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Abstract. Cancer stem cells (CSCs) are immortal cells in 
tumor tissues that have been proposed as the driving force of 
tumorigenesis and tumor invasion. Previously, ion channels 
were revealed to contribute to cancer cell proliferation, migra-
tion and apoptosis. Recent studies have demonstrated that ion 
channels are present in various CSCs; however, the functions of 
ion channels and their mechanisms in CSCs remain unknown. 
The present review aimed to focus on the roles of ion channels 
in the regulation of CSC behavior and the CSC-like proper-
ties of cancer cells. Evaluation of the relationship between ion 
channels and CSCs is critically important for understanding 
malignancy.
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1. Introduction

Cancer stem cells (CSCs). Cancer is a leading cause of 
mortality worldwide. In China, ~4 million new cases of 
cancer were diagnosed in 2015, and 50% of all mortalities 
were associated with cancer (1). Surgery, chemotherapy 
and/or radiotherapy are used to treat the majority of cancers 
and to improve survival of patients. These clinical measures 

have proven efficaciousinseveral cases; however, few patients 
survive >5 years due to the high recurrence and metastasis of 
tumor cells; CSCs are considered the root of tumor recurrence 
and metastasis (2,3).

CSCs have been identified and characterized in various 
tumor types; in particular, CSCs exhibit self-renewal, multi-
lineage differentiation and tumor initiation capacities, and 
proliferative potential (4). Targeting of CSCs or inhibition 
of important properties including self-renewal, differentia-
tion and apoptosis resistance are novel therapeutic strategies 
(Fig. 1). Several lines of evidence have indicated that CSCs 
serve a key role in tumorigenesis, recurrence and metas-
tasis (5-7). When tumors occur, CSCs are considered to be the 
origin of abnormal differentiation; uncontrolled self-renewal 
of CSCs induces malignant transformation and rapid prolif-
eration of cells. In advanced tumor stages, once activated, 
CSCs can promote tumor development and metastasis by 
regulating tumor angiogenesis (8). Notably, the current anti-
tumor drugs mainly target rapidly proliferating mitotic cells; 
however, CSCs are usually dormant or quiescent, and can 
therefore exhibit immune escape and resist the suppressive 
effects of chemotherapy drugs, thereby becoming the root 
of tumor recurrence (3). Therefore, CSCs are considered to 
be the key to tumor recurrence and metastasis of seed cells 
and malignant tumors. Previous studies have suggested that 
there are three major sources of CSCs, as follows: i) Normal 
stem or progenitor cells are malignantly transformed into 
CSCs due to gene mutations; ii) viral infection or formation of 
CSCs through intercellular fusion (9,10); iii) mature end-stage 
tumor cells regain CSC-like properties induced by ionizing 
radiation, hypoxia or the tumor microenvironment (11,12). In 
addition, both inflammatory factors [interleukin (IL) 6, and 
transforming growth factor (TGF)-β], and cytokines [endothe-
lial growth factor (EGF) and vascular (EGF)] regulate CSC 
growth and maintenance (Fig. 2).

Ion channels and tumors. Previous studies have reported 
that ion channels serve an important role in cancer develop-
ment (13,14). Numerous ion channels have been confirmed to 
be highly expressed in various tumor types and are closely 
associated with tumor cell biological behaviors (15-17). Ion 
channels are specific hydrophilic microporous proteins that 
exhibit selective permeability for various ions; they are usually 
named according to the ions with the highest permeability, 
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including potassium (K+) channels, calcium (Ca2+) channels 
and chloride (Cl-) channels. These ion channels are distrib-
uted in almost every cell membrane of the body and have an 
important role in the physiology and pathology of excitable 
cells with regards to the following aspects: i) Determination 
of cell excitability, conductivity, contractility and rhythmicity; 
in nerve, muscle and other excitable cells, Na+ and Ca2+ 
channels mainly regulate depolarization, whereas K+ chan-
nels mainly regulate repolarization and maintain the resting 
potential (18,19); ii) regulation of vasomotor smoothing and 
contraction activities (20); iii) participation in synaptic trans-
mission (21); iv) maintenance of normal cell volume (22,23); 
v) regulation of intracellular cAMP, cGMP, Ca2+ and other 
second messenger concentrations, in order to trigger muscle 
contraction, glandular secretion, protein kinase activation 
and gene expression regulation (24,25). The normal structure 
and function of ion channels are the basis for cells to carry 
out their normal activities. Mutations in specific ion channel 
sites lead to abnormalities in their activation and inactivation, 
causing cell dysfunction and the formation of various diseases, 
including epilepsy and arrhythmia, and skeletal muscle 
dysfunction (26,27). Disorders associated with aberrant ion 
channel functions are commonly known as ‘ion channel 
diseases’ (28,29).

