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Abstract. Gastrokine 1 (GKN1) is a protein expressed on the 
surface mucosa cells of the gastric antrum and fundus, which 
contributes to maintaining gastric homeostasis, inhibits 
inflammation and is a tumor suppressor. The expression of 
GKN1 decreases in mucosa that are either inflamed or infected 
by Helicobacter pylori, and is absent in gastric cancer. The 
measurement of circulating GKN1 concentration, the protein 
itself, or the mRNA in gastric tissue may be of use for the 
early diagnosis of cancer. The mechanisms that modulate the 
deregulation or silencing of GKN1 expression have not been 
completely described. The modification of histones, methyla-
tion of the GKN1 promoter, or proteasomal degradation of 
the protein have been detected in some patients; however, 
these mechanisms do not completely explain the absence 
of GKN1 or the reduction in GKN1 levels. Only NKX6.3 
transcription factor has been shown to be a positive modu-
lator of GKN1 transcription, although others also have an 
affinity with sequences in the promoter of this gene. While 
microRNAs (miRNAs) are able to directly or indirectly 
regulate the expression of genes at the post‑transcriptional 
level, the involvement of miRNAs in the regulation of GKN1 
has not been reported. The present review analyzes the infor-
mation reported on the determination of GKN1 expression 
and the regulation of its expression at the transcriptional, 
post‑transcriptional and post‑translational levels; it proposes 
an integrated model that incorporates the regulation of 
GKN1 expression via transcription factors and miRNAs in 
H. pylori infection.
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1. Introduction

The gastric epithelium is continually renewed over a lifetime, 
and is maintained through the proliferation and differentia-
tion of pluripotent stem cells from the isthmus of the gastric 
gland (1). Stem cells generate precursors that migrate to the 
gastric lumen and, in turn, generate parietal, gastric zymogenic 
and foveolar cells. Parietal cells produce hydrochloric acid, 
while gastric zymogenic cells have a half‑life of ~6 months 
and synthesize trefoil factor 2 and mucin 6 (1‑3). Foveolar cells 
or surface mucous cells (SMCs), whose half‑life is 2‑3 days, 
produce mucous granules, mucin 5AC, gastrokine 1 (GKN1) 
and trefoil factor 1 (1‑3) and play an important role in the resti-
tution of the gastric mucosa in the event of Helicobacter pylori 
infection  (4). The integrity and continuity of the gastric 
epithelium are rapidly restored after damage, prior to cell 
proliferation (5). Epithelial restitution is achieved through the 
migration of epithelial cells from the adjacent area or the cell 
stratum below the surface cells in the injured area. Epithelial 
cell restitution in the stomach of mammals takes place in 
minutes (5).

GKN1 is a protein secreted by SMCs of the gastric antrum 
and fundus  (6), which contributes to maintaining gastric 
homeostasis, inhibits inflammation and acts as a tumor 
suppressor (7‑16). The expression of GKN1 decreases due to 
H. pylori infection, inflammation or atrophy, and is absent in 
gastric cancer (17‑25).

Although methylation of the GKN1 promoter (20), modifi-
cation of histones (26) and proteasomal degradation of GKN1 
in some cases (27) have been reported, the mechanisms that 
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cause a decrease in GKN1 levels or its absence entirely have 
not been completely described. A total of ~10% of gastric 
tumors contain the Epstein‑Barr virus  (EBV), while the 
Epstein‑Barr nuclear antigen 1 (EBNA1) binds to the promoter 
region of the GKN1 gene and induces the reduction of its tran-
scription (28,29).

Epigenetic modifications are as important to the regu-
lation of gene expression and the initial stages of disease 
as genetic modifications. Differential changes have been 
documented in the expression profile of microRNAs 
(miRNAs) in gastritis or cancer patients infected with 
H. pylori (17,30‑33), gastric cancer cell lines (34‑36), CD4 
T  lymphocytes, macrophages, monocytes and dendritic 
cells (37‑39). It has been proposed that some components 
of H. pylori induce the activation of signals that modify the 
expression of miRNAs in the host cells, and that changes in 
the global expression profile of miRNAs are related to the 
genotype of the bacteria (31).

The reduction of GKN1 cannot be explained by mutations 
in its gene, the methylation of its promoter or the protea-
somal degradation of the protein (20,26,27). It is probable 
that some miRNAs modulate the decreased translation of 
GKN1 mRNA and, consequently, the reduction of the level 
of protein in the gastric mucosa. The role of miRNAs in the 
regulation of GKN1 expression in the normal gastric mucosa, 
or mucosa infected with H. pylori, affected by preneoplasic 
lesions or with gastric cancer, has not been explored. The 
present review comprises an analysis of the information 
published on the regulation of GKN1 expression, proposing 
a model that integrates the probable regulatory mechanisms 
at the transcriptional, post‑transcriptional and translational 
levels.

