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Abstract. The assessment of the risk of biochemical recurrence
(BCR)iscritical in the management of males with prostate cancer
(PC). Over the past decades, a comprehensive effort has been
focusing on improving risk stratification; a variety of models
have been constructed using PC-associated pathological features
and molecular alterations occurring at the genome, protein and
RNA level. Alterations in RNA expression (IncRNA, miRNA
and mRNA) constitute the largest proportion of the biomarkers
of BCR. In this article, we systemically review RNA-based BCR
biomarkers reported in PubMed according to the PRISMA
guidelines. Individual miRNAs, mRNAs, IncRNAs and multi-
gene panels, including the commercially available signatures,
Oncotype DX and Prolaris, will be discussed; details related to
cohort size, hazard ratio and 95% confidence intervals will be
provided. Mechanistically, these individual biomarkers affect
multiple pathways critical to tumorigenesis and progression,
including epithelial-mesenchymal transition (EMT), phospha-
tase and tensin homolog (PTEN), Wnt, growth factor receptor,
cell proliferation, immune checkpoints and others. This variety
in the mechanisms involved not only validates their associa-
tions with BCR, but also highlights the need for the coverage of
multiple pathways in order to effectively stratify the risk of BCR.
Updates of novel biomarkers and their mechanistic insights are
considered, which suggests new avenues to pursue in the predic-
tion of BCR. Additionally, the management of patients with
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BCR and the potential utility of the stratification of the risk of
BCR in salvage treatment decision making for these patients are
briefly covered. Limitations will also be discussed.
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1. Introduction

Prostate cancer (PC) is the most commonly diagnosed cancer
affecting males in developed countries and a major cause
of cancer-related mortality among males (1). The disease is
highly heterogeneous and progresses with a large degree of
disparity. PC evolves from high-grade prostatic intra-epithe-
lial neoplasia (HGPIN) to local carcinoma; some local tumors
will develop into metastatic disease with bone as the prefer-
ential site (2). Primary tumors are managed through watchful
waiting (active surveillance) and curative therapies: Radical
prostatectomy (RP) or radiation therapy (RT) (3-6). The
disease may relapse in the form of biochemical recurrence
(BCR) with elevations in serum prostate-specific antigen
(PSA) levels of >0.2 ng/ml following RP and >2 ng/ml above
the nadir following RT (7). Approximately 30% (20-40%) of
patients following RP (8-10) and 30-50% of males treated with
RT will experience BCR (11,12) within 10 years posy-therapy.
BCR represents a major progression and is associated with
a significantly increased risk of PC metastasis; 24-34%
of patients with BCR will develop metastasis (13,14). The
standard treatment for metastatic PC remains androgen depri-
vation therapy (ADT); however it is largely a palliative care
as metastatic castration-resistant PCs (mCRPCs) commonly
develop (15). Although multiple treatment options are
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currently available for mCRPCs, these therapies only margin-
ally prolong the median overall survival (OS) and resistance
develops rapidly. This is the major challenge with therapies
targeting mCRPCs using docetaxel (16,17) or the second
generation anti-androgens (abiraterone and enzalutamide)
approved by the FDA in 2011 and 2012 (18,19). Collectively,
with this knowledge of PC development and the current
limitations in treating metastasis, the most beneficial manage-
ment of prostate cancer is through the accurate stratification
of patients with PC with a low risk of BCR progression
from those with a high risk. This capacity of BCR risk
stratification is of particular relevance to patients with low-
and intermediate-risk PCs; low-risk and intermediate-risk
PCs are defined by the European Association of Urology
(EAU)-European Society for Radiotherapy and Oncology
(ESTRO)-International Society of Geriatric Oncology (SIOG)
as PSA <10 ng/ml, Gleason score (GS) <7, cT'1-2a, and local-
ized (low risk) and PSA levels of 10-20 ng/ml or GS 7 or cT2¢c
and localized (intermediate risk) (3).

The current stratification of the risk of BCR in clinical
practice remains poor; improvement in this capacity remains
a major focus of the research community. Attributing to this
massive effort and the involvement of complex networks
affecting BCR progression, there are enriched data for BCR
risk classification for localized tumors following primary
curative treatments, particularly RP. The risk stratification is
based on two general aspects of PC: Clinical characteristics
and molecular properties or biomarkers. The latter includes
alterations in gene expression at both the gene and protein
level. Due to the overwhelming amount (search for ‘prostate
cancer AND biomarkers AND biochemical recurrence’ in
PubMed resulted in 2,500 articles) and the heterogeneity of
the data, in this review, we focus on RNA-based biomarkers,
which can be effective in nature. We also briefly discuss other
types of BCR biomarkers to make this review comprehensive.

