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Abstract. Human papillomavirus (HPV) is the most common 
sexually transmitted infection, exhibiting a tropism for the 
epidermis and mucosae. The link between persistent HPV 
infection and malignancies involving the anogenital tract 
as well as the head and neck has been well-established, and 
it is estimated that HPV-related cancers involving various 
anatomical sites account for 4.5% of all human cancers. 
Current prophylactic vaccines against HPV have enabled the 
prevention of associated malignancies. However, the sizeable 
population base of current infection in whom prophylactic 
vaccines are not applicable, certain high-risk HPV types not 
included in vaccines, and the vast susceptible population in 
developing countries who do not have access to the costly 
prophylactic vaccines, put forward an imperative need for 
effective therapies targeting persistent infection. In this article, 
the life cycle of HPV, the mechanisms facilitating HPV evasion 
of recognition and clearance by the host immune system, and 
the promising therapeutic strategies currently under investiga-
tion, particularly antiviral drugs and therapeutic vaccines, are 
reviewed.
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1. Introduction

Human papillomaviruses (HPVs) are a family of non-enveloped 
viruses with cutaneous and mucosal tropism, causing the most 
common sexually transmitted disease (1). The association of 
HPV infections, particularly persistent infections, with a series 
of malignancies has been well‑established, exemplified by 
anogenital (cervical, vulvar, vaginal, penile and anal) cancer, 
head and neck cancer (oropharyngeal squamous cell carcinoma 
affecting the tonsils, tonsillar fossa, tongue, base of the tongue 
and soft palate), non-melanoma skin cancer in patients with 
epidermodysplasia verruciformis (EV), and malignant 
progression of recurrent respiratory papillomatosis (2). These 
malignancies generally account for ~4.5% of all cancers (3), 
among which cervical cancer is a major concern. It is 
estimated that ~530,000 new cases and 275,000 deaths from 
cervical cancer occur annually worldwide, causing a major 
global disease burden and loss of life years, particularly in 
developing countries (4-6).

Over the past decades, with the elucidation of the natural 
history of HPV and HPV-associated diseases, as well as 
technical progress, effective screening strategies and robust 
prophylactic vaccines have been developed. As the most 
groundbreaking scientific discovery in the fight against 
cervical cancer, prophylactic vaccines have an excellent 
safety and efficacy profile, conferring type‑specific immunity 
against HPV infection (7). Prophylactic vaccines are virus-like 
particles (VLP) self-assembled by L1 capsid without viral 
genome, which trigger neutralizing antibody production, 
thus blocking the adherence and internalization of HPV by 
basal cells in the epithelium. These vaccines appear to be a 
promising approach to decreasing the morbidity and mortality 
of HPV-associated benign and malignant diseases.

However, despite the prophylactic effect of currently available 
vaccines, they are not effective in eradicating pre-existing HPV 
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infection and associated lesions. In addition, these vaccines 
merely induce immunity specific to certain HPV types, but are 
unable to fend off other types of the virus; furthermore, their 
immunization longevity, which is presumably not lifelong, has 
yet to be evaluated. Finally, the inaccessibility to vaccines and 
screening programs in resource-poor regions exposes local 
populations to a high risk of HPV-associated malignancies, 
which have already been proven to be responsible for a substantial 
proportion of the worldwide cancer burden. These unresolved 
issues necessitate screening programs and further exploration 
of therapeutic modalities for persistent HPV infection and 
associated lesions.

However, given the fact that most HPV infections that are 
accompanied by simultaneous epithelial dysplasia undergo 
spontaneous clearance under immunological surveillance 
within 1-2 years (8), not all HPV infections require treatment. 
Therefore, it is advisable to differentiate persistent HPV 
infection from transient infection through biomarkers or 
lesion characteristics, which, unfortunately, have not yet been 
fully elucidated. What is currently known is that higher-grade 
lesions have a lower probability of spontaneous regression, 
and the process of oncogenesis, from low-grade squamous 
intraepithelial lesion (LSIL) through high-grade squamous 
intraepithelial lesion (HSIL) to invasive cervical cancer (ICC), 
is consecutive. Hence, a wait-and-watch approach is usually 
adopted for patients with LSIL to determine whether there is 
spontaneous regression or progression, while HSIL is mostly 
treated by physical ablative or surgical modalities (9). Such 
strategies are practicable, but cannot address the anxiety 
of patients with LSIL during the long wait, or exclude the 
possibility of LSIL progression. Furthermore, the currently 
available therapeutic modalities, primarily surgical treatment, 
are somewhat destructive and costly, and are characterized by 
a high recurrence rate, several side effects and complications, 
restricting their applicability in LSIL management. Therefore, 
there is a need for non-invasive interventions, such as 
medications, that are appropriate for both LSIL and HSIL, 
or even ICC, as well as transformation of the overall concept 
from treating cancer to treating infection.

The aim of this review article was to discuss the extensive 
previous and ongoing investigations into antiviral agents, 
therapeutic vaccines and immunomodulators, along with their 
respective advantages and drawbacks.

2. HPV‑associated diseases

A certain group of diseases were demonstrated to be 
associated with HPV infection; these may be divided into 
benign and malignant lesions, according to their prognosis, 
or into mucosal and cutaneous lesions, according to their 
primary location. Specifically, mucosal and cutaneous lesions 
in anogenital sites resulting from HPV infection are classified 
together into one category due to their similar natural history 
and etiological relevance. Hence, HPV-associated diseases 
may be classified as anogenital, aerodigestive and non‑genital 
cutaneous infections.

All HPV-associated diseases share dysplasia of the 
epithelium as the common pathological characteristic. In 
particular, dysplasia of the stratified squamous epithelium 
in anogenital sites is further classified into grade 1, 2 and 3 

intraepithelial neoplasia, corresponding to mild, moderate 
and severe dysplasia, respectively, with grade 3 intraepithelial 
neoplasia also representing carcinoma in situ. The term LISL in 
cytopathology is equivalent to grade 1 intraepithelial neoplasia 
and HSIL refers to grade 2 and 3 intraepithelial neoplasia.