2. GKN1

GKN1 (also known as CA11, AMP‑18, foveolin or TFIZ2) is a 
small protein of 181‑184 amino acids, specifically expressed in 
the stomach. The GKN1 gene is located on chromosome 2p13.3 
and is composed of six exons separated by relatively short 
introns (6). GKN1 is composed of: i) A hydrophobic signal 
peptide in the extreme NH2‑terminal, whose processing gener-
ates a protein of 160 amino acids with a molecular mass of 
18 kDa; ii) a BRICHOS domain with three conserved amino 
acid residues, one aspartic acid residue and two cysteine acid 
residues; and iii)  a COOH‑terminal domain  (6,19,40‑43). 
GKN1 is a member of the BRICHOS superfamily of proteins, 
which includes proteins associated with the development of 
cancer. It is a protein with both an autocrine and paracrine 
function, which promotes the healing of the mucosa and 
facilitates cellular restitution and proliferation (43). GKN1 
modulates the progression of the cell cycle, cellular prolifera-
tion and viability, and apoptosis.

Additionally, GKN1 regulates the production of reactive 
oxygen species (ROS) and the PI3K/Akt signaling pathway, 
thus influencing epithelial mesenchymal transition (EMT) and 
the migration of cancerous cells. GKN1 significantly inhibits 
the expression of the mRNA of DNA (cytosine‑5)‑methyltrans-
ferase 1 (DNMT1) and histone‑lysine N‑methyltransferase 
EZH2 (EZH2) and the activity of DNMT1, functions that link 
this protein to the inhibition and progression of cancer (43,44).

In the normal gastric mucosa, GKN1 is expressed by epithe-
lial cells on the surface, but not at the depth of the glands of the 
gastric mucosa (21,45,46). GKN1 reduces the expression of the 
gastrin receptor, gastrin/cholecystokinin type B receptor, thus 
inhibiting the cell proliferation induced by this hormone (13). 
GKN1 activates the p16/Rb and p21 signaling pathways, 
inhibits cell growth and drives cells to senescence (46). GKN1 
modulates the expression of cytokines and other inflammatory 
mediators associated with gastric carcinogenesis, inducing 
the increased expression of interleukin (IL)‑8 and IL‑17 and 
the decreased expression of nuclear factor (NF)‑κB, IL‑6 and 
IL‑10. Thus, it regulates the immune response and inhibits the 
progression of epithelial gastric cells to cancerous cells. GKN1 
suppresses the activation of NF‑κB, and thus inhibits the onco-
genic signaling regulated by this transcription factor (9).

3. GKN1, H. pylori infection and gastric cancer

GKN1 and H. pylori infection. Infection with H. pylori cagA+ 
strains increases the risk of gastric cancer and is related to 
the reduced expression of GKN1 in the mucosa (47). In mice 
infected with H. pylori‑cagA+, the increased expression of 
the antiapoptotic proteins Bcl‑2, Bcl‑XL and induced myeloid 
leukemia cell differentiation protein Mcl‑1, as well as NF‑κB 
and proteins related to EMT, is found, while the expression 
of p53, p21, p16 and stress response genes decreases  (48). 
The ectopic expression of GKN1 suppresses the effects of 
H. pylori‑cagA+ in the human gastric cancer cell lines AGS, 
MKN1 and MKN28. Based on these findings, it has been 
suggested that GKN1 suppresses the malignant transforma-
tion of gastric epithelial cells and the progression to gastric 
cancer (48).

The expression of GKN1 decreases at the mRNA and 
protein levels in dyspeptic patients and is not detected in the 
mucosa of subjects with intestinal‑type gastric cancer, both 
with and without H. pylori infection (19,20,21,22,30,49‑52), or 
with a diffuse‑type cancer (19,23,25).

GKN1 and gastric cancer. GKN1 is absent in human gastric 
tumors and acts as a tumor suppressor, regulating cell prolif-
eration, apoptosis, migration and invasion in gastric cancer 
cell lines (10). Stimulating the expression of Fas receptor and 
the activation of caspase‑3, this protein modulates apoptotic 
signals, playing an important role in the repair of tissues 
during the early stages of neoplastic transformation (7).