At present, few reports have focused on the association 
between ion channels and CSCs. Our recent work indi-
cated that solute carrier family 8 member A1 and transient 
receptor potential cation channel subfamily C member 6 are 
expressed in cluster of differentiation (CD)133+ stem cells 
in Huh7 hepatic cancer cells, thus indicating that ion chan-
nels may be involved in the occurrence and development of 
cancer (30). Furthermore, ion channel inhibitors can reduce 
drug resistance of tumor cells via regulation of CSC func-
tion (31,32). The present review aimed to summarize the 
roles of ion channels, and describe their expression and func-
tion in CSCs. Further evaluation of the association between 
ion channels and CSCs is critically important to understand 
malignancy.

2. Ion channels and CSCs

Association between Ca2+ channels and CSCs. Cytosolic 
Ca2+ ([Ca2+]cyt) has an important role in intracellular signal 
transduction, and participates in a series of physiological 
and pathological processes in the body (33). Under normal 
circumstances, intracellular Ca2+ concentrations are usually 
maintained within an appropriate concentration range and 
are regulated by a series of precise regulatory systems (34). 
However, this balance is disrupted under pathological condi-
tions. It has previously been reported that in the tumor cells, 
intracellular Ca2+ levels may be disrupted, thus affecting the 
intracellular Ca2+ balance, which leads to excessive activation 
of associated signals that encode alterations in intracellular 
Ca2+ (including source, amplitude and frequency) (35,36). This 
induces a subsequent upregulation in oncogene expression, 
which promotes the development of tumors (32). The intra-
cellular Ca2+ balance is primarily regulated by Ca2+ channels 
in the membrane and organelles; therefore, it is important to 
study the role of Ca2+ channels and their subtypes in tumori-
genesis, development, invasion and metastasis.

There are several known Ca2+ channels: Voltage-gated Ca2+ 
channels (VGCCs), ligand-gated Ca2+ channels, store-operated 
Ca2+ channels and transient receptor potential channels, and 
Na+/Ca2+ channels. VGCCs belong to the CaV family and are 
involved in Ca2+ influx; VGCCs are divided into L-type Ca2+ 
channels, T-type Ca2+ channels, P-type Ca2+ channels, matrix 
interaction molecule-1 (STIM1) and the Ca2+ release-activated 
Ca2+ channel protein-1 (Orai1). STIM1 and inositol trisphos-
phate receptor combine with membrane uncoupling and Orai1 
to induce Ca2+ influx (37,38).

Lee et al revealed that Orai, a key calcium channel for 
store-operated Ca2+ entry, is highly expressed in CSC-enriched 
populations of human oral/oropharyngeal squamous cell carci-
noma (OSCC). In addition, the activation of Orai1 promotes 
cancer self-renewal via nuclear factor of activated T-cells 
signaling. Overexpression of Orai1 promotes self-renewal 
in OSCC and increases the expression of enhancer of zeste 
homolog 2, Hes1, zinc finger E-box-binding homeobox 2 and 
interleukin 4. Conversely, inhibition of Orai1 suppresses cancer 
self-renewal in OSCC (39). Zhao et al detected overexpression 
of the Ca2+ channel α2δ1+ subunit in hepatocellular carcinoma 
(HCC) CSCs. These HCC CSCs exhibit stem cell-like proper-
ties, such as increased self-renewal, increased invasiveness 
and expression of stem cell-associated genes (octamer-binding 
transcription factor 4, SRY-box 2, Nanog homeobox and BMI1 
proto-oncogene, polycomb ring finger) (40).