2. Stratification of BCR risk: An update

Assessment of BCR risk using clinical information. The clin-
ical and tumor characteristics have long been investigated for
the estimation of the risk of BCR. By using pre-treatment PSA,
the GS, clinical T stage, the percentage of biopsy cores positive
for cancer, and age in 1,493 patients treated with RP between
1992 and 2001, the University of California, San Francisco
Cancer of the Prostate Risk Assessment (UCSF-CAPRA or
CAPRA) was developed in 2005 to appraise the BCR risk;
this is a score system with scale of 0-10 and higher scores
represent a higher risk of BCR (20). Up to 2017, CAPRA has
been validated on BCR risk stratification following RP and RT
by 12 investigations carried out in the USA, Germany, Japan,
Australia, Korea and Canada; these studies involved a total
of 17,457 patients and demonstrated that CAPRA classifies
the risk of BCR with a concordance index (c-index) ranging
from 0.67 to 0.81 (20). The status of CAPRA has recently
been updated by Brajtbord er al (21); the modified version,
CAPRA-S, was subsequently developed by the same group in
2011 and independently validated (21,22). Prior to CAPRA,
the D'Amico classification of the risk of BCR was generated by
D'Amico et al in 1998 (23). The CAPRA score system seems
superior to the D'Amico classification (21).
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While approximately 30% of males undergoing RP will
experience BCR within 10 years (8-10), two-thirds of these
recurrences occur during the first 2 years (24-26). Early recur-
rence is associated with a higher risk of metastasis (27,28).
To assess early BCR, the Walz nomogram was constructed in
2009 (29), which has recently been updated with 13,797 patients
who had undergone radical prostatectomy from Hamburg
(2005-2016) and validated using 5,952 males treated with
RP in Vienna (30). The validation using the Vienna dataset
revealed the best estimation of BCR risk by the updated
nomogram in comparison to the Walz nomogram, MSKCC
nomogram, and CAPRA-S (30). The nomogram estimates
BCR risk at 12 and 24 months post-RP based on PSA, GS, pT
stage, surgical margin status and lymph node status (30).

Stratification of BCR risk based on protein expression.
Abnormalities in the regulation of cell proliferation are typical
of cancer (31). Of note, alterations in the expression levels of
proteins related to cell cycle regulation have been extensively
examined for biomarker values in the classification of the
BCR risk. These proteins include Ki-67, MYC, ETS-related
gene (ERG), as well as the tumor suppressors phosphatase and
tensin homolog (PTEN) and p53; their biomarker potentials
have recently been reviewed (32,33). In brief, Ki-67 is an
established cell proliferation marker (34) with increases in its
expression being associated with adverse features of PC (33);
however, its association with BCR remains uncertain (35).

MYC plays multiple roles in tumorigenesis, which includes
the regulation of cancer metabolism (36,37). It is upregulated
in PC (38) and contributes to PC progression in part via telom-
erase overexpression and the loss of PTEN (39,40). While
increases in MYC protein expression are associated with
higher a GS and T-stage, an association between MYC and
BCR remains unclear (33).

The overexpression of ERG in PC results from the fusion
of the androgen target gene transmembrane serine protease
2 (TMPRSS2) with ERG (TMPRSS2-ERG) (41). The ERG
protein can be detected in PC by immunohistochemistry
(IHC) (42). In a systemic review, the overexpression of the
ERG protein was shown to be modestly associated with BCR
with P-values of 0.04, 0.006, or 0.002 (33).

In a study of 52 males with PC, an association of p53 expres-
sion with BCR was demonstrated (P=00097) (43), which was
corroborated by another small cohort involving 86 patients
with PC (P<0.01) (44). Collectively, IHC-detected p53 protein
expression is associated with BCR (33). In a systemic review
published in 2018 on the IHC-based detection of BCR (33),
the loss of PTEN was found to be associated with BCR in 8
investigations.

Nonetheless, while IHC-detected protein expression can
display significant associations with BCR, the associations are
modest in most cases and their applications in clinical practice
are limited. This is likely attributed to the limited number
of proteins that can be simultaneously detected by IHC; the
examination of the expression status of a panel of proteins or
signatures consisting of multiple factors is critical to effec-
tively stratify the risk of BCR.

Genomic alteration-based biomarkers. While the impact of
genomic alterations on PC progression will not be covered
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in this review, it is important to summarize the recent devel-
opments related to the impact of germline mutations on PC
progression. A family history is a well-recognized risk factor
of PC (45); nonetheless, hereditary PCs, which constitute
approximately 9% of all PCs, do not differ from spontaneous
PCs based on the 2016 EAU-ESTRO-SIOG guidelines (3).
Thus, it was generally accepted that germline mutations do
not promote PC progression and are thus without prognostic
value. The exception was first observed with BRCA2 germ-
line mutations that increase the incidence of PC along with
the risk of PC progression (46,47); these mutations drive the
evolvement of PC by causing genomic instability (48). In line
with this concept, germline mutations in other factors regu-
lating the DNA damage response (DDR) also increase the
risk of PC progression, including ATM, CHEK?2, BRCAI,
RADSID and PALB2 (49). The observation that BRCA1/2
germline mutations are associated with the risk of PC and
PC progression provides additional support for the similari-
ties between PC and breast cancer. This is consistent with a
recent study demonstrating that PCs can be grouped into
PAMS50-based luminal A and luminal B subtypes (50), the
well-known subtypes of estrogen receptor-positive breast
cancer (51).