In AGS, MKN‑1 and MKN‑28 gastric cancer cell lines 
transfected with GKN1, the re‑expression of p16 and a reduc-
tion in CDK4, cyclin D1 and E2F levels was observed (8) In 
gastric cancer SGC7901 cells, GKN1 reduces the expres-
sion of MMP2, through the deactivation of NF‑κB (15), and 
induces the expression of miRNA (miR)‑185. The extreme 
3' untranslated region (UTR) of RhoA mRNA has sequences 
with affinity to miR‑185 and, when this hybrid miRNA with 
RhoA mRNA reduces its translation, the silencing of RhoA is 
indirectly mediated by GKN1. c‑Myc is a transcription factor 
that activates RhoA expression and is a target of miR‑34a, a 
miRNA whose expression is promoted by GKN1. Thus, GKN1 
also deactivates RhoA via miR‑34a. These data suggest that 
GKN1 inhibits cell motility and invasion by means of the 
deactivation of RhoA (16).
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4. GKN1 as a potential biomarker of gastric carcinogenesis

In ~80%  of gastric cancer cases, symptoms are scarce 
and non‑specific at the early stages of the disease, with the 
majority of patients diagnosed at an advanced stage with 
metastasis already occurring (44,53). Thus, the treatment of 
this malignancy is ineffective and the prognosis for patients is 
unfavorable. Due to the late diagnosis and consequent limited 
therapy options for most patients, the 5‑year survival rate 
is <20% (54). The lack of criteria and useful markers for early 
diagnosis has led to studies being conducted on the expres-
sion of genes associated with gastric carcinogenesis, with the 
objective of identifying biomarkers characteristic of premature 
stages of the disease. GKN1 is one of the proteins considered 
to be potential biomarker of carcinogenesis.

There are few reports in the available literature on the 
identification of GKN1 in samples taken from patients. 
Nardone et al (17) identified the presence of GKN1 in human 
gastric tissue, finding that its expression decreases in the event 
of H. pylori infection, deteriorates progressively from chronic 
gastritis to atrophic gastritis, and is not detected in areas in 
which intestinal metaplasia or H. pylori‑positive tumors are 
found (17). GKN1 is absent in cases of gastric cancer without 
H. pylori infection (17‑25). Villano et al (55) analyzed the level 
of GKN1 mRNA in serum taken from patients with gastric 
cancer and apparently healthy volunteers, finding no statisti-
cally significant differences between patients with cancer and 
healthy volunteers. The aforementioned results indicate that 
GKN1 mRNA is not a useful biomarker for the diagnosis of 
gastric cancer (55). Yoon et al (56) found that the serum levels 
of GKN1 are significantly lower in gastric cancer patients than 
in either apparently healthy subjects or patients with hepatocel-
lular and colorectal carcinoma (P<0.0001). These data suggest 
that the serum levels of GKN1 may be used for the differen-
tiation of patients with gastric cancer from those with other 
malignancies of the digestive system and clinically healthy 
subjects. The authors concluded that the serum concentration 
of GKN1 may be an informative diagnostic biomarker for 
gastric cancer (56). Dokhaee et al (44) reported that GKN1 
mRNA is significantly reduced in the gastric tissue of patients 
with gastric cancer, compared to normal tissue. The results led 
to the hypothesis that GKN1 may be a reliable biomarker for 
the detection of gastric cancer in its early stages.

The aforementioned data indicate that the measurement 
of circulating GKN1 concentration, the protein or the mRNA 
in gastric tissue may be of utility for the early diagnosis of 
cancer. However, it is necessary to strengthen these findings 
with more research in patients with preneoplasic lesions (atro-
phic gastritis, intestinal metaplasia and dysplasia) and cancer 
in distinct stages of evolution.

5. Regulation of GKN1 expression in mucosa infected with 
H. pylori or with gastric cancer

At the chromosomal level, cytogenetic aberrations, such as 
duplications, translocations, deletions or the loss of heterozy-
gosity in the 2p13 chromosome (in which the GKN1 gene is 
found) have not been detected (57,58).

The sequence of the GKN1 gene was analyzed in 81 gastric 
tumors and 40 adenomas, confirming a lack of mutations (20) 

These data suggested that the reduction of GKN1 cannot be 
attributed to cytogenetic aberrations or mutations, and that 
other mechanisms are involved in the deregulation of this 
protein.

Gene expression is regulated at different levels, from 
transcription to translation (59). At the transcriptional level, 
regulation occurs via epigenetic modifications, such as the 
modification of histones and the methylation of DNA (60,61). 
At the post‑transcriptional level, the role of small RNAs 
(miRNAs) in the modulation of translation should be taken 
into account (62), while at post‑translational level, ubiquitina-
tion, followed by the proteasomal degradation of the marked 
protein, is the best‑known mechanism involved in the reduc-
tion in cytoplasmic levels of proteins (61).