HPV infection in anogenital sites. Although most HPV 
infections in anogenital sites, regardless of the HPV type, result 
in low-grade dysplasia, which may take the form of a benign 
condylomatous lesion highly likely to regress spontaneously 
within 2 years (10), persistent infection with high-risk HPV 
types has been recognized as a strong carcinogenic factor.

The role of high-risk HPV infection as a prerequisite 
for cervical cancer development has been well established 
due to the work of Boshart et al (11,12). It is believed that 
almost all cervical cancer cases are caused by HPV, and that 
HPV‑negative cases were misclassified due to the limitation 
of testing methods (false-negative) (13). HPV-16 is the most 
frequent type found in cervical cancer, followed by HPV-18, 
-45, -31, -33 and other high-risk types (14). HPV-18 is more 
common in adenocarcinoma compared with squamous cell 
carcinoma, while adenocarcinoma accounts for ~10% of all 
cervical cancer cases (15). As regards low-risk HPV types, 
such as HPV-6 and -11, they are mostly found in low-grade 
lesions, such as cervical intraepithelial neoplasia (CIN)1, but 
are rarely found in high-grade lesions (CIN 2, 3 and ICC).

Anal cancer ranks second in terms of correlation with 
HPV infection. A study in France reported that 97% of the 
cases of anal cancer are HPV-positive, most of which are 
HPV-16-positive (16). Similarly, it is estimated that 70% cases 
of vaginal cancer, 45% cases of penile cancer and 40% cases of 
vulvar cancer are attributed to HPV, particularly HPV-16 (17). 
Anal intraepithelial neoplasia (AIN), vaginal intraepithelial 
neoplasia (VAIN), penile intraepithelial neoplasia (PIN) 
and vulvar intraepithelial neoplasia (VIN) are deemed as 
precursors of the respective carcinomas, with a certain risk of 
progression (18,19).

HPV infection in the aerodigestive tract. Low-risk HPVs, 
mainly HPV-6 and -11, are more common in the aerodigestive 
tract; therefore, the majority of the HPV-related aerodigestive 
tract lesions are benign, such as papilloma of the oral cavity and 
recurrent respiratory papillomatosis (RRP) of the larynx (20). 
However, regardless of the low risk, RRP has the potential of 
spread and progression. Therefore, even ‘low-risk’ HPVs may 
progress to cancer.

HPV-16 is the most common high-risk type affecting the 
aerodigestive tract, and is considered to be associated with a small 
proportion of oropharyngeal cancers, such as those originating 
from the tonsils, tonsillar fossa, base of the tongue and soft 
palate. Of note, the prevalence of HPV-positive oropharyngeal 
cancers has markedly increased over the past decades (21).

There has always been controversy on the association 
between HPV infection and esophageal squamous cell 
carcinoma (ESCC). Numerous studies have attempted to 
investigate the association between HPV infection and ESCC, 
but contradictory results were reported. As regards studies 
detecting HPV DNA in ESCC samples, both negative and 
positive results have been reported (22-26). However, the mere 
presence of HPV DNA in ESCC tissues cannot confirm its 
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etiological role in tumorigenesis; thus, a large international 
study (interSCOPE) was designed to determine whether there 
were anti-L1 or anti-E6/E7 antibodies in the serum of ESCC 
patients, with only 4 samples found positive for HPV-16 E6 
and E7 (27). Further evidence demonstrated no detectable 
level of HPV DNA integration in ESCC samples (28,29), and 
the status of HPV infection did not affect the prognosis of 
ESCC (30). These results indicate that HPV may play a less 
important role in the development of ESCC, but a hit-and-run 
mechanism may be utilized by HPV to induce ESCC. Large 
prospective cohort studies with long follow-up are required 
to draw definitive conclusions on the involvement of HPVs in 
esophageal carcinogenesis.

HPV infection of non‑genital skin. The HPV types involved in 
cutaneous infection, including HPV-1, -2, -3, -4, -10, -27, -28 and 
-41, among others, are quite different from those involved in 
mucosal infection, usually causing various types of warts, such 
as common, flat and plantar warts (31). While cutaneous HPV 
infection does not ordinarily cause skin cancer, it may become 
complicated when there is a genetic background of EV. EV 
patients are susceptible to HPV infection, particularly HPV-5 
and -8, and a certain proportion of EV patients eventually 
develop skin cancer at the location of primary lesion (32). 
Therefore, HPV-5 and -8 are considered as possible carcinogens. 
However, the role of HPVs in non-melanoma skin cancer in the 
normal population is yet to be fully elucidated.

3. HPV life cycle

HPVs are non-enveloped, double-stranded circular DNA 
viruses with a genome ~8 kb in size, which consist of three 
parts: Long control region (LCR), open reading frame (ORF) 
of six early genes (E1, E2, E4, E5, E6 and E7) and ORF of 
two late genes (major capsid protein L1 and minor capsid 
protein L2) (Fig. 1) (33). The viral capsid is an icosahedron 
composed of 72 pentamers of L1 (360 in total) with variable 
numbers of L2 buried inside the capsid surface. To date, 
>170 types of HPV have been identified and they may be 
roughly divided into cutaneotropic and mucotropic types, 
while certain types of HPV may be found in both cutaneous 
and mucosal lesions. Those mucosal HPVs are further 
subdivided into low-risk and high-risk groups, according 
to their carcinogenic potency. HPVs only infect the basal 
keratinocytes of human stratified squamous epithelia, such 
as skin and mucosae. A microwound of the epithelium is a 
prerequisite for the transmission procedure, which enables 
HPVs to reach the basement membrane (BM) and basal 
keratinocytes (34). Additionally, active cell division stimulated 
by wound healing response is also considered to be necessary 
for the infection process (35,36). It has been demonstrated that 
HPVs first bind to heparan sulfate proteoglycans (HSPGs) (37) 
on the BM through the L1 capsid protein, which induces 
subsequent conformation of L2 minor capsid protein to expose 
its N-terminal, where a furin cleavage site is located (38). 
Upon furin cleavage, viruses shed from the BM are transferred 
to the cell surface for secondary binding events mediated by 
allosteric L1 (39-41), and the RG-1 epitope on L2, which is 
required for L2-mediated endosomal escape from the late 
endosomes (42), is exposed. In addition, BM also acts as 

a guidance for HPVs to identify permissive cells, i.e., basal 
keratinocytes (mitotically active epithelial cells) rather than 
non-permissive (non-dividing) cells (40). Internalization of the 
virions follows the secondary binding events, through α6β4 
integrins (43-46), tetraspanins CD63 and CD151 (47-49) and 
other unidentified receptors.