It will thus be of interest to investigate the contributions
of mutations in BRCA2, ATM, CHEK?2, BRCA1, RAD51D
and PALB?2 in a variety of combinations in the assessment
of the risk of BCR. Of note, genomic alterations in 9 DDR
pathways involving 17 gene sets are able to classify the risk
of BCR [population size, n=545; hazard ratio (HR), 1.89; 95%
confidence interval (95% CI), 1.44-2.48; P=5.01e-6] (52).

Among the PC-associated genomic abnormalities, the
TMPRSS2-ERG fusion is the most common event; it occurs in
approximately 50% of Caucasian Americans, 31% of African
Americans (53) and 18.5% of Asians (54). While the fusion
gene is modestly associated with T-stage [T3-T4 vs. T1-T2;
odds ratio (OR), 1.4; 95% CI, 1.33-1.48] and metastasis (M1
vs. MO; OR, 1.35; 95% CI, 1.02-1.78), TMPRSS2-ERG is not
associated with BCR (55). Collectively, the current evidence
does not support genomic alterations being robust predictors
in the assessment of the risk of BCR.

3. Searching methods for RNA-based BCR biomarkers

In accordance with the PRISMA guidelines (56,57), we
performed a systemic literature search through the PubMed
database using the terms ‘prostate cancer’ AND ‘biomarker’
AND ‘gene expression” AND ‘biochemical recurrence’. A
total of 258 manuscripts were retrieved. We examined all
abstracts and eliminated those i) with population sizes (tumor +
non-tumor tissues) <100 cases; ii) that focus on DNA methyla-
tion and epigenetic regulation without a clear examination of
gene expression; iii) that primarily use the immunohistochem-
istry approach; iv) those yielding values of P=0.05. We thus
selected and discussed 50 articles in this review (Fig. 1). These
papers cover two general aspects of RNA-based biomarkers:
mRNAs and microRNAs (miRNAs or miRs).

In light of the important function of long non-coding
RNAs (IncRNAs) in preventing miRNA-mediated mRNA
degradation via competing or sponging, we also discuss the
association of IncRNAs with BCR.
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Searching for “prostate cancer” and “biomarker”
and “gene expression”
and “biochemical recurrence” in PubMed; n=258

Articles based on DNA methylation,
epigenetic regulation, and cohort size <100
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Figure 1. Systemic literature searching conditions and selection of articles
for the review.

4. Gene expression-based biomarkers

miRNA-based biomarkers for the stratification of BCR risk.
Alterations in individual miRNAs have been observed to
be associated with BCR (Table I). In a total of 585 patients
consisting of 388 non-recurrences and 197 recurrences, using
the median expression level as the cut-off point, PCs with high
levels of miR-301a were found to be at risk of BCR progres-
sion with an adjusted HR of 1.42 (P=0.002) (58). PCs positive
for miR-21, defined by its median expression level, were
also found to be associated with a rapid kinetic of BCR (59).
Upregulations in the levels of miR-128 (60) and 130b (61) have
also been found to be associated with a reduction in BCR-free
survival (Table I). Downregulations in the expression of
miR-30C (62), miR-145 (63), miR-195 (64) and miR-16 (64)
facilitate BCR development (Table I).

These miRNAs affect BCR by regulating different path-
ways (Fig. 2), a concept that is consistent with the involvement
of complex pathways in BCR occurrence. miR-301a likely
promotes the recurrence of PC at least in part via the induction
of epithelial-mesenchymal transition (EMT), evidence by the
downregulation of E-cadherin in LNCaP cells overexpressing
miR-301a (58). EMT is a major mechanism contributing to
cancer stem cells (CSCs) (65). Cumulative evidence supports
an essential role of CSCs in cancer progression, including
PC (66). miR-21 reduces PTEN expression with the concurrent
upregulation of PI3K and AKT, suggesting its role in inhibiting
PTEN function in PC (67). miR-30c downregulates EMT by
inhibiting the Snail-TGF-B1 connection in other settings (68)
and is reduced in PC (69); miR-145 is a tumor suppressor (70)
and is downregulated in PC (71,72). Both miR-195 and miR-16
inhibit programmed death-1 ligand 1 (PD-L1) expression, and
thus downregulate PD-L1-mediated actions of immune check-
points (64); reductions of either likely promote BCR.