Transcription factors. Transcription factors are able to activate 
or repress the expression of a gene (63,64). Little is known 
about the transcriptional regulation of GKN1. Yoon et al (65), 
using luciferase and chromatin immunoprecipitation assays, 
confirmed that NKX6.3 is a transcription factor for GKN1, and 
located the recognition sequence corresponding to NKX6.3 in 
the promoter region of the GKN1 gene (Fig. 1A). NKX6.3 posi-
tively modulates the transcription of GKN1, which is reflected 
in the increased level of both mRNA and protein (65).

By means of in silico analysis, conducted using the MatIn-
spector (66) (http://www.genomatix.de/matinspector. html), 
AliBaba2.1 (67) (http://gene‑regulation.com/ pub/programs/ 
alibaba2/index.html) and TfsiteScan 68) (http://www.ifti.org) 
programs, transcription factors were identified with affinity to 
recognition sequences in the GKN1 promoter region (Fig. 2A 
and Table I). It is likely that one or more of these transcription 
factors, predicted bioinformatically, are involved in the tran-
scriptional regulation of GKN1. Experimental confirmation of 
the effect exerted by the proposed transcription factors on the 
modulation of GKN1 expression will improve understanding 
of the mechanisms involved in the regulation of the expression 
of this protein.

In patients with gastric pathology, in murine models or 
in gastric epithelial cell lines, the expression of trans‑acting 
T‑cell‑specific transcription factor GATA‑3 (GATA‑3), STAT‑1, 
STAT‑3, transcription factor Sp1 (Sp1), cyclic AMP‑responsive 
element‑binding protein 3‑like protein 4 (CREB), AP‑1 tran-
scription factor (AP‑1) and Oct‑1 increases, while the levels of 
CCAAT enhancer binding protein‑α (CEBPα) and NKX6.3 
decrease (65,69‑82). The expression of GATA‑3 was found to 
have increased at different stages of the carcinogenesis asso-
ciated with H. pylori in patient biopsies, murine models and 
human gastric epithelial cells (73,74).

CagA and OipA of H.  pylori induce the activation of 
transcription factors such as AP‑1, NF‑κB, STAT‑3, CREB 
and nuclear factor of activated T cells (NFAT), which favor 
the expression of IL‑6, and cytokines, which promote inflam-
mation (83‑89). IL‑6 stimulates the activation of the signaling 
pathway gp130/STAT3 in gastric cancer cell lines (90), while 
CagA stimulates the expression of the NFAT transcription 
factor in AGS cells (88).

The protein Tipα, produced by H. pylori, activates the 
IL‑6/STAT3 pathway  (89). H. pylori  cagA+ strains induce 
signaling through the MAPK pathway, thus increasing prolif-
eration and activating transcription factors such as AP‑1 (70). 
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Figure 1. Regulation of GKN1 expression. (A) NKX6.3 is the only transcription factor validated as a positive regulator of GKN1 transcription. It is 
likely that another transcription factor or factors act as activators or repressors of GKN1 transcription during the infection of the gastric epithelium by 
H. pylori. Evidence indicates that H. pylori activates different signaling pathways that induce the expression of various transcription factors. The decrease 
in or loss of GKN1 expression in gastric cancer may be a consequence of: (B) GKN1 promoter methylation; (C) EBNA1 binding to the transcriptional 
complex; or (D) histone modification, such as trimethylation of lysine 9 in histone 3. Additionally, it is possible that the GKN1 mRNA is targeted by some 
miRNAs. By in silico analysis, miRNAs were found with sequences complementary to sites located in the 3' untranslated region of GKN1 mRNA, and 
are likely to contribute to its negative post‑transcriptional regulation through: (E) Inhibition of translation; or (F) mRNA degradation. The expression 
of the proposed miRNAs may or not be induced by H. pylori. GKN1 is degraded in the cytoplasm of epithelial cells when (G) the ubiquitin ligase UBR5 
marks GKN1 for its degradation in the proteasome. These and other mechanisms can act synergistically to promote the diminution or silencing of GKN1 
expression, manifesting as a decreased or absent mRNA and protein expression in gastric tissue or in the circulation. Figure created using BioRender.
com. TFs, transcription factors; GKN1, gastrokine 1; UBR5, E3 ubiquitin‑protein ligase UBR5; EBNA1, Epstein Barr nuclear antigen 1; EBV, Epstein 
Barr virus; RISC, RNA‑induced silencing complex; H. pylori, Helicobacter pylori; miRNA, microRNA; Ub, ubiquitin; NF‑κB, nuclear factor‑κB; 
TSS, transcriptional start site.