As regards HPVs adhering to the cell surface through 
syndecans (HSPGs located on the cell membrane), it is also 
possible that additional components, such as epidermal 
growth factor (EGF) and keratinocyte growth factor (KGF), 
are incorporated after initial binding occurs, forming 
large-molecular-weight complexes. After cleavage by matrix 
metalloprotease, these complexes are released from the cell 
membrane and subsequently bind with EGFR/KGFR, which 
mediates the uptake of the complexes (50,51).

The endocytosed virions are transported by retrograde 
trafficking sequentially through the endosomal system, where 
the capsid disassembles and L1 is retained in a degraded form, 
while L2 remains associated with viral DNA (vDNA), trans 
Golgi network, endoplasmic reticulum and, finally, into the 
nucleus during the nuclear envelope breakdown of mitosis (52).

Following the initial infection by high-risk HPVs, the 
viral genome tethers the cellular genome as episomes undergo 
transient amplification to extend to ~200 copies per cell, 
maintaining the viral episome at a low copy number and 
forming the reservoir of infection (53-55). The life cycle of 
intracellular viruses is closely associated with the proliferation, 
differentiation and maturation of keratinocytes, and the 
expression of viral proteins is likewise highly ordered. In 
the lower layers of the epithelium, where basal and parabasal 
cells reside, E6 and E7, referred to as the oncogenic proteins, 
are expressed to stimulate cell division. E6, targeting p53, 
mediates its ubiquitination through recruitment of E6AP 
and proteasome-dependent degradation (56). E7 binds 
retinoblastoma family proteins and, therefore, releases E2F 
to activate gene transcription necessary for DNA replication. 
Thus, coordination of E6 and E7 drives cells to re-enter the 
cell cycle (35). In addition, E1 helicase is required for viral 
genome replication, and E2, which is required for transcription 
activation and repression, recruits E1 at the beginning of 
replication. Therefore, E1 may be transiently expressed for 
the aforementioned initial genome amplification, but not for 
genome maintenance (57); by contrast, E2 is considered to be 
constitutively expressed for its role in transcription activation. 
In the middle layers, with the advent of genome amplification, 
the necessary proteins E1, E2, E4, E5, E6 and E7 increase in 
abundance. E6 and E7 are still needed, as they allow cells to 
re-enter the S-phase, which provides the conditions for viral 
genome replication (58). E5 plays a role similar to those of E6 and 
E7, but through stabilization of EGFR and enhancement of EGF 
signaling and mitogen-activated protein kinase activity (59-61). 

Figure 1. Genome organization of human papillomavirus. URR, upstream 
regulatory region.
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In the upper layers, E4, L1 and L2 are predominantly expressed 
where packaging of vDNA and assembly of intact virions occur 
following genome amplification (Fig. 2). The virus is finally 
released in the superficial layers of stratified epithelium along 
with the shedding of senescent cells. Apart from virus release, 
another role of E4 is disintegration of the stratum corneum 
by formation of amyloid fibers, enabling repetitive infection 
of HPVs (62-64). On the contrary, this mode is completely 
changed when lesions progress (to HSIL or ICC), and the 
definition ‘abortive infection’ is often used to describe the 
status where most or all layers of the stratified epithelium are 
occupied by basal-like cells overexpressing E6 and E7. Viral 
genome integration is a late event, which deregulates E6 and E7 
expression by loss of E2 and is highly associated with invasive 
lesions (58).

4. Immune evasion

HPVs have long been known to employ multiple tactics to 
escape recognition and elimination by the human immune 
system, underlying persistent infection.

The unique life cycle of HPV beyond the dermis keeps it 
away from immunocompetent cells. The factors contributing 
to the immune invisibility of HPV-infected keratinocytes 
include the maintenance of low profile of the viral genome in 
basal cells, non‑secretory proteins, low profile of viral proteins 
via E2 as transcription repressor and suboptimal codon 
usage (65,66), and the absence of viremia and cell lysis.

HPVs also interfere with normal immune function through 
the following mechanisms. A dampened type I interferon 
(IFN) signaling cascade results from inhibition of TYK2 
kinase activity (67) and IFN regulatory factor 3 (IRF3) 
transactivation (68) by E6, as well as inhibition of IRF1 (69) 
and IRF9 (70) by E7. An impaired antigen-presenting process 
via the major histocompatibility complex-I (MHC-I), also 
referred to as human leukocyte antigen (HLA), results from 
decreased expression of low-molecular-weight polypeptide 
(LMP)2, LMP7, transporter associated with antigen 
processing (TAP)1, TAP2 and MHC-I (71). Depletion of 
Langerhans cells (LC) in the infected epithelium results 
from downregulation of E-cadherin on the cell membrane 
of infected keratinocytes (72,73). Blocked maturation of 
LCs results from activation of the phosphoinositide 3-kinase 
(PI3K)-Akt pathway in LCs by L2 capsid protein (74,75). A 
shift from Th1- to Th2-response caused by HPV stimulates 

interleukin (IL)-10 secretion at the expense of IFN-γ (76,77). 
Furthermore, IL-10 is considered to downregulate the 
expression of classic HLA-I molecules (76) and upregulate 
the expression of non-classic HLA-G molecules (78), which 
suppress the functions of cytotoxic T lymphocytes (CTLs) (79), 
natural killer (NK) cells (80) and dendritic cells (DCs) (81).

Although the infected cells suffer an immune attack, 
the apoptosis resistance conferred by E5, which inhibits 
TRAIL- and CD95L-mediated apoptosis (82-84), as well as 
E6, which accelerates proteasome degradation of p53, FADD, 
procaspase-8 and c-Myc (85-87), enable their survival (88).