Importantly, individual miRNAs commonly regulate
multiple targets (73). This information may enhance the
biomarker values of miRNAs, as BCR is certainly regu-
lated by complex networks; however, it may also attenuate
their biomarker potential if individual targets have different
effects on BCR. For instance, by a functional screening of
1,129 miRNAs for their effects on the proliferation, viability
and the apoptosis of 5 PC cell lines, miR-130b was among the
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Table I. Associations of individual miRNAs with BCR defined by univariate Cox analysis.

Identity Cohort size (n) Follow-up HR (95% CI) P-value (Refs.)
miR-301a° 585 180 M 1.42 (1.06-1.90) 0.002 (58)
miR-21° 169 84 M NA <0.001 (59)
miR-128¢ 128 100 M 3.96 (1.02-8.12) <0.001 (60)
miR-30c® 103 125 M 0.31(0.19-0.51) <0.001 (62)
miR-145¢ 137 72M 3.21 (1.07-9.62)* 0.007 (63)
miR-195¢ 131 150 M NA 0.0092 (64)
miR-16¢ 131 150 M NA 0.0031 (64)
miR-130b° 188 120 M NA 0.004 61)

“Hazard ratio (HR) was determined on mi-R145 downregulations; increases and °decreases in expression associated with BCR.
M, months; CI, confidence interval; NA, not available; BCR, biochemical recurrence.

miR-301a miR-301¢ miR-21 miR-195
miR-196
EMT PTEN PD-L1

Figure 2. MicroRNAs affecting BCR through multiple pathways. BCR,
biochemical recurrence; EMT, epithelial-mesenchymal transition; PTEN,
phosphatase and tensin homolog; PD-L1, programmed death-1 ligand 1.

14 miRNAs selected from the screen; it affects cell prolifera-
tion and is the only miRNA exhibiting an association with a
reduction in BCR-free survival (Table I) (61). The number
of predicted targets for miR-130b is approaching 600 with
approximately one-third being upregulated (61). Among the
two most frequently affected genes, GLYATLI was upregu-
lated and PARVA was downregulated; and only decreases in
PARVA expression are associated with the occurrence of BCR,
which is consistent with the effect of miR-130b on BCR (61).
The numerous downstream effectors of these miRNAs may
contribute to their ineffectiveness in the classification of the
risk of BCR (Table I); this limitation should be considered
when using miRNAs for the assessment of the risk of BCR.

Single mRNA-based biomarkers. Progression to BCR is
regulated by multiple pathways, including Wnt signaling (74),
cell proliferation regulations (75), the inhibition of immune
checkpoints (76,77) and others. The secreted frizzled-related
protein 4 (SFRP4) regulates Wnt signaling and displays onco-
genic properties in PC (78). In a study of 9 cohorts, elevations
in SFRP4 mRNA expression were found to be a risk factor for
BCR in 7 cohorts of 1,404 patients with the HR ranging from
1.3-2.18 (Table II); however in 2 cohorts (patients, n=374),

SFRP4 was not found to be significantly associated with
BCR (79). In another investigation of 536 males with PC, the
increase in SFRP4 expression was found to be associated with
BCR (HR, 1.35; P=0.009) (80).

The AXIN2 protein plays a role in canonical Wnt
signaling (81) and is expressed in tissue stem cells and
CSCs (82-84). The single nucleotide polymorphism
(guanine/adenine) rs2240308 is associated with a decrease in
the risk of PC (OR, 0.377; 95% CI, 0.206-0.688; P=0.001) (85).
Of note, the downregulation of AXIN2 mRNA expression has
been found to be a risk factor of BCR (Table II) (86).

An increase in platelet-derived growth factor receptor
(PDGFR)-p expression in the stroma significantly enhances
BCR (Table IT) (87). An elevated stromal PDGFR-f3 expres-
sion has been shown to be associated with a poor prognosis in
both breast and prostate cancer (88).

The downregulation of metallothionein 1E (MTIE) is a
risk factor for BCR in association with promoter methyla-
tion (89). MT1E belongs to the metallothionein (MT) family
consisting of cysteine-rich small proteins that regulate
metal homeostasis (90). In addition to PC, MTIE is also
downregulated in endometrial carcinoma (91), intrahepatic
cholangiocarcinoma (92), melanoma (93), non-small cell
lung cancer (94), papillary thyroid carcinoma (95) and renal
cell carcinoma (96); in the majority of these cancer types,
the reductions are associated with hypermethylation (90).
However, the upregulation of MTIE has been reported in
estrogen receptor-negative breast cancer (97) and it also
facilitates glioma progression (98,99).

Increases in KLK15 mRNA expression predict BCR
(Table II) (100). KLK15 is a member of kallikrein-related
peptidases with KLK3 being the most well-known PSA.
KLK15 has been reported to exhibit biomarker value in
ovarian, breast, prostate and testicular cancer (101).