Figure 2. Transcription factors and miRNAs predicted in silico as regulators of GKN1 expression. By in silico analysis (A) transcription factors were identified 
with affinity to recognition sequences in the GKN1 promotor region and (B) miRNAs were found with sequences complementary to sites located in the 3'UTR 
of GKN1 mRNA. It is likely that the transcription factors act as activators or repressors of the transcriptional regulation of GKN1, and the miRNAs contribute 
to post‑transcriptional regulation, inhibiting translation or inducing mRNA degradation. Figure created using BioRender.com TSS, transcriptional start site; 
UTR, untranslated region; miRNA/miR, microRNA; GKN1, gastrokine 1; GATA3, T‑cell‑specific transcription factor GATA‑3; NFAT, nuclear factor of 
activated T cells; CEBPα, CCAAT enhancer binding protein‑α; AP‑1, AP‑1 transcription factor; Sp1, transcription factor Sp1; CREB, cyclic AMP‑responsive 
element‑binding protein 3‑like protein 4.
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Through toll like receptor  (TLR)2 and TLR9, H.  pylori 
activates the MAPK pathway and, downstream, the factors 
AP‑1 and CREB, which positively regulate the transcription 
of cyclooxygenase 2 (COX‑2) (91). CREB and STAT‑3 are 
activated by H. pylori and positively regulate the transcription 
of COX‑2 in gastric epithelial cells (72,83). Increased STAT‑3 
expression has been found in biopsies of the gastric mucosa 
infected with H. pylori cagA+ (80), as well as in cell lines and 
murine models (86). CagA promotes the phosphorylation of 
STAT‑3 in gastric epithelial cells (92).

In vitro and in  vivo experiments have shown that the 
protein OipA of H. pylori stimulates the phosphorylation of 
STAT‑1 (93) and that H. pylori alters the STAT‑1 signaling 
induced by IFN‑γ in gastric epithelial cells. This event may 
represent an adaptation of the bacteria in order to modulate the 
immune response of the host mucosa, allowing the bacteria to 
survive in the stomach (94).

The expression level of the Sp1 transcription factor 
increases in gastric adenocarcinoma and is related to the 
cancer stage, the depth of infiltration and an unfavorable prog-
nosis for patients (82). The expression of Sp1 differs between 
intestinal‑type and diffuse‑type cancer, while low‑level 
expression of Sp1 is related to the progression and metastasis of 
intestinal‑type cancer, in contrast to diffuse‑type cancer (95). 
Sp1 is essential in the regulation of genes that determine 
the characteristics of cancer (96). In AGS cells, the ERK1/2 
signaling pathway, activated in response to H. pylori infection, 
in turn activates Sp1, which modulates the transcription of 
vascular endothelial growth factor‑A (69). It is probable that 
the factors AP‑1, Oct‑1, STAT‑1, STAT‑3, GATA‑3, Sp1, CREB 
and NFAT, with recognition sequences in the GKN1 promotor 
and being activated by H. pylori, repress the transcription of 
GKN1 in infected mucosa or mucosa with gastric cancer.

In normal gastric mucosa, CEBPα is expressed in the 
foveolar epithelium and is reduced in the tumor tissue of 
patients with gastric cancer (79), and in the cell lines MKN45 
and MKN74 (97). The ectopic expression of CEBPα in gastric 
cancer cell lines reduces cell viability (97). The level of CEBPα 
expression gradually decreases in line with the advancing 
carcinogenesis associated with H. pylori infection (73). Given 

the function of CEBPα in the regulation of the viability of 
cancerous cells and the fact that GKN1 and CEBPα levels 
gradually decrease in line with the progress of the lesion, it is 
probable that this factor is an activator of GKN1 transcription. 
The reduced expression of CEBPα and NKX6.3 in gastric 
cancer may be due to the negative regulation mediated by 
microRNAs.

DNA methylation. Changes in the methylation of DNA lead 
to changes in gene expression. The hypermethylation of CpG 
islands located in the promoter region of a gene results in the 
decrease or silencing of the expression of the gene.

The methylation of the GKN1 promoter was previously 
studied, finding hypermethylation in the CpG islands of the 
promoter region in only two of 25 gastric tumors. This evidence 
indicates that the low or null GKN1 expression in the inflamed 
tissue, either tumoral or infected by H. pylori, is not due to the 
methylation of its promoter in all cases (Fig. 1B) (20).

The protein EBNA1 of EBV is able to bind to the promoter 
region of various genes of the host (28). It has been found to 
have an affinity with the sequences contained in the GKN1 
promoter and, binding at these sites, contributes to the deregu-
lation of GKN1 in gastric cancer associated with Epstein‑Barr 
infection (Fig. 1C) (29). Only a small proportion of gastric 
tumors contain EBV.