5. Chemical antivirals

Chemical antivirals are crucial for the treatment of several 
viral infectious diseases, such as viral hepatitis B and acquired 
immunodeficiency syndrome (AIDS), but little is known on 
the role of antivirals in HPV infections. This may be partially 
attributed to the fact that the targets of classical antivirals are 
enzymes encoded by the viral genome, while HPVs hijack 
the cellular replication system for their reproduction, except 
for E1 helicase, which provides few targets for drug design. 
However, several studies and clinical trials have identified and 
demonstrated the robust anti-HPV potential of certain acyclic 
nucleoside phosphonates (ANPs), among which cidofovir is 
the most extensively investigated.

ANPs. Cidofovir, (S)-1-(3-hydroxy-2-(phosphonomethoxy)- 
propyl) cytosine, was initially designed to inhibit the DNA 
polymerase and become incorporated into the daughter DNA, 
slowing down DNA replication and viral genome instability. 
Further studies have demonstrated its antiviral potential against 
herpes simplex virus (HSV), which encodes its own DNA 
polymerase, and against HPV, in which case no HPV‑specific 
DNA polymerase is generated. The underlying mechanisms may 
involve the fact that cidofovir is more likely to be converted to 
its active form as triphosphorylated cidofovir in HPV-infected 
cells compared with uninfected cells (89), or that the single 
replication origin is the viral episome, in contrast to multiple 
replication origins in human genome, which is more susceptible 
to chain-terminating factors, with no substitutive origins or 
compensatory effects from other origins (90). A phase II 
clinical trial that adopted topical cidofovir in the treatment of 
CIN2 and CIN3 reported a 60.8% response rate in the cidofovir 
group vs. 20% in the control group (91). Although conization 

Figure 2. Viral protein expression mode in infected cervical epithelium.
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may outperform cidofovir in terms of therapeutic efficacy, these 
findings have identified an alternative treatment for patients 
with concerns regarding postoperative complications. Similar 
studies have been performed on women with high-grade vulval 
intraepithelial neoplasia, where 4 of 10 had complete regression 
and 3 had a partial response (92). Another study evaluated the 
safety and efficacy of topical cidofovir in the treatment of 
PAIN and VIN in HIV-positive patients, demonstrating 15% 
complete response, 36% partial response, 21% stable disease 
and 6% progressive disease (93).

However, the two hydroxyls in the phosphonic moiety of 
cidofovir decrease its transmembrane activity, and it may be 
hypothesized that lipophilic modification of the hydroxyls will 
enhance its anti-HPV activity. This hypothesis has already 
been confirmed by adefovir and tenafovir, both resulting 
in significantly higher efficacy compared with their parent 
compounds, but exhibiting no specificity for HPV-infected 
cells (94), whereas GS-9191 exhibited selectivity towards 
HPV-infected cells with enhanced activity, which was further 
verified in an animal model (95). More recently, another 
derivative, octadecyloxyethyl benzyl 9-((2-Phosphonomethoxy)
ethyl)guanine (ODE-Bn-PMEG), was designed and 
demonstrated to be effective in blocking HPV-11, -16 and -18 
replication (90). These ANPs appear to be promising, but further 
studies are required to evaluate their safety and efficacy in vivo.

Antivirals targeting proteins encoded by HPV. In contrast 
to ANPs, antivirals targeting proteins encoded by HPV are 
characterized by higher specificity. With the exception of 
E1 helicase inhibitors, the majority of these antivirals are 
novel chemicals hindering protein-DNA or protein-protein 
interaction.

As previously mentioned, E1 is recruited to the origin site 
of HPV genome with the help of E2, followed by assembly into 
double hexamers to start replication, thus hindering the binding 
between E1 and E2, or E1/E2 and DNA, which appears to be 
very promising in lowering viral load. Both hypotheses have 
been evidenced by indandiones for the former (96-98) and 
polyamides for the latter (99), respectively. Indandiones were 
found to be more effective against HPV-6 and -11, rather than 
high‑risk HPV types (97). Further modifications may confer 
anti-high-risk-HPV activities to these chemicals. In view of 
the inability of earlier-synthesized polyamides to penetrate the 
cell membrane, previous studies focused on binding modes 
between polyamides and DNA, while recent research has 
resolved this issue through the synthesis of PA1 and PA25, 
which have been proven effective in reducing viral load in cell 
experiments (100,101).

The fact that E1 is the only protein encoded by HPV 
that has enzymatic activity (102,103), together with the 
indispensability of E1 in genome replication, makes E1 the 
most promising target for inhibiting viral amplification. 
Screened out as a small molecule inhibitor of HPV6 E1 (104), 
biphenysulphonacetic acid affects ATP binding of E1 through 
allosterism involving Tyr486 (105). Therefore, the activity 
of biphenysulphonacetic acid appears to be dependent 
on the amino acid sequence (tyrosine residue) and three- 
dimensional structure of E1, which is somewhat type‑specific. 
Moreover, it lacks activity in cell-based assays due to the 
high intracellular concentration of ATP (104), which further 

prevents the currently available compounds from therapeutic 
application.

The well-known interaction between E6 and E6AP, which 
mediates the proteasome degradation of p53, provides another 
therapeutic target for HPV infection. The recognition of the 
E6‑binding motif on E6AP, defined as an α-helix with three 
leucines on one side and two negatively charged residues on 
the opposite side, enabled researchers to screen out small 
molecular inhibitors among therapeutic agents (106,107). 
Further medicinal development based on this finding may 
prove to be useful.

Other host proteins utilized by HPV as targets of antiviral 
therapy. Apart from the cellular replication system, several 
other host mechanisms usurped by HPV to facilitate its survival 
and reproduction may serve as targets, and corresponding 
agents are referred to as host-dependent viral inhibitors.