An elevation in neuropilin-1 (NRP1) mRNA expression
is associated with BCR following RT (Table IT) (102). This
transmembrane glycoprotein can activate PDGFR-f (103) and
contributes to the stemness of breast CSCs via the activation
of Wnt signaling (104). NRP1 has been reported to be upregu-
lated in PC (105) and may contribute to BCR in part through
the regulation of endothelial cell functions (106).
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Table II. Associations of individual mRNAs with BCR defined by Cox analysis.

mRNASs Patients (n) Pathways HR (95% CI) P-value (Refs.)
SFRP4* 1,404+536 Wnt 1.3-2.18° 0.022-1.88e-7¢ (79.,80)
AXIN2® 951 Wnt 0.13 (0.02-0.67)¢ 0.02 (86)
PDGFR-f* 535 Proliferation 1.58 (1.18-2.13) 0.002 87)
MTIE® 108 Metal homeostasis NA <0.001 (89)
KLK15* 150 Serine protease 3.44 (1.35-8.75) 0.01 (100)
NRP1* 130 Androgen signaling NA 0.0002 (102)
SAMDS5* 345 NA 2.18 (1.20-3.97) 0011 (107)
SMAD4° 140 TGF-p 4.61 (2.15-9.89) <0.001 (113)
PLAGL2* 104 Wnt 3.97 (1.21-13.00) 0.023 (114)
PD-L2? 9,393 Immune checkpoint 1.17 (1.03-1.33) 0.01 (119)
RNase k° 111 RNA metabolism 0.85(0.77-091) 0.002 (120)
GLTSCRI1* 499 Chromatin remodeling 2.28 (1.28-4.05) 0.005 (122)
BChE* 385 Hydrolyzing ghrelin and bioactive esters NA 0.008-0.04¢ (125)

2 and °, increases and decreases in expression are associated with BCR, respectively; ‘range of HR or p-values; %odds ratio (97.5% CI).

HR, hazard ratio; NA, not available; BCR, biochemical recurrence.

Increases in sterile alpha motif domain containing 5
(SAMDS5) mRNA expression display biomarker values in
predicting BCR (Table II) (107). SAMDS facilitates small
cell lung cancer cell proliferation (108), is upregulated in
cholangiocarcinoma (109) and is associated with the response
to chemotherapy in rectal cancer (110). SAMDS facilitates
the Eph receptor tyrosine kinase signaling (111), suggesting
a mechanism mediating SAMDS5 oncogenic potential and its
association with BCR.

Consistent with SMAD4 as a tumor suppressor in the inhi-
bition of PTEN inactivation-induced PC progression (112), a
reduction in SMAD4 mRNA expression enhances the risk of
BCR (113).

The downregulation of pleomorphic adenoma gene like-2
(PLAGL2) mRNA expression is a risk factor of BCR (114).
PLAGL?2 is a transcription factor that has been shown to
activate Wnt/f3-catenin signaling through unidentified mecha-
nisms in colorectal cancer (115) and gliomas (116). PLAGL2
also contributes to hematopoietic tumorigenesis (117,118);
however, its involvement in PC has not yet been fully inves-
tigated.

In an analysis of 7,826 prospectively collected RP tissues
and 1,567 retrospectively obtained samples, while PD-L1 did
not exhibit prognostic values, an increase in PD-L2 expres-
sion was associated with a decrease in BCR-free survival
(Table II), distant-free metastasis survival (HR, 1.25; 95% ClI,
1.05-1.49; P=0.01) and PC-specific survival (HR, 1.45; 95% CI,
1.13-1.86; P=0.003) (119). These observations are in line with
the actions of the immune checkpoint in the downregulation of
immunoresponses to cancers. Nonetheless, these associations
are not particularly robust.

RNase khas been shown to be downregulated in PC
(n=111) in comparison to benign prostatic hyperplasia (BPH);
the downregulation was associated with BCR (Table II) (120).
The contributions of RNase k to tumorigenesis in general
remain unclear (121).

An upregulation of glioma tumor suppressor candidate
region gene 1 (GLTSCR1) in PC vs. normal prostate tissues has
been reported; the upregulation is a risk factor of BCR (122).
Evidence suggests an oncogenic role of GLTSCRI1 in oligo-
dendrogliomas (123). Although the functionality of GLTSCR1
in tumorigenesis remains unclear, recent evidence indicates its
role in chromatin remodeling (124), implying GLTSCR1 may
contribute to BCR progression via epigenetic regulations.

Butyrylcholinesterase (BChE) was recently reported
to display a biphasic alteration in PCs in both the MSKCC
(n=140) and TCGA (n=245) databases; elevations in BChE
mRNA expression have been shown to be associated with
BCR in both cohorts (P=0.008 for MSKCC and P=0.04 for
TCGA) (Table 1) (125). BChE has been shown to hydrolyze
butyrylcholine (126), succinylcholine (127) and ghrelin (the
hunger hormone) (128-131), and thus may play a role in PC
metabolism.