Liu et al demonstrated that silencing the expression of 
transient receptor potential cation channel subfamily M 
member 7 (TRPM7) in glioma stem cells was able to induce 
the Notch and signal transducer and activator of transcrip-
tion 3 pathways, which were downregulated in glioma stem 
cells. TRPM7 is a ubiquitous ion channel permeable to Ca2+ 
and Mg2+. Activation of TRPM7 upregulates the CSC markers 
aldehyde dehydrogenase 1 (ALDH1) and CD133; TRPM7 
activates ALDH1 activity to promote proliferation, migra-
tion and invasion of glioma cells (41). In addition, Morelli 
et al evaluated the abnormal expression of transient receptor 
potential cation channel subfamily V member 2 (TRPV2) in 
glioblastoma (GBM) CSCs. TRPV2 was revealed to promote 
in vitro and in vivo GBM CSC differentiation and inhibit their 
proliferation (42). Ca2+-activated K+-channels (BKCa) are asso-
ciated with a poor cancer prognosis, and are highly expressed 
in CD133+ SH-SY5Y neuroblastoma cells and human GBM 
CSCs (43). The BKCa channels may be used as a novel marker 
for GBM, in order to improve the personalization and accu-
racy of GBM therapy (44). Zhang et al reported that activation 
of BKCa in rats could promote the transformation of human 
bone marrow-derived mesenchymal stem cells (MCSs) from 
G1 to S phase, and increase the mRNA and protein expres-
sion levels of cyclin D1 (45). Conversely, inhibition of BKCa 
activity was able to downregulate the expression of mRNA 
and protein expression levels of cyclin D1, thus inhibiting 
the proliferation of bone marrow MSCs. Inhibition of BKCa 
with paxilline or silencing BKCa reduces cell proliferation 
in human bone marrow-derived MSCs (45). The Ca2+ chan-
nels mediating calcium signaling play an important role in 
proliferation, cell death, migration and invasion during the 
course of tumorigenesis. Therefore, these findings highlight 
the elusive role of Ca2+ channels and their functions in CSC 
biology (46).
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K+ channels. K+ channels are hydrophilic proteins that form 
microchannels in the cell membrane with specificity for K+. 
The residue side chains selectively interact with the ions and 
provide specific permeability barrier function. K+ channels 
are the most widely distributed and most common class of 
channels, which participate in the resting potential of action 
potential repolarization and serve a crucial role in regulating 
various biological functions in organisms (47-49). These chan-

nels include voltage-gated K+ channels (Kv), inward rectifier 
K+ channel, and BKCa, among others. Kv also includes ether-
a-go-go-related gene (ERG), Kv2, Kv7 (KCNQ) K+ channel 
family, ether-à-go-go family of voltage-gated K+ channels and 
other common subfamilies (50).

The role of K+ channels in CSCs. Kv1.3 (together with KCa3.1) 
has been implicated in the control of cell proliferation in rat 

Figure 1. Evolution of CSCs and conventional cancer therapies. Malignant tumors are commonly seen in many human organs, and several traditional methods 
are used to treat these cancers, including surgery, chemotherapy and radiation. The CSC is an ideal target cell, which possesses self-renewal and multi-lineage 
differentiation capabilities. CSCs can escape the suppressive effects of normal drugs, and promote tumor recurrence and metastasis. CSC-targeted treatment 
aims to target specific surface markers of CSCs, affect the CSC microenvironment and induce differentiation and apoptosis of CSCs. These methods may 
reduce tumor recurrence, which is the root cause of invasion, consequently shrinking the tumor. CSCs, cancer stem cells.

Figure 2. Microenvironment contributes to tumor progression and metastasis. The tumor microenvironment includes tumor cells, CSCs, stromal cells, fibro-
blasts, tumor vasculature and extracellular matrix, etc. These cells can secrete IL6, BMP, EGF, VEGF, TGF-β and other factors [e.g. neuroendocrine (NE) 
cells, adipose cells, and the blood networks]. These factors induce the self-renewal and pluripotent differentiation capabilities of CSCs. Furthermore, these 
factors promote tumor development via stimulating angiogenesis and EMT. BMP, bone morphogenetic protein; CSCs, cancer stem cells; EGF, epidermal 
growth factor; EMT, epithelial-mesenchymal transition; IL6, interleukin 6; TGF-β, transforming growth factor-β; VEGF, vascular endothelial growth factor.
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MSCs; silencing KCa3.1 inhibits the proliferation of rat bone 
marrow MSCs by inducing cell cycle arrest at the G0/G1 
phase (51). The voltage-sensitive human ERG (hERG, Kv11.1) 
K+ channel acts as a regulator of proliferation and survival 
in cancer cells (52,53). The expression of Kv11.1 has been 
reported in several cancer types, as well as cancer cell lines of 
different lineages, such as epithelial, leukemic, connective or 
neuronal cells. Recently, Li et al reported that hERG (Kv11.1) 
is highly expressed in CD34+/CD38-/CD123 leukemia stem 
cells (LSCs), interferes with the cell cycle and promotes tumor 
cell proliferation. Furthermore, the hERG-specific blocker 
E-4031 inhibits LSC proliferation, by inhibiting G1/S phase 
transition (54). Another hERG inhibitor, clofilium, destroys the 
osmotic pressure balance of LSCs intra- and extracellularly 
via K+-induced cell swelling and rupture. These results suggest 
that hERG channels may be involved in regulation of the LSC 
cycle, and that LSCs maintain a constant volume by adjusting 
osmotic pressure inside and outside of the cell (55).