The oncoprotein E7 was also demonstrated to be associated 
with class I histone deacetylases (HDAC)1 and 2 (108) under the 
mediation of Mi2β (109), responsible for proliferation-promotion 
and long-term viral episome maintenance (108). HDACs 
decrease the acetylation state of histones, thereby inhibiting 
target gene transcription. The relocation of HDACs induced by 
E7 from proliferation-promoting genes to cell cycle-arresting 
or apoptosis genes leads to upregulation of the former and 
downregulation of the latter. Therefore, HDAC inhibitors may 
be able to interrupt the multiple pathogenic processes. Current 
HDAC inhibitors are mostly Zn2+-chelating agent binding 
to the Zn-binding catalytic domain of HDAC, including 
short-chain fatty acids (110), hydroxamic acids (111,112), 
benzamide derivatives (113), epoxyketones and cyclic 
peptides (114). Although these were effective in arresting the 
proliferation of cervical cancer cells (115-117), they may need 
further optimization prior to clinical application due to their 
broad spectrum of cellular targets.

Cyclin-dependent kinase (Cdk) 2, activated by cyclin A or E, 
is crucial for driving the cell cycle as well as for the pathogenesis 
of HPV. Cdk2 is stimulated by E7 via multiple mechanisms (118) 
and subsequently promotes cellular proliferation. Cdk2 also 
accelerates viral genome amplification by phosphorylating 
E1 at specific sites in its N-terminal domain (119-121) and 
causes abnormal copy numbers of centrosome with genome 
instability (122-124). Phosphorylation of E1 induces its nuclear 
retention and, thus, facilitates the formation of hexamers that 
are necessary for replication initiation (125,126). Inhibitors 
of Cdk2, therefore, are considered to halt the proliferation 
of cervical carcinoma cells and restore normal centrosome 
replication. Cell-based assays using roscovine (127,128) and 
indirubin-3'-oxime (IO) (129) have already confirmed this 
hypothesis. Novel IO derivatives with higher specificity and 
potency towards Cdk2 have already been discovered (130) 
and, together with other, more potent Cdk2 inhibitors, such as 
flavopiridol, should be further evaluated to establish their role 
in HPV infection treatment.

The cellular transcription factor Sp1 can also bind to LCR 
in the viral genome of both low- and high-risk HPV types, 
and is involved in the transcription of HPV genes (mainly E6 
and E7) independently of E2 (131,132). Inhibiting this process 
with derivatives of nordihydroguaiaretic acid (NDGA), i.e., 
tetra-O-methyl NDGA and tetra-acetyl NDGA (133), resulted 
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in cell growth arrest (134), apoptosis and tumor size reduction 
in tumor-bearing mice (134).

6. Therapeutic vaccines

The etiology of cervical carcinoma as a viral infectious 
disease established over the last ~50 years has enabled 
its prevention through prophylactic vaccination (Fig. 3). 
Current prophylactic vaccination, however, will not achieve 
a significant reduction in the morbidity and mortality of 
cervical carcinoma until successful world coverage by 
vaccination, which is an elusive goal due to the high cost 
of HPV vaccines. In addition, it usually takes 10-30 years 
(median, 23.5 years) for CIN 2/3 to progress to ICC (135); 
therefore, considering the size of the population with existing 
HPV infections and the natural history of HPV-associated 
precancerous diseases, tens of years may pass for the vaccines 
to exert their protective effects against cervical cancer. In 
summary, a significant decrease in the incidence of cervical 
cancer will not be achieved until vaccinated women enter the 
peak age range of cervical cancer.

The demand for clearance of established HPV infection and 
regression of precancerous/cancerous lesions has prompted 
the design of therapeutic vaccines. Apart from the humoral 
immunity triggered by prophylactic vaccines, therapeutic 
vaccines trigger cell-mediated immune responses. Among the 
proteins encoded by HPV, E6 and E7 are the best-characterized 
and the most extensively investigated due to their carcinogenic 
role and constitutive expression in infected cells (58). Live 
vector vaccines or DNA vaccines including wild-type E6 and 
E7 with the potential to transform cells are usually inactivated 
at certain sites into detox forms. Other targets include E1, E2 
and E5, according to their expression mode during the life 
cycle of HPV. However, it must be mentioned that once viral 
genome is integrated, most genes are lost, except E6 and E7, 
which are expressed at even higher levels without repression 
of E2 (136-139). Several strategies for the development of 
therapeutic vaccines have been studied, including live vector, 
nucleic acid, peptide-based, protein and cellular vaccines, with 
several vaccine candidates currently in clinical trials (Fig. 4).

As regards the evaluation of immunization efficacy, both 
antigen‑specific CD4+ and CD8+ lymphocytes are considered 
as indicators of cell-mediated immunity. CD8+ lymphocytes 
further differentiate into CTLs, undertaking the main task 
of eliminating virus-infected cells, while CD4+ lymphocytes 
can differentiate into T-helper type 1 (Th1) lymphocytes, 
playing an auxiliary role in priming antigen-specific 
CTLs. Other direct outcome evaluation indicators include 
histopathological regression or complete response rate, 
histopathological reduction or partial response rate, and viral 
clearance rate.

Live vector vaccines. Live vector vaccines utilize attenuated 
bacteria or viruses to transport genes of interest into cells. These 
microorganisms infect host cells, proliferate intracellularly 
and spread to surrounding cells in a restricted manner prior to 
immune elimination. The gene of interest is then expressed by 
the host protein expression system, leaving the protein at its most 
natural state. These allow class I MHC antigen presentation by 
infected cells, but inefficiently. Another more high‑efficiency 

antigen presentation pathway is achieved by dendritic cell 
(DC) ingestion of free antigen released by infected cells 
through exosomes, secretion or apoptosis. Thereafter, DCs 
process antigen and present it on the cell surface for T-cell 
recognition and activation through both class II and class I 
(by cross-presentation) MHC pathways. More directly, DCs 
residing in the vaccination sites (e.g., Langerhans cells in the 
dermis) may be infected by the live vectors, which simplifies 
the antigen presentation process. In addition, the vector 
itself acts as an adjuvant to enhance the immunogenicity of 
the vaccine due to its pathological nature, thus promoting 
an even stronger immune response. Unfortunately, live 
vector vaccines carry the risk of overwhelming infection in 
immunocompromised patients, and the live vector itself can 
induce neutralizing antibody production, thus abrogating the 
boost effect of repeated vaccination. In rare cases, the host may 
have pre-existing immunity against the live vector, leading to 
vaccination failure.