Collectively, the above individual mRNAs stratify BCR
risk through different pathways, including the Wnt pathway,
growth factor receptor-mediated cell proliferation, androgen
signaling, cytokines, immune checkpoints, RNA metabolism
and others (Table II). While this is in accordance with the
complex nature of BCR progression, it also reveals the chal-
lenge of using individual mRNA to effectively predict BCR
risk and the calls for developing multigene sets or signatures
for assessing BCR development.

Multigene sets of mRNAs in assessing BCR risk. To enhance
the accuracy of predicting BCR risk, there have been
numerous efforts made towards the construction of multigene
panels; the rapid accumulation of cancer genomic data owing
to technology advances in DNA sequencing [next generation
sequencing (NGS)] greatly facilitates this exploration. Among
these multigene panels, only three are commercially avail-
able to assist patient management. The 22-gene Decipher is
intended to predict metastasis following RP (132-134); both
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the 17-gene Oncotype DX [Genomic Prostate Score (GPS)]
and the 31-gene Prolaris [Cell Cycle Progression (CCP)]
stratify patients at risk of PC recurrence at the time of diag-
nosis (135-139) and following RP (140,141). Herein, we briefly
review Oncotype DX GPS and CCP and discuss other multi-
gene panels regarding their potentials and limitations.

Oncotype DX prostate cancer assay (GPS) and prolaris
(CCP). Oncotype DX Prostate Cancer Assay was developed by
Genomic Health Inc. as an assay in the Oncotype DX assays for
multiple cancer types. Oncotype DX GPS is a RT-PCR assay on
12 cancer-related and 5 reference genes (ARFI, ATP5E, CLTC,
GSPI and PGK]I) using biopsy tissues (135); the 12 genes
function in 4 aspects of PC tumorigenesis, including a stromal
process (BGN, COLIAI and SFRP4), cellular organization
pathway (FLNC, GSN, TPM?2 and GSTM2), androgen signaling
(FAMI3C, KLK2, AZGPI and SRD5A2) and cell proliferation
regulation (TPX2) (135). They were selected from 732 candidate
genes, which were narrowed down from an initial set of 1,082
nominating candidates, through a variety of processes involving
multiple data-mining models (136). PGS in the scale of 0-100
can be calculated based on the normalized expressions of 12
cancer-related genes with increased scores indicating eleva-
tions in BCR risk (136). In patients with low-risk (GS 6) or
intermediate-risk (GS 3+4) PC, GPS predicts BCR (n=382; HR,
2.73; 95% CI, 1.84-3.96; P<0.001) (140). In a recent validation
study, GPS classified PCs at risk of BCR (n=259; HR, 2.5; 95%
CI, 1.28-3.03; P=0.002) (142). Furthermore, in a late multiple
institutional investigation involving 1,200 males with very
low-, low- and intermediate-risk PCs, GPS predicted adverse
pathological features of PC (143). Although GPS has been inde-
pendently validated for the better management of patients with
low- and intermediate-risk PC, the system could be improved.
For instance, GPS does not significantly predict BCR in patients
who are <56 years old (n=100) (140); the cellular organization
group score, 3 of 4 component genes of this group, and the prolif-
eration group score do not individually predict BCR risk (140),
which reduces the biomarker value of GPS. Although the 12
cancer-related genes were selected via a thorough and complex
process from 732 candidates (136), it is of concern whether too
many manipulations may not produce the best model.

Genes regulating CCP possess prognostic potential in
assessing cancer progression (144). Of note, a panel of 31 CCP
genes has been selected from 126 cell cycle progression genes,
which together with 15 housekeeping genes form the Prolaris
(CCP) multigene panel (Myriad Genetics Int.) (137). Prolaris is
a RT-PCR based assay on formalin-fixed paraffin-embedded
tumor tissues and provides risk assessment of BCR progres-
sion (137). The risk stratification has been validated
(Table IIT) (141,145-147). Evidence also indicates its utilization
in the risk stratification of PC fatality (n=349; HR, 2.02; 95% ClI,
1.62-2.53; P<le-9) (148). However, variations in the effective-
ness of BCR risk stratification of some studies were apparent;
for instance, in the study involving 236 patients (Table III),
HR was modest and the lower HR in the 95% CI range was
marginal (Table III). Additionally, it remains uncertain whether
the Prolaris CCP test will have an impact on PC death and is
unlikely to facilitate treatment decision; the cost of test is also
high (149). Nonetheless, both Oncotype DX GPS and Prolaris
CCP are commercially available to assess BCR risk.
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Other multigene signatures with biomarker values in BCR
risk assessment. Even with the construction of Oncotype DX
GPS and Prolaris CCP multigene panels, there is clearly a need
to improve the assessment of BCR. To fulfill this need, there
are numerous additional multigene sets reported (Table IV),
including a 6-differentially expressed gene (DEG) panel (150),
an 8-gene panel with its risk scores predicting BCR at
P=5e-7 (151), and a 10-gene panel HDDA10 (152) (Table IV).