Histone modification. The modification of histones is 
an epigenetic mechanism influencing gene expression. 
Altieri  et  al  (26) analyzed six  gastric tumors in order to 
determine whether histone modification contributes to GKN1 
regulation. Chromatin immunoprecipitation assays were 
conducted on a fragment of 600 pb of the GKN1 gene promoter, 
including the 5'UTR, finding trimethylation in lysine 9 of 
histone 3 (H3K9triMe), among bases ‑148 and ‑310 of the 
GKN1 gene promoter in the six gastric tumors. H3K9triMe 
is a gene repression marker that generates binding sites for 
histone deacetylase I (HDAC1) (98) (Fig. 1D). The inhibition 
of HDAC1 activity with trichostatin A, a hypomethylating 
agent, is related to increased GKN1 mRNA levels but not to 
the protein itself. These findings suggest that the regulation 

Table I. Transcription factors with affinity to binding sequences in the gastrokine 1 gene promoter region.

Transcription factor	 Number of binding sites	 Binding sequence	 Genomic position of binding sequencea

GATA‑3	 7	 CAGAGATAAAATG	 68974044‑68974056
CEBPα	 7	 GAAATTGAGGAAGGT	 68974539‑68974553
Oct‑1	 6	 GTCATGCAATTGATC	 68973972‑68973986
AP‑1	 4	 TGATGAGTCAGGT	 68974444‑68974456
STAT‑3	 3	 AGGTTTCCTGGTACACTGG	 68974502‑68974520
Sp1	 2	 GCTGTGGGCGTGAGTAT	 68974361‑68974377
STAT‑1	 1	 AGTGTACCAGGAAACCTTT	 68974500‑68974518
CREB	 1	 AGGGTCCTATGTAATAAGATT	 68973801‑68973821
NFAT	 1	 CTTTGGAAATCTTATTACA	 68973794‑68973812

aData obtained from MatInspector. GATA‑3, T‑cell‑specific transcription factor GATA‑3; CEBPα, CCAAT enhancer binding protein‑α; AP1‑1, 
AP‑1 transcription factor; Sp1, transcription factor Sp1; CREB, cyclic AMP‑responsive element‑binding protein 3‑like protein 4 NFAT, nuclear 
factor of activated T cells.
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of GKN1 may occur at the post‑transcriptional level via 
miRNAs (26).

miRNAs. In the gastric mucosa, miRNAs can be expressed by 
epithelial cells, infiltrating inflammatory cells, transformed 
cells or cancerous cells (31). In the regulation of gene expres-
sion, miRNAs inhibit the translation or induce the degradation 
of target transcripts. It is likely that some miRNAs impede the 
translation of GKN1 mRNA and, consequently, are responsible 
for the reduction in the protein level, although there are no 
reports indicating whether a miRNA is involved in the regula-
tion of GKN1 expression to the best of our knowledge.

In order to explore whether GKN1 mRNA has binding sites 
for one or more miRNAs, an in silico analysis was conducted 
using programs for predicting miRNA targets: TargetScan (99) 
(2015, ht tp://www.ta rgetscan.org), miRanda  (100) 
(http://www.microrna.org), miRDB (101) (http://mirdb.org), 
miRSystem (102) (http://mirsystem.cgm.ntu.edu.tw/index.php) 
and DianaTools (103) (http://www.microrna.gr/microT‑CDS), 
based on thermodynamic and base complementarity analysis. 
miRNAs were found with sequences complementary to sites 
located in the 3'UTR region of GKN1 mRNA (Fig. 2B), four of 
which are able to hybridize with canonical sites of GKN1 
mRNA and possess two or three guanine or cytosine residues 
in the seed region of the miRNA, conferring them greater 
binding stability. An adenine in position 1 of the 3'UTR region 
of GKN1 mRNA ensures the recognition of the transcript by 
the RNA‑induced silencing complex. These characteristics 
increase the probability that a miRNA will interact with the 
3'UTR of GKN1 mRNA (Table II).

Multiple prediction programs may be used to locate 
binding sites for miRNAs in gene transcripts. The results 
of the analysis facilitated the selection of miRNAs with a 
higher probability of binding to their target, miR‑544a was 
predicted by five programs, according to the aforementioned 
criteria. It is highly probable that miR‑544a is a regulator of 
GKN1  (104,105). This proposal is strengthened by experi-
mental data on the expression of miR‑544a, which is found 
at increased levels in gastric cancer cell lines (106). To the 
best of our knowledge, research has not been conducted on 
the expression of hsa‑miR‑1245b‑3p, hsa‑miR‑892c‑5p and 
hsa‑miR‑548d‑3p in the gastric mucosa, be that infected, 
inflamed, atrophic or with gastric cancer. However, the results 
of the in silico analysis suggested a high probability that these 
miRNAs regulate the expression of GKN1, either inhibiting 
the translation of the transcript or promoting its degradation 
(Fig. 1E and F).

Currently, >5,000 miRNAs are registered on miRBase, 
while in silico predictions estimate that more than one‑third 
of the human transcriptome can be regulated by miRNAs. In 
gastric cancer, inflammatory processes and H. pylori infection, 
miRNAs fulfil an important function in the deregulation of 
gene expression (31,33). GKN1 is absent in cancer, both with 
and without H. pylori, and is reduced in patients with gastritis, 
in gastric mucosa infected by H.  pylori and in atrophic 
gastritis (30). The reduction in or absence of GKN1 transcripts 
or protein is not completely explained by the studied mecha-
nisms of transcriptional and post‑translational regulation. It is 
likely that some miRNAs regulate GKN1 expression directly 
or indirectly at the post‑transcriptional level.
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It has been reported that ROS deregulate the expression 
of miRNAs in tissue infected with H. pylori or gastric cancer 
tissue (107,108). It is also known that ROS induce a decrease 
in the number of copies of GKN1 mRNA in tissue infected 
by H. pylori (48). These data support the hypothesis that, in 
H. pylori infection, ROS alter the expression of miRNAs, 
among which are those with the GKN1 transcript as a target. 
The cytotoxins VacA and CagA, lipopolysaccharide and 
peptidoglycan, among other components of H. pylori, are able 
to induce the increased expression of miRNAs that inhibit 
translation or induce the degradation of the GKN1 transcript, 
thus modulating the decrease in the levels of this protein.

From the first stages of H. pylori infection, the inflam-
mation associated with it causes changes in the expression of 
proteins and miRNAs, alterations in cell signaling, and unbal-
anced cell proliferation and apoptosis in gastric epithelial 
cells, promoting the progression of gastritis to pre‑neoplastic 
and neoplastic lesions  (109). The abnormal expression of 
miRNAs is common in different types of cancer (110), with 
the evidence indicating changes in the expression profiles 
of miRNAs in gastric cancer and in mucosa infected by 
H. pylori.

Alterations in the expression of miRNAs can manifest 
either as increases or decreases (111). In the gastric mucosa, 
both with and without H. pylori infection, it has been found 
that miRNAs with changes in their expression levels in 
response to H.  pylori can be similar to or different from 
those observed in gastric cancer with a negative result for 
bacteria (31) (Tables III and IV). Chang et al (33) found that 
hsa‑miR‑99b‑3p, hsa‑miR‑564 and hsa‑miR‑658 expres-
sion increased in cancerous tissue infected with H. pylori, 
while hsa‑miR‑204‑5p, hsa‑miR‑338‑5p, hsa‑miR‑375 and 
hsa‑miR‑548c‑3p were found to be overexpressed in cancer 
tissue without H. pylori (33).

In infected mucosa, hsa‑miR‑223 expression was found to 
be increased, while in mucosa without H. pylori, hsa‑miR‑203, 
hsa‑miR‑204, hsa‑miR‑455, hsa‑miR‑141 and hsa‑let‑7f were 
found to be overexpressed (31). The levels of let‑7, miR‑125a 
and miR‑500 were found to be significantly reduced in cells 
infected with cagA+ strains, although not in those infected with 
cagA‑ strains. These results indicate that miRNAs participate 
in gastric pathogenesis, whether associated and not associ-
ated with H. pylori, and suggest that the CagA oncoprotein 
of H. pylori regulates the differential expression of miRNAs 
in epithelial gastric cells  (31). Increased hsa‑miR‑127‑5p, 
hsa‑miR195, hsa‑miR‑196a, hsa‑miR‑206, hsa‑miR‑216 
and miR‑488 expression has been found, while decreased 
hsa‑miR‑103, hsa‑miR‑141, hsa‑miR‑17‑3p, hsa‑miR34a and 
let‑7i expression has been found in gastric epithelial cells 
infected with different H. pylori‑cagA+ strains (36).

H. pylori is able to modify the expression of miRNAs by 
means of inflammatory effectors (112). In gastric epithelial 
cells, the pro‑inflammatory cytokines IL‑8, tumor necrosis 
factor‑α and IL‑1β induce the expression of miR‑146a (113), 
while the oncoprotein CagA positively regulates c‑myc, which 
is related to the decreased expression of miR‑26a and miR‑101. 
The decrease in the expression of these miRNAs contributes 
to increased levels of the histone methyltransferase EZH2 and 
methyltransferase DNMT3B, which promote the methylation 
of the let‑7 promoter (114).

Ta
bl

e 
IV

. C
on

tin
ue

d.