Bacterial vector. Bacterial vectors include Listeria 
monocytogenes (140,141), Lactobacillus casei (142), 
Lactobacillus lactis (143-145), Lactobacillus plantarum (145) 
and Salmonella species (146). Lactobacilli are non-invasive 
and non-commensal bacteria, which are transiently located in 
mucosae and express recombinant antigen priming mucosal 
immunity after oral or nasal administration as vaccines. Their 
favorable safety profile, the low possibility of immune tolerance 
and the convenient delivery method make Lactobacilli vectors 
promising candidates, while their immunogenicity remains to 
be further enhanced, possibly by combining with cytokines 
or other adjuvant agents. A recombinant Lactobacillus casei 
vaccine expressing modified HPV‑16 E7 has completed its 
phase I/IIa clinical trial in 17 HPV16+ CIN3 patients, with 9 
patients experiencing disease regression to CIN2, and 5 further 
regressing to LSIL (147).

Listeria, an intracellular bacterium, is able to infect 
macrophages and escape from phagosomal degradation with 
the help of listeriolysin O (LLO) (148); therefore, Listeria 
vectors can replicate and express recombinant proteins in 
the cytosol, allowing both class I and class II MHC antigen 
presentation (149,150). A promising Listeria-based vaccine, 
Lm-LLO-E7 (also referred to as ADXS11-001) was designed 
by fusing HPV16 E7 with LLO. A phase I study of 15 patients 
with metastatic, recurrent, refractory or terminal squamous 
cell carcinoma of the cervix, demonstrated an increase in 
the E7-specific T cells detected among peripheral blood 
mononuclear cells (PBMCs) of 3 patients and a reduction in tumor 
size was observed in 4 patients (151). Further clinical trials on 
HPV-associated cancers are currently ongoing (NCT02399813, 
NCT02002182, NCT02291055 and NCT01266460).

Figure 3. Immunization process of prophylactic vaccines. HPV, human papil-
lomavirus; DC, dendritic cell.
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Viral vector. Viral vectors include adenoviruses, adeno- 
associated viruses, alphaviruses, lentiviruses and vaccinia 
viruses. Alphaviruses, including Semliki forest viruses, 
Sindbis viruses and Venezuelan equine encephalitis viruses 
are RNA viruses that are transformed into RNA replicon form 
by substitution of their 3'-terminal structural genes with the 
genes of interest. These RNA replicons are capable of autono-
mous amplification but fail to assemble into intact virions due 
to lack of capsomers. In view of their similarity to nucleic acid 
vaccines, they will be discussed in the respective section.

TA-HPV is a recombinant vaccinia virus expressing 
HPV-16/18 E6/E7 with 3 completed clinical trials. A phase I/II 
study in patients with advanced cervical cancer reported that an 
HPV‑specific CTL response was detected in one of three evalu-
able patients (152). Another phase I study conducted in patients 
with International Federation of Gynecology and Obstetrics 
stage Ib or IIa cervical cancer found that 4 of 29 patients 
developed an HPV‑specific CTL response after a single vacci-
nation (153). A phase II study in patients with HPV-positive 
high-grade VIN or VAIN with a duration of up to 15 years 
observed a lesion reduction of at least 50% in 5 of 12 (42%) 
patients, with 1 patient exhibiting complete regression (154).

TG4001 is a recombinant modified vaccinia Ankara 
(MVA) expressing HPV-16 E6, E7, and IL-2. A phase I study 
including 21 cases of HPV16+ CIN2/3 patients revealed that 
48% experienced disease regression, whereas 38% exhibited 
HPV DNA clearance (155).

MVA E2 is a recombinant MVA expressing BPV E2. In 
a phase III study in patients with HPV-induced anogenital 
intraepithelial neoplasia, a 90% clearance in female patients 
and 100% clearance in male patients was reported (156).

Also designed to express the fusion protein of calreticulin 
and HPV16 E7, adenovirus vector was demonstrated to 
eradicate established tumors in mice (157). Clinical trials of 
this vaccine, however, have yet to be conducted.

Subunit vaccines. Antigens delivered in the form of peptides or 
whole proteins directly are referred to as subunit vaccines. As 
the most classical type of vaccines, they are considered to be 
safer compared with live vector vaccines for lack of infectivity 
and persistent existence.

Peptide vaccines. Peptide vaccines, with an excellent safety 
profile and good stability, are easy to produce and more 
cost-effective. However, peptides are truncated from the 
whole protein and, thus, may not contain the necessary 
epitopes for DC processing and presentation through the 
MHC pathway. Furthermore, the fact that each individual has 
his own HLA type means that epitopes recognized by MHC 
may differ among different individuals. Therefore, for valid 
immunization, the epitopes have to be identified so as to match 
the MHC‑specificity of each individual, which limits the mass 
production of peptide-based vaccines (158). This was addressed 
by the synthesis of long overlapping peptides covering the 
entire sequence of the protein. Low immunogenicity is another 
drawback of peptide-based vaccines, which may be addressed 
by co-administration of adjuvants, co-expression of cytokines 
and fusion protein with Toll-like receptor (TLR) ligands.

HPV16-SLP (ISA101) is a peptide-based vaccine 
consisting of nine HPV16 E6 and four HPV16 E7 synthetic 
long overlapping peptides with adjuvant Montanide ISA51. 
In a phase II clinical trial in patients with HPV16+ VIN3, 15 
of the 19 patients exhibited a clinical response (79%), with a 
complete response in 9 patients (47%). Moreover, all patients 
developed a vaccine-induced T-cell response, but patients with 
stronger IFN-γ-associated CD4+ and CD8+ T-cell response 
were more likely to achieve complete response (159). Other 
studies have also demonstrated the therapeutic potential of 
ISA101 (160-163).

PepCan, a vaccine consisting of four HPV16 E6 synthetic 
peptides and Candin as an adjuvant, has completed the 

Figure 4. Immunization processes of various therapeutic vaccines. DC, dendritic cell; MHC, major histocompatibility complex.
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dose-escalation phase of a phase I clinical study in patients 
with HSIL, with 50 µg reported as the most effective dose, and 
histological regression of disease in 45% of all patients (164).

Protein vaccines. Protein-based vaccines utilize the full-length 
E6 and/or E7 protein to immunize humans. Compared with 
peptide-based vaccines, they contain all the epitopes and 
exclude MHC restriction, but due to their exogenous nature 
mostly presented by the MHC II pathway (165), they tend 
to mount humoral immunity and have low immunogenicity. 
These problems may be overcome by fusion protein targeting 
them to DCs and giving them access to the MHC I antigen 
presentation pathway.

TA-CIN is a fusion protein of HPV16 L2, E6 and E7. As 
the first vaccine that combines therapeutic and prophylactic 
effects, it was tested on healthy subjects, demonstrating a 
TA-CIN-specific IgG in 24 of the 32 vaccinated patients 
and cell-mediated immunity in 25 of the 32 patients (166). 
A phase II clinical trial conducted in patients with VIN 
2/3 combined topical imiquimod and TA-CIN, reporting a 
63% lesion response 1 year after vaccination (167).

GTL001 (Procervix) fused the E7 of HPV-16 and -18 to the 
catalytically inactive Bordetellla pertussis adenylyl cyclase 
(CyaA). CyaA is an important toxin of Bordetellla pertussis 
that binds to integrins on the cell membrane and inserts its 
N-terminal into the cytoplasm. This characteristic of CyaA is 
utilized to transport antigens into the cytoplasm, subsequently 
initiating the MHC I antigen presentation pathway. A phase I 
trial of GTL001 combined with topical imiquimod in patients 
positive for HPV-16 or HPV-18 infection, but with normal 
cytology, showed effectiveness and tolerability (168). Similar 
strategies have been explored to fuse HPV-16 E7 to a peptide 
derived from the Limulus polyphemus anti-lipopolysaccharide 
factor (LALF31-52) in an E. coli expression system (169). 
LALF31-52 can penetrate cell membranes with immuno-
modulatory effects increasing its immunogenicity (170). This 
specially designed vaccine has demonstrated its protective 
function in a preclinical model (169). Recently, flagellin, 
ligand of TLR5, was also found to form a fusion protein with 
HPV16 E7, and its antitumor effects were tested in a mouse 
model (171).

Nucleic acid vaccines
DNA vaccines. DNA vaccines are plasmid DNAs carrying 
genes of interest and transfecting host cells for sustained antigen 
expression. DNA vaccines usually do not increase neutralizing 
antibody production, allowing repeated vaccinations (172). 
However, they raise concerns regarding the risks of exogenous 
DNA integration, albeit without supportive evidence. Unlike 
viral vaccines, DNA plasmids cannot autonomously amplify 
or spread intercellularly, resulting in the main drawback of 
DNA vaccines, namely poor immunogenicity (173,174).

Intradermal administration via gene gun (175), 
intramuscular injection with electroporation (176), laser (177), 
microencapsulation of DNA (178) and fusion protein linking 
HPV antigens to DC targeting molecules [such as FMS-like 
tyrosine kinase 3 ligands (179) and heat shock protein (180)] 
were adopted to increase the antigen-expressing/antigen-loaded 
DC population. As HPV encodes proteins through suboptimal 
codons, codon optimization increases antigen expression, 

further facilitating DC uptake (181-183). Predisposition to 
MHC class I antigen presentation augments antigen‑specific 
CD8+ T-cell response. This can be realized through linkage 
of HPV antigens to molecules targeting it to endoplasmic 
reticulum (184) and proteasome (185), including M. tuberculosis 
hsp70 (186), calreticulin (187), heat shock protein Gp96 (188), the 
translocation domain of Pseudomonas aeruginosa exotoxin 
A (189) and γ-tubulin (190). MHC I single-chain trimer is 
another more direct option facilitating antigen presentation 
on the DC surface (191). Efforts to block T-cell-mediated DC 
apoptosis (192,193) and DC-mediated T-cell apoptosis (194) 
were shown to augment CD8+ T-cell response.

VGX-3100, a DNA vaccine encoding HPV-16/18 E6/E7, 
which is administered intramuscularly with electroporation, 
has finished its phase IIb clinical trial in HPV16/18+ CIN2/3 
patients. A total of 53/107 (49.5%) patients with VGX-3100 
treatment in contrast to 11/36 (30.6%) placebo subjects 
exhibited histopathological regression in the per-protocol 
analysis. In addition, 55/114 (48.2%) patients with VGX-3100 
treatment in contrast to 12/40 (30.0%) placebo subjects had 
histopathological regression in the modified intention‑to‑treat 
analysis (195).

Other DNA vaccines, such as GX188E (196), 
pNGVL4a-sig/E7(detox)/HSP70 (197) and pNGVL4a-CRT/
E7(detox) (198), have also demonstrated a good safety profile 
and effectiveness in several phase I clinical trials.

RNA replicon‑based vaccines and suicidal DNA vaccines. 
RNA replicon-based vaccines are derived from alphaviruses. 
They replicate intracellularly and express genes of interest with 
no risk of integration. However, the instability of RNA limits 
their application and puts forward a more stable form, namely 
suicidal DNA vaccines, also referred to as DNA-launched 
RNA replicons. In contrast to RNA replicon-based vaccines, 
suicidal DNA vaccines have an extra step of transcription 
into RNA replicons after transfection. Compared with DNA 
vaccines, the self-replication of these vaccines increases 
antigen expression, and the final apoptosis of transfected cells 
resulting from extensive double-stranded RNA production 
avoids the possibility of genomic integration. However, early 
apoptosis of host cells causes inadequate stimulation towards T 
lymphocytes and insufficient T‑cell response. Co‑transfection 
of genes encoding anti-apoptotic proteins in the vector (199) 
and use of flavivirus Kunjin (KUN) (200,201) have been intro-
duced to address this issue. These vaccines appear to be highly 
promising for the treatment of HPV infections, but require 
further investigation.