Hypoxia is well known to promote PC progression
via multiple pathways, including inflammation and notch
signaling (153,154). To examine the prognostic values of
hypoxia-induced events in PC progression, Yang et al derived a
28-gene hypoxia-related prognostic signature from 848 differ-
entially expressed genes that were identified in human PC cell
lines cultured under hypoxic and normoxic conditions (155).
The signature modestly predicts BCR in RP patients receiving
post-operative radiotherapy (155) (Table I'V).

Instead of focusing on a particular pathway, a 15-gene
signature has recently been formulated from the MUCI
network (SigMuclNW) (156); the signature was validated
in the MSKCC dataset. SigMuclNW stratifies the BCR risk
in the MSKCC dataset at P-value 3.11e-15 (156). MUCI1
is the most intensively investigated tumor-associated
antigen (157-159) and is an attractive target for developing
immunotherapies for multiple tumor types (160). MUCI1
upregulation is weakly associated with BCR occurrence
and PC mortality (161,162). The biomarker potential of
MUCT alterations in the classification of BCR risk was
significantly enhanced in a 9-gene genomic signature (163).
The 15-gene SigMucINW was derived using the 9-gene
signature-associated DEGs (156). SigMucINW is an inde-
pendent risk factor of BCR (HR, 2.44; 95% CI, 1.53-3.87;
P=1.62e-4) after adjusting for age at diagnosis, GS, surgical
margin and tumor stage (156). Among its 15 component
genes, 8 (SLCO2A1, SUPV3L1, TATDN2, MGAT4B,
VAV2, SLC25A33, ASNS and OIP5) individually predict
BCR after adjusting the clinical features (156). Another
attractive feature of SigMucINW lies in its novelty; among
the 15 component genes, 11 have not been reported in PC
particularly and/or tumorigenesis in general (156).

The inclusion of Opa interacting protein 5 (OIP5) in
SigMucINW is intriguing; it is a cancer-testis antigen and thus
a tumor-associated antigen (TAA) detected in other cancer
types (164). OIPS is likely a novel PC-associated TAA. More
appealingly, recent developments revealed an essential role of
OIP5 in chromosome segregation during cell cycle progres-
sion. OIPS is also known as Miss18p, that plays a critical
role in centromere formation during the Gl phase (165,166).
In accordance with this knowledge, OIP5 is an independent
risk factor for BCR (HR, 1.94; 95% CI, 1.20-3.12; P=0.00638)
after adjusting for age at diagnosis, GS, surgical margin and
tumor stage (156); OIP5 promotes bladder cancer metastasis
and chemoresistance (167), glioblastoma metastasis (168), it
displays a biomarker potential in clear cell renal cell carci-
noma (169), and it is upregulated in colorectal and breast
cancer (170,171).

In line with the concept of the involvement of multiple path-
ways in BCR progression and the robustness of SigMucINW in
the classification of BCR risk (Table IV) (156), our recent anal-
ysis revealed the signature's 15 component genes (Table IV)
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Table III. Prolaris predicts BCR risk.
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Cohort (n) HR (95% CI), P-value® HR (95% CI), P-value® (Refs.)
366 1.89 (1.54-2.31),5.6e-9 1.77 (1.4-2.22),4.3e-6 (137)
413 2.1(1.6-2.9),<0.001 2.0 (1.4-2.8),<0.001 (141)
141 2.55(1.43-4.55),0.0017 2.11 (1.05-4.25),0.034 (145)
582 1.6 (1.35-1.90), 2 .4e-7 1.47 (1.23-1.76), 4.7e-5 (146)
236 1.46 (1.06-2.10),0.002 1.41 (1.02-1.96),0.039 (147)
“Univariate analysis; multivariate analysis. HR, hazard ratio; BCR, biochemical recurrence.
Table IV. Multigene sets with the potential to assess BCR risk.
Gene set Components Cohort (n) HR (95% CI), P-value (Refs.)
6 DEG SMIM22, NINL, NRG2, 358 3.815 (2.1-6.932), P<0.001 (150)
TOP2A, REPS2, TPCN2
8 genes CHST1,ACOX1,CTBS, 308 NA, P=5e-7 (151)
CNPNAT1, NAGLU, LPIN3,
ASRGLI1, HMGCS2
HDDAI10 FRZB, LEF1, SDCBP, WNT?2, 758 2.08 (1.2-3.6), P=0.008 (152)
ING3, ANK3, MEIS2, ANXA4,
PLA2G7, CHDS
28-Gene ADAMTS4, ATF3, BHLHE40, 130 2.81 (1.33-6.0), P=0.007 (155)
hypoxia-related BTG2, CSRNP1, CYR61,
prognostic signature EGR1, EGR2, EGR3, FOSB,
FOSL2, GEM, JUNB, KLF10,
KLF6, LIF, MCL1, NR4A3,
PPPIR15A, RHOB, SELE, SIK1,
SLC2A14,SLC2A3, SOCS3,
THBS1, TIPARP, ZFP36
SigMucINW SLCO2A1,CGNL1, SUPV3LI1, 490 4.16 (2.74-6.36), P=5.54e-11 (156)