A
ut

ho
r, 

ye
ar

	
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  M

od
el

		


M
et

ho
d 

us
ed

 to
 d

et
er

m
in

e	
U

pr
eg

ul
at

ed
	

D
ow

nr
eg

ul
at

ed
	

R
ef

s.
			




th
e 

m
iR

N
A

s e
xp

re
ss

io
n	

m
iR

N
A

s	
m

iR
N

A
s

U
ed

a 
et

 a
l, 

20
10

			



A

rr
ay

Ex
pr

es
s, 

ve
rs

io
n 

3.
0	

hs
a‑

m
iR

‑1
05

	
‑	

(1
21

)
			




(E
ur

op
ea

n 
B

io
in

fo
rm

at
ic

s	
hs

a‑
m

iR
‑1

00
			




In
st

itu
te

), 
A

‑M
EX

P‑
62

0,
 c

on
ta

in
s	

hs
a‑

m
iR

‑1
25

b
			




1,
10

0 
m

ic
ro

R
N

A
 p

ro
be

s,	
hs

a‑
m

iR
‑1

99
a

			



32

6 
hu

m
an

 a
nd

 2
49

 m
ou

se
	

hs
a‑

m
iR

‑9
9a

				





hs
a‑

m
iR

‑1
43

				





hs
a‑

m
iR

‑1
45

				





hs
a‑

m
iR

13
3a

m
iR

N
A

/m
iR

, m
ic

ro
R

N
A

.



ALARCÓN‑MILLÁN et al:  REGULATION OF GASTROKINE 1 EXPRESSION566

Ubiquitination. E3 ubiquitin‑protein ligase UBR5 (UBR5) 
is an E3  ubiquitin ligase that participates in the ubiq-
uitin‑proteasome system, regulating protein concentration via 
ubiquitination and degradation, and is deregulated in different 
types of cancer (115). UBR5 increases in the cancerous tissues 
of gastric cancer patients, while an interaction between UBR5 
and GKN1 has been observed through immunoprecipitation 
assays. These results suggest that UBR5 participates in the 
ubiquitination of GKN1, and that at least part of this protein 
is sent to be degraded by the proteasome (27) (Fig. 1G). Thus, 
UBR5 contributes to the regulation of gastric carcinogenesis, 
inducing the degradation of tumor suppressing proteins, such 
as GKN1 (27).

Therefore, promoter methylation, trimethylation of 
histones and ubiquitination are mechanisms that contribute 
to the regulation of the GKN1 expression in gastric cancer; 
however, they do not explain the absence of the protein in cell 
lines and cancerous human tissue.

6. Conclusion

GKN1 plays an important role in the maintenance of gastric 
homeostasis. In inflamed mucosa, both with and without 
H. pylori infection, GKN1 levels decrease, while this protein 
is absent in gastric cancer. The measurement of circulating 
GKN1 concentration, the protein itself or its mRNA in gastric 
tissue could be useful for the early diagnosis of cancer. 
However, little is known about the mechanisms that explain 
the reduction or silencing of GKN1 expression in gastric carci-
nogenesis. No mutations or polymorphisms have been found 
in the GKN1 promoter region, which explains the reduction in 
the levels of this protein. While the modification of histones 
seems to be involved in the transcriptional regulation of GKN1, 
further research is required to confirm its level of participation 
in the regulation of GKN1 in the population. The information 
available suggests that the methylation of the GKN1 promotor 
is an epigenetic mechanism that reduces the transcription rate 
of the gene. However, this mechanism only occurs in some 
cases of gastric cancer and, moreover, it is probable that it is 
determined by the genetic characteristics of the individual 
or the presence of EBV in the tumor. While only factor 
NKX6.3 has been confirmed as a positive regulator of GKN1 
transcription, in silico analysis suggests the existence of other 
transcription factors with affinity for sequences in the GKN1 
promotor region, among which are GATA‑3, CEBP‑α, Oct‑1, 
AP‑1, STAT‑3, SP1, STAT‑1, CREB and NFAT. It is unknown 
whether miRNAs regulate GKN1 expression at the post‑tran-
scriptional level. In silico analysis revealed that hsa‑miR‑544a, 
hsa‑miR1245b‑3p, hsa‑miR‑892c‑5p and hsa‑miR‑548d‑3p 
have sequences complementary to sites located in the 3'UTR 
of GKN1 mRNA. It is likely that, together, they regulate the 
expression of GKN1 in vivo, in mucosa infected by H. pylori 
or in gastric cancer (Fig. 1). Functional studies are required to 
show whether miRNAs play a role in the regulation of GKN1 
expression. At the post‑translational level, UBR5 mediates 
the ubiquitination of GKN1, marking it for degradation in 
the proteasome; however, this mechanism does not explain 
the absence or minimal level of GKN1 expression in gastric 
cancer. Clarifying the mechanisms that regulate GKN1 
expression will contribute useful information for evaluating 

the possible clinical applications for the detection of this 
protein in mucosa, or in the circulation of patients with gastric 
diseases both associated and not associated with H. pylori.
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