Cell‑based vaccines. Cell-based vaccines include extracting 
and isolating cells (such as DCs or T lymphocytes) from the 
peripheral blood or excised tumors of patients, manipulating 
and expanding them ex vivo, and finally transferring the 
selected and modified cells back to the patients.

DC‑based vaccines. As the most robust antigen-presenting 
cells (APCs), DCs are mostly studied in the context of 
immune system activation, circumventing the necessity 
to access antigens to APCs in vivo and to use adjuvants. 
Antigen-loaded DCs are produced ex vivo through 
transfection by viral vectors (202,203), transduction by 



INTERNATIONAL JOURNAL OF ONCOLOGY  55:  570-584,  2019578

DNA or RNA vectors (204,205), pulsation of antigenic 
peptides, proteins or tumor cell lysates (205-209). Inevitably, 
DC-based vaccines have certain drawbacks: First, the 
production of DC-based vaccines is resource-intensive 
and individualized, so that large-scale production and 
widespread use appear to be impractical; second, it is 
difficult to unify the culturing techniques, which leads to 
spotty vaccine quality and lack of standard evaluation 
criteria; third, in order to prime immunity against antigens, 
DCs have to migrate to lymphoid tissues, and this poses the 
question of determining the most efficient administration 
route among intramuscular, subcutaneous, intravenous and 
intranodal injection, or other options; fourth, the limited 
longevity of DCs caused by T-cell-mediated apoptosis 
weakens the magnitude of immune response, which has 
been partially addressed by transfecting DCs with siRNA 
silencing pro-apoptotic proteins (207,208,210).

In a phase I clinical study, DCs were pulsed with HPV16/18 
E7 and then co-administered with IL-2 back to the patients. An 
E7‑specific CD8+ response was observed in all patients (211). 
Another phase I clinical trial was conducted in patients with 
stage Ib or IIa cervical cancer and DCs were pulsed with 
HPV16/18 E7 as well as keyhole limpet hemocyanin, promoting 
DC maturation. As a result, 8 of 10 patients exhibited an 
increase in E7‑specific CD8+ T lymphocytes (212).

Tumor cell‑based vaccines. Isolated tumor cells are engineered 
to express cytokines such as IL-2 (213,214), IL-12 (215) and 
granulocyte-macrophage colony-stimulating factor (214,216). 
Re‑administration of tumor cell‑based vaccines significantly 
increases the immunogenicity of tumor cells, thus inducing 
immune elimination of lesions. Such vaccines do not need 
to identify certain tumor antigens, and they have been tested 
in clinical trials in several types of cancer (217). Given that 
cervical cancer has its own specific antigens, such as E6 and 
E7, tumor cell-based vaccines may not be the first choice 
for its treatment. However, tumor cell-based vaccines are 
associated with the drawback of implanting new cancers in 
patients, which limits their clinical applicability, particularly 
in HPV-positive patients with normal cytology or patients with 
low-grade lesions.

Adoptive cell transfer (ACT). ACT selects tumor 
antigen-specific CTLs, engineers or activates them and 
expands them ex vivo, and they are finally re‑administered to 
the patients. A pilot study using HPV16 E6/E7‑specific T cells 
in patients with metastatic cervical cancer reported complete 
regression in 2 of 9 patients (218). TCR gene-engineered 
T cells were also introduced to target HPV+ epithelial cancer 
cells in cell-based assays and exhibited killing avidity (219).

7. Immunomodulators

Immunomodulators are agents stimulating innate and/or adap-
tive immunity for pathogen elimination. As regards treatment 
of persistent HPV infection, imiquimod is the most extensively 
studied and widely used immunomodulator.

Imiquimod, an agonist for TLR7, can trigger expression 
of cytokines and induce a local immune response. The raised 
levels of cytokines activate local immune cells and initiate 

immune clearance of HPV-infected cells. Adverse events 
may include itching, erythema, burning, irritation, tenderness, 
ulceration and pain. The antiviral as well as antitumor 
properties of imiquimod have been demonstrated in basal 
cell carcinoma (220), VAIN (221), VIN (222) and AIN (223). 
A more popular method is topically applying imiquimod in 
combination with therapeutic vaccines. However, neither of 
these treatments have been licensed.

IFN is widely used in the treatment of low-risk 
HPV-associated anogenital warts, but its role in high-risk 
HPV-associated pre-cancerous lesions and cancers remains 
a subject of debate; therefore, more large scale, double-blind, 
randomized controlled trials are required.

8. Future prospects

Candidate therapies for HPV infection mainly include chemical 
antivirals, therapeutic vaccines and immunomodulators. 
Therapeutic vaccines appear to be the most promising 
approach to eliminating HPV in terms of effectiveness, while 
each type of vaccine comes with its own advantages and 
disadvantages. Generally, most vaccines must be injected 
into certain sites, except for Lactobacillus-based vaccines, 
which are administered orally. Mucosal immunity primed 
by Lactobacillus-based vaccines satisfies the needs for 
anti-HPV immunity, as the life cycle of HPV expands beyond 
the BM. These synergistic factors make Lactobacillus-based 
vaccines a promising candidate. For all therapeutic vaccines, 
enhancement of immunogenicity is the common requirement 
for clinical application.

Antivirals robustly inhibit the proliferation of HPVs, but are 
unable to eradicate infection, particularly by integrated viruses. 
The safety profiles of HDAC, Cdk2 and Sp1 inhibitors must 
be further investigated, as they have numerous downstream 
targets. It would be preferable to verify the therapeutic effects 
of these inhibitors at doses not interfering with normal cell 
functions.

In summary, the coordinated use of various strategies may 
act synergistically against HPV infection. The combination of 
prophylactic with therapeutic vaccines, or of different types 
of therapeutic vaccines as in prime-booster strategy, or of 
therapeutic vaccines with immunomodulators, antivirals or 
checkpoint inhibitors, and other similar combinations, may 
have a profound impact on the treatment of HPV infection.
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