TATDN2, MGAT4B, VAV2,
SLC25A33, MCCC1, ASNS,
CASKIN1, DNMT3B, AURKA,
OIP5, CTHRC1, GOLGA7B

HR, hazard ratio; BCR, biochemical recurrence.

being grouped into 5 clusters using Kendall, Spearman's and
Pearson correlation (Fig. 3). Collectively, evidence supports
SigMucINW as a novel and robust multigene signature.
Nonetheless, its biomarker value has not been independently
tested.

Evaluation of BCR risk using IncRNAs. While the mecha-
nisms underlying the IncRNA-mediated regulation of gene
expression remain incompletely understood, they are likely
regulated through complex actions at the genome (chromatin
remodeling), mRNA and protein levels (172). Of these, its
function as miRNA sponges is emerging as a prevalent mecha-
nism (172,173). In this regard, this section reviews the current
evidence for IncRNAs as classifiers of BCR risk. For a compre-
hensive review, we first searched PubMed for ‘IncRNA” AND

‘prostate cancer’ AND ‘biochemical recurrence’, and retrieved
15 articles. With exclusion of one non-accessible publication
and three articles in which the association of IncRNAs with
BCR was not clear, 11 manuscripts are included (179) and
Tables V and VI.

A set of PC-associated IncRNAs (n=54) have been recently
reviewed (174); they are involved in PC initiation and progres-
sion. A well-known IncRNA in PC is PCA3. It is robustly
upregulated in PC compared to prostate tissues (175) and
is the second biomarker used in the clinic for PC detection,
particularly in decision making for repeat biopsies (176-178).
Several IncRNAs have been demonstrated to predict the risk of
BCR either individually or in a panel; this has been reviewed
in 2017 by Ma et al (179) and Wu et al (180). In this section, we
provide an update of the topic with current research.
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Figure 3. Hierarchical clustering of SigMucINW. The RNA sequencing data
of the 15 component genes of SigMucINW (Table IV) were retrieved (156)
and clustered using Kendall, Spearman's and Pearson's correlation with
similar results being obtained. The results based on the Spearman's correla-
tion are shown.

Prediction of BCR risk with individual IncRNAs. Elevations
in the levels of IncRNA LOC400891 have been observed in
tumors vs. prostate tissue (181). The upregulation increases
BCR risk in patients (Table V); its overexpression and knock-
down accordingly enhance and inhibit PC cell proliferation
in vitro. There is evidence to indicate a role of LOC400891
in the activation of the PI3K pathway (181). Nonetheless, the
involvement of LOC400891 in PC and other cancer types has
yet to be further investigated.

Similar observations have also been reported in
IncRNA-ATB (Table V) (182). IncRNA-ATB is upregu-
lated in TGF-B-induced EMT (183). The upregulation of
IncRNA-ATB and its oncogenic activities have been reported
in multiple cancer types, including hepatocellular carcinoma
(HCC), gastric cancer, colorectal cancer (CRC), renal cellular
carcinoma, breast cancer and others (184). Collectively, the
association of IncRNA-ATB with BCR warrants further inves-
tigation, which should be conducted in context of the pathways
(such as TGF-f) affected by IncRNA-ATB in the course of
BCR development.

Increases in the levels of IncRNA LINCO01296 are
associated with BCR (Table V) (185). LINC01296 was first
reported as a biomarker of CRC (186); its oncogenic activities
and association with cancer progression were subsequently
observed in bladder cancer (187,188), gastric cancer (189),
cholangiocarcinoma (190), breast cancer (191), non-small cell
lung cancer (192), and others (193). LINC01296 facilitates
tumorigenesis in part by sponging miR122-5P in HCC (194)
and miR-5059 in cholangiocarcinoma, leading to MYCN
activation (190).

Second chromosome locus associated with prostate-1
(SChLAPI; LINCO00913) is upregulated in PC and promotes
tumor invasion and metastasis (195). In a multicentre
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study involving 937 patients, SChLAPI1 overexpression
was associated with lethal PC (196). Of note, elevations in
SChLAPI1 expressoin have been shown to predict PSA relapse
(Table V) (197), an event which has also been observed by
others (179),and PC metastasis (198). While SChLAPI1 has been
reported to prevent the association of the SWI/SNF complex
with chromatin and thereby inhibiting the complex-associated
tumