lowest P-value 
(P<0.005), claudin-11 (CLDN11), apolipoprotein D (APOD), 
and chordin like 1 (CHRDL1), were selected as the prog-
nostic gene signatures in the CLIP4 DNA hypermethylation 
patients.

Figure 1. Workflow of the present study. TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus; CLIP4, CAP-Gly domain containing linker 
protein family member 4.
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Using these three genes, a risk assessment system for 
cancer patients was established via regression-weighted gene 
expression based on linear combination. The risk score for 
each patient was calculated according to the following formula: 
Risk score = 0.30 x CLDN11 expression + 0.16 x APOD expres-
sion + 0.14 x CHRDL1 expression.

Patients in the hypermethylation group were divided into 
high- and low-risk groups according to median risk score 
of 0.4289. Fig. 2 indicated that the OS of the patients in the 
low-risk group was significantly improved compared with 

those in the high-risk group (P=0.00744; KM analysis and 
log-rank test). The OS median values of the low- and high-risk 
groups were 538.5 days and 422 days, respectively.

The median of methylation in the training set was used 
as the standard for dividing samples in validation dataset 
into hypomethylation and hypermethylation groups. In 
the validation dataset, 48 patients were classified into the 
hypermethylation group. The risk scores of samples in the 
hypermethylation group of validation set were calculated 
according to the risk assessment system, and the samples were 
also divided into high-risk group and low-risk group according 
to the median risk score. Using the median risk score of 5.04 
as the dividing point, the samples were divided into high- and 
low-risk groups with 24 individuals in each group. Fig. 3 
demonstrated that the OS of the patients in the low-risk group 
was significantly improved compared with those in the high-
risk group (P=0.0083, KM analysis and log-rank test). The OS 
median values of the low- and high-risk groups were 462 days 
and 345 days, respectively. This result suggested that the risk 
assessment was also effective in the validation dataset.

Clinical and molecular features of the low- and high-risk 
patients with CLIP4 promoter methylation. Fig. 4 indicated 
that the expression levels of the three DEGs, CLDN11, 
APOD and CHRDL1, in the hypermethylation group were 
significantly lower than those in the hypomethylation group. 
The P-values, determined via Student's t-test, were 1.09x10-13 
(CLDN11), 4.12x10-8 (APOD) and 0.00128 (CHRDL1). Further, 
their expression levels were significantly different between the 
high- and low-risk groups in the CLIP4 DNA hypermethyl-
ation patients, as presented in Fig. 5.

The independence of the three important factors was also 
evaluated. In the training dataset, univariate Cox regression 
analysis of patient age, sex, race, chemotherapy, targeted 
molecular therapy, radiotherapy and risk value were analyzed 
for association with patient OS. Targeted molecular therapy, 
radiotherapy and risk value were associated with GC patient 
overall survival time (P<0.05; Table II). Multivariate Cox 
analysis was also performed on targeted molecular therapy, 

Figure 2. Kaplan-Meier plot of the OS for the low- and high-risk group in 
the training dataset. Samples were divided into hypermethylation group and 
hypomethylation according to the median of the CAP-Gly domain containing 
linker protein family member 4 methylation values. Differentially expressed 
genes analysis was performed for the two groups. Three genes significantly 
associated with OS (P<0.005) were selected as the prognostic gene signa-
tures. A risk assessment system was established based on the expression level 
of claudin-11, apolipoprotein D and chordin like 1. The patients in hyper-
methylation group were divided into high- and low-risk groups according to 
median risk score. The prognosis of the patients in the low-risk group was 
significantly better than those in the high-risk group. OS, overall survival.

Figure 3. Kaplan-Meier plot of OS for the low- and high-risk group in the 
validation dataset. Samples were divided into hypermethylation group and 
hypomethylation according to the median of the CAP-Gly domain containing 
linker protein family member 4 methylation values. A risk assessment system 
was established and patients in hypermethylation group were divided into 
high- and low-risk groups according to median risk score. The prognosis of 
the patients in the low-risk group was significantly better than those in the 
high-risk group. OS, overall survival.

Table II. Univariate and multivariate Cox analysis of clinical 
data with overall survival of samples in the training dataset.

 Univariate Cox Multivariate Cox
 -------------------------------- --------------------------------
Variable P-value HR P-value HR

Age (>60/≤60) 0.0745 1.0142
Sex (male/female) 0.0899 1.3700
Race (white/non-white) 0.6412 1.0352
Chemotherapy (yes/no) 0.0646 0.7302
Targeted molecular 0.0300 0.6886 0.7461 0.9342
therapy (yes/no)
Radiotherapy (yes/no) 0.0013 0.4544 0.0296 0.5260
Risk value  0.0089 0.4635 0.0065 0.6091
(>median/≤median)

HR, hazard ratio.
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radiotherapy and risk value. The results showed radiotherapy 
and risk value to be independent prognostic factors. Fig. 6 
demonstrated the risk values, OS and expression levels of the 
three genes in the training (left) and validation (right) datasets.

Association of the three-gene signature prognosis values 
with pathological stage and radiotherapy. CLIP4 is reported 

to be closely associated with to cancer development (9,29). 
Therefore, prognostic differences between the high- and low-
risk groups in patients with CLIP4 hypermethylation during 
different stages were explored in the current study. Fig. 7 
results indicated no significant prognostic difference between 
the high- and low-risk groups during stages 1 and 2, potentially 
due to an insufficient amount of total statistical samples, even 

Figure 4. Boxplots of the CLDN11, APOD and CHRDL1 expression levels in the hypomethylation and hypermethylation groups. The expression levels of the 
three genes in the hypermethylation group were significantly lower than those in the hypomethylation group: CLDN11 (P=1.09x10-13), APOD (P=4.12x10-8), 
and CHRDL1 (P=1.28x10-3). CLDN11, claudin 11; APOD, apolipoprotein D; CHRDL1, chordin like 1.

Figure 5. Boxplots of the CLDN11, APOD and CHRDL1 expression levels in the low- and high-risk groups. The expression levels of the three genes were 
significantly different between the high- and low-risk groups: CLDN11 (P=1.48x10-10), APOD (P=1.71x10-6) and CHRDL1 (P=2.17x10-8). CLDN11, claudin 11; 
APOD, apolipoprotein D; CHRDL1, chordin like 1.
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though a difference in the trend could be observed. However, 
significant differences were observed between the high- and 
low-risk groups in stage 3 and 4 patients.

The impact of radiotherapy on risk assessment was also 
examined. Fig. 8 results indicated significant prognostic 
differences between the high- and low-risk groups for non-
radiotherapy patient, with no difference in survival for those 
that had received radiotherapy.

Functional enrichment analysis of the DEGs related to prog-
nosis. In the training dataset, DEGs were screened between 
the high- and low-risk groups using BH-adjusted P<0.01 
as the threshold via the limma package. The top 500 DEGs 
that were positively and negatively associated with risk value 
were functionally enriched and DEG expression patterns were 
analyzed using hierarchical clustering. In Fig. 9, the upper and 
lower heatmaps represented 500 genes that were positively and 

negatively associated with risk values, respectively. Fig. 9 also 
presents the top 12 biological process terms involving DEGs 
that had a significant positive or negative association with 
the risk values. Functional enrichment analysis showed that 
CLDN11, APOD and CHRDL1 are involved in six functional 
terms (‘cell adhesion’, ‘cell-cell adhesion’, ‘nervous system 
development’, ‘signal transduction’, ‘cell proliferation’ and 
‘negative regulation of cell proliferation’).

The pathways significantly enriched in the high- and 
low-risk groups were stored in the GSEA folder, of which 
six and four pathways were respectively enriched in the 
two groups shown in Fig. 10. The increasing curve trends 
demonstrated that the top-ranked genes were preferentially 
enriched in the aforementioned pathways. However, the 
declining curves showed a gradual decrease in the number 
of genes that were enriched in pathways. CLDN11, APOD 
and CHRDL1 are involved in a total of five GSEA pathways 

Figure 6. Distribution of risk score, overall survival and gene expression in the (A) training and (B) validation datasets. A1 and B1 indicate the gradually rising 
trend in patient corresponding risk values in the training and validation datasets, respectively. A2 and B2 show the corresponding overall survival of patients. 
A3 and B3 indicate the expression levels of these three genes in patients, where the transition from green to red represents the increase in gene expression 
levels. CLDN11, claudin 11; APOD, apolipoprotein D; CHRDL1, chordin like 1.

Figure 7. Stratification analysis of the clinical stage and risk score. No significant prognostic difference between the two risk groups in stage 1 and 2 patients. 
However, a significant difference was observed between the high- and low-risk groups at stages 3 and 4. OS, overall survival.
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Figure 8. Stratification analysis of radiotherapy and the risk score. (A) Significant prognostic differences were observed between the high- and low-risk 
groups for non-radiotherapy samples and (B) no significant prognostic difference was observed between high- and low-risk groups for radiotherapy samples. 
OS, overall survival.

Figure 9. Functional annotation of the DEGs in high- and low-risk samples. (A) Heatmap of the top 500 positively- and negatively-associated genes. Transition 
from green to red represents the increase in gene expression levels. The top panel represents the distribution of the risk values, increasing from left to right. 
(B) Barplots of the significantly enriched GO (BP) terms of the top 500 DEGs positively associated with risk. (C) Barplots of the significantly enriched GO 
(BP) terms of the top 500 DEGs negatively associated with risk. Column length: gene counts. DEG, differentially expressed genes; GO, gene ontology; BP, 
biological process.
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Figure 10. Top 6 enriched pathways (P<0.01) in (A) the high-risk group, and (B) the top 4 enriched pathways (P<0.01) in the low-risk group analyzed using 
gene set enrichment analysis. The top curve in the graph represents the ES, which reflects the degree to which a pathway is overrepresented at the top or bottom 
of the ranked list of genes. The ES was calculated by walking down the ranked list of genes, increasing a running-sum statistic when a gene is in the pathway 
while decreasing it when it is not. The ES is the maximum deviation from zero encountered in walking the list. The score at the peak of the plot is the ES for 
the gene set. Gene sets with a distinct peak at the beginning or end of the ranked list are generally the most interesting. The x-axis represent all the genes in a 
particular gene list which were firstly scored and ranked by a statistical method based on their expression levels. ES, enrichment score.



INTERNATIONAL JOURNAL OF ONCOLOGY  53:  633-643,  2018 641

(‘Hallmark_Apical_Junction’, ‘Hallmark_Mtorc1_Signaling’, 
‘Hallmark_Kras_Signaling_Up’, ‘Hallmark_Hedgehog_
Signaling’ and ‘Hallmark_Kras_Signaling_Dn’).

Discussion

Changes in DNA methylation have crucial roles during the 
early stages of GC; therefore, aberrant DNA methylation is a 
major change differentiating GC subtypes from the very first 
stage (2,5,6). Among the 100 genes with aberrant epigenetic 
changes that have crucial roles during the early stages of 
GC (7,8), CLIP4 is of particular interest as it is involved in 
tumor metastasis and its promoter methylation is associated 
with an increase in GC severity (9). Thus, it is worth exploring 
CLIP4 DNA methylation-associated genes that may help to 
further understand the function of CLIP4 in the pathogenesis 
of GC and provide potential diagnostic biomarkers for clinical 
treatment.

In the present study, the methylation sequencing infor-
mation and mRNA expression profiling data of 393 GC 
samples were downloaded from the TCGA database and 
used as the training dataset to screen for significant DEGs 
associated with CLIP4 DNA methylation. The TCGA 
database is a large-scale cancer genomics project that has 
generated an overwhelming amount of cancer genomics data 
from multiple technical platforms that is of great value to 
cancer research (30). Consequently, several elegant studies 
have demonstrated the value of analyzing networks based on 
this database (31). Of the DEGs with differential expression 
between samples with CLIP4 hyper- and hypo-methylation, 
35 genes were identified to be significantly associated with 
GC prognosis (OS) using the univariate Cox regression 
analysis, out of which three genes (CLDN11, APOD and 
CHRDL1) were significantly associated with OS. These 
genes were selected as prognostic gene signatures to establish 
a risk assessment system, which indicated that the prognosis 
of patients in the low-risk group was significantly improved 
compared with those in the high-risk group. Reliability tests 
were performed using a validation dataset that included the 
methylation sequencing information and mRNA expression 
profiling data of the other 157 GC samples (18) downloaded 
from the GEO database (32).

All three genes were associated with CLIP4 DNA methyla-
tion and prognosis of patients with GC. CLDN11 is a member 
of the claudin family of proteins, which are transmembrane 
proteins that have crucial roles in tight junction (TJ) forma-
tion and function (33). TJs are intercellular junctions that 
are crucial for paracellular solute transport and cell polarity 
maintenance. Tumor cells commonly exhibit structural and 
functional deficiencies in their TJs (34), and aberrant expres-
sion of claudin proteins is also observed in various cancer 
types (35,36). For example, CLDN11 is silenced in GC via 
hypermethylation of its promoter region, which contributes to 
GC by increasing cellular motility and invasiveness (33). DEGs 
associated with risk were confirmed to be enriched in ‘cell 
adhesion’ and ‘cell-cell adhesion’ GO terms, and enriched in 
the ‘Hallmark_Apical_Junction’ pathway in GSEA analysis. 
ApoD is a small, soluble lipid carrier expressed in most human 
tissues, particularly in the glia of the nervous system (37,38). 
It is elevated in various pathological situations, particularly in 

patients with nervous system diseases, including Alzheimer's 
disease, Parkinson’s disease and schizophrenia (39,40). It has 
also been indicated in the transport of membrane lipids and 
may be involved in the clearance and/or repair of damaged 
membranes, potentially by the quenching of harmful materials 
released by neurons and glial cells in response to damage 
or recruitment of lipids to expanding membranes (37). GO 
analysis indicated that the DEGs were enriched in ‘nervous 
system development’. CHRDL1 is a secreted protein that acts 
as an antagonist of bone morphogenetic protein (BMP), which 
activates BMP receptor (BMPR) II (41,42). The activation of 
intracellular signaling via BMPR induces a series of responses, 
including proliferation, migration and invasion in various 
tumor types (43). Furthermore, direct experimental evidence 
suggests that CHRDL1 has an important role in embryonic cell 
differentiation and in the adult brain (44,45), and that CHRDL1 
expression is significantly downregulated in GC tissues and 
associated with poor survival (39). In the current study, DEGs 
were confirmed to be enriched in ‘signal transduction’, ‘cell 
proliferation’, and ‘negative regulation of cell proliferation’ via 
GO analysis, and enriched in ‘Hallmark_Mtorc1_Signaling’, 
‘Hallmark_Kras_Signaling_Up’, ‘Hallmark_Hedgehog_
Signaling’, and ‘Hallmark_Kras_Signaling_Dn’ via GSEA 
analysis. As CLDN11 and CHRDL1 are established factors 
involved in GC (31,39), it is reasonable to hypothesize that 
the risk assessment system constructed in the present study 
is reliable and may prove useful in clarifying the pathogenic 
process of GC.

However, there are several limitations in the present study. 
The predictive capability of the present model was established 
by bioinformatics analysis and it has not been validated in 
direct experiments. Thus, this model may only provide a 
direction for further investigation of GC patients with CLIP4 
promoter methylation. Additionally, the survival time and 
pathological staging of different individuals in the two data-
sets were different, and the therapy data was not available in 
the validation dataset. Some data bias between training and 
validation cohort may exist and may impact the accuracy of the 
analysis. Furthermore, certain information was not available 
from the original dataset, including the type of chemotherapy 
or radiotherapy, and whether surgery was performed. However, 
from Table II, the P-value of chemotherapy in univariate Cox 
analysis and that of targeted molecular therapy in multivariate 
Cox analysis are both >0.05. Therefore, these two factors were 
not considered as independent risk factors for OS. Whereas, 
the risk score established by our study can be considered as 
independent risk factor for prognosis as the produced P<0.05 
in univariate and multivariate Cox analyses. Therefore, the 
scoring system established in the current study may be useful 
in predicting the prognosis of GC although further studies are 
required prior to clinical use.

In summary, the current study study provided a credible 
risk assessment model for the predicting GC prognosis based 
on comprehensive bioinformatic analysis of three CLIP4 
DNA methylation-associated genes (CLDN11, APOD and 
CHRDL1) in two independent datasets. The risk value may be 
useful as an independent prognostic factor. CLDN11, APOD 
and CHRDL1 expression was significantly associated with 
CLIP4 DNA methylation and GC diagnosis and thus, may be 
potential prognostic biomarkers.
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