K+ channel tetramerization domain containing 12 
(KCTD12) is a biomarker for clinical prognosis in patients with 
gastrointestinal cancer following chemotherapy (56). Using a 
cancer cell-forming test that selects CSCs from the colorectal 
cancer (CRC) HT29 cell line, Li et al revealed that the expres-
sion of KCTD12 is downregulated in the CSC-like cells of 
CRC. Inhibition of endogenous KCTD12 and overexpression 
of KCTD12 markedly enhance and suppress CRC cell self-
renewal ability, respectively. Furthermore, silencing KCTD12 
enhances drug resistance to 5-fluoruracil in HT29 cells (57).

Together, the K+ channel activity is an important event that 
controls several cellular functions including cell proliferation 
and cell cycle in CSCs. The results provide evidence for the 
role of K+ channel and it may be a novel, potential pharmaco-
logical target for tumor therapy in the future.

Cl- channels. Cl- channels are the most abundant and 
physiologically important anion channels in organisms. Their 
classification is more complex, including voltage-gated (CLC), 
Ca2+-dependent, swelling-activated Cl- channel, γ amino-
butyric acid-activated (GABA) Cl- channels (58). Various 
Cl- channels have been reported to exhibit different functions 
in tumor cells (59). Soroceanu et al detected CLC expression 
in human malignant glioma cells, which are sensitive to the Cl- 
toxin chlorotoxin; however, CLC is not expressed in normal 
tissue. The CLC-specific inhibitor chlorotoxin can inhibit 
tumor cell invasion of the surrounding tissues, thus suggesting 
that Cl- channels have an important role in the tumor cell 
cycle (60).

The role of Cl- channels in CSCs. In recent decades, growing 
scientific evidence has supported the potential involvement of 
ion channels in tumorigenesis and carcinogenesis. Setti et al 
indicated that Cl- intracellular channel protein 1 (CLIC1) is 
overexpressed in GBM CSCs, where it serves an important 
role in GBM CSCs self-renewal and proliferation; CLIC1 
is primarily detected in the nuclear membrane and in the 
plasma membrane. In addition, Setti et al demonstrated that 

Figure 3. Overview of select signaling pathways associated with CSC maintenance, survival, proliferation and invasion. Ion channel expression in the CSCs 
membrane, including Ca2+, Mg2+, K+ and Zn2+ channels. These channels are activated and transmit signals through other factors, such as MAPK/ERK, PI3K/
Akt, JNK, STAT3, Wnt and NF-κB. These novel regulatory mechanisms may promote self-renewal and differentiation, and thereby provide avenues for 
therapeutic intervention. MAPK, mitogen-activated protein kinase; ERK, extracellular signal-regulated kinase; PI3K, phosphoinositide 3-kinase; Akt, protein 
kinase B; NF-κB, nuclear factor-κB; ALDH1, aldehyde dehydrogenase 1; Bcl-2, B-cell lymphoma 2; CD133, cluster of differentiation 133; CSCs, cancer 
stem cells; JAK, Janus kinase; MMP-2, matrix metalloproteinase 2; Oct4, octamer-binding transcription factor 4; STAT3 , signal transducer and activator of 
transcription 3; XIAP, X-linked inhibitor of apoptosis protein.
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overexpression of CLIC1 in GBM CSCs is negatively correlated 
with patient survival. Conversely, silencing CLIC1 inhibits the 
proliferation, cloning and tumorigenicity of GBM (61). These 
results may indicate a novel therapeutic approach targeted 
to GBM. CLIC1 may be considered an attractive target in 
the CSC population that could finally cure GBM. Compared 
with CLIC1, CLIC4 is expressed in metastatic CSCs and is 
associated with the prognostic risks of colorectal cancer (62). In 
conclusion, Cl- channels may serve an important role in tumor 
cell migration and tumor metastasis; therefore, Cl- channels 
may be potential drug targets for the treatment of tumors.

3. Ion channel blockers as a novel target for cancer

In recent years, ion channel drugs have been widely used 
in clinical practice. It has been reported that various ion 
channel blockers can affect the proliferation, differentiation, 
apoptosis and metastasis of tumor cells in numerous types of 
cancer (58). Inhibiting the K+ efflux can promote apoptosis, 
and a K+ channel inhibitor may reverse multidrug resistance 
(MDR) in tumor cells (63). Zhao et al reported that the Ca2+ 
channel blocker verapamil targets MDR-associated proteins, 
inhibits pancreatic CSC (gemcitabine-resistant) proliferation 
and promotes apoptosis of pancreatic cancer cells (64). The 
specific inhibitor of the Kv1.3 channel aflatoxin (MgTX) and 
the non-specific inhibitor 4-AP can suppress prostate cancer 
cell metastasis and lung cancer cell proliferation. Additionally, 
MgTX can promote prostate cancer cell apoptosis by regu-
lating the transition to the G1-S phase (65). Treatment with 
the KCa3.1 blocker TRAM-34 and temozolomide (TMZ) is 
able to significantly reduce DNA synthesis, as well as GBM 
and CSC survival, compared with TMZ alone. Notably, 
TMZ/TRAM-34 combination therapy can reduce infiltration 
of glioma cells (66,67). CSCs isolated from GBM are highly 
resistant to bis-chloroethylnitrosourea (BCNU) in vitro, 
whereas the combination of BCNU and a Cl- channel inhibitor 
4,4'-diisothiocyanostilbene-2,2'-disulfonic acid inhibits the 
proliferation and promotes apoptosis of BCNU-resistant 
CSCs (63). CLIC1 is involved in the resistance of BCNU-
resistant CSCs and BCNU/DIDS combined-therapy can 
provide valuable insight for promoting apoptosis or sensitizing 
glioblastomas to BCNU chemotherapy. These results suggest 
that CLIC1 may be a drug efflux channel that participates in 
the resistance of GBM CSCs to BCNU (68). In addition, the 
use of a blocker [5-nitro-1-(3-phenylpropyl amino) benzoic 
acid] or small interfering RNA silencing of CLCN3 Cl- volume 
sensitive channel expression, as well as mRNA and protein 
downregulation of cyclin D and E, inhibits MSCs prolifera-
tion in vitro. Furthermore, Gritti et al revealed that metformin 
can inhibit CLIC1 channel function and reduce the survival 
of human GBM CSCs, and short hairpin RNA against CLIC1 
significantly increases the inhibitory effects of metformin 
on human GBM CSC activity (69). In addition to K+ and Cl- 
channel inhibitors, Ca2+ channel inhibitors may reverse cancer 
cell MDR (70,71).

4. Conclusion

The novel concept of CSCs was introduced in the late 1990s, 
and numerous research efforts have aimed to elucidate its 

role over the past decades (72,73). This concept may influ-
ence all approaches of cancer biology, since CSCs have an 
important role in tumorigenesis, drug resistance (74,75), 
invasion, metastasis and recurrence. The function of CSCs 
is predominantly regulated by microenvironmental factors 
that provide an adaptive landscape for relapsed tumor 
cells (76-78). Therefore, identifying novel methods for 
preventing CSC drug resistance could improve the long-
term survival of patients. The main factors controlling CSCs 
include epithelial-mesenchymal transition and the niche 
environment (79,80). In recent years, the potential regula-
tory role of ion channels in the tumor microenvironment 
has been widely recognized, due to the abnormal expres-
sion of ion channels in CSCs, and various mechanisms 
regulating tumorigenesis, malignant transformation and 
metastasis (81-84). Moreover, those ion channels further 
induced the aberrant activation of signaling pathways and 
play important roles in the evolution of cancer development. 
The PI3K/Akt, JNK, STAT3, Wnt and NF-KB pathways 
are involved in the self-renewal of CSCs (Fig. 3). These 
findings have provided novel information, which may aid 
the eradication of CSCs, improve the efficacy of antitumor 
drugs and result in a potential cure. Some ion channel 
agonists or antagonists demonstrate antitumor activity in 
specific CSCs, which provides a theoretical basis for clinical 
implementation (83). Additional in-depth research regarding 
the relationship between ion channels and MDR may lay the 
foundation for the development of novel agents through drug 
design and development. Novel perspectives will be gained 
from the characterization of various ion channel structures 
and may promote the development of anti-CSC drug targets. 
It has been hypothesized that through further exploration of 
the relationship between ion channels and CSCs, ion chan-
nels may be revealed to participate in the regulation of CSC 
pathways, and their inhibitors may provide more informa-
tion regarding clinical targets in CSC-targeted therapy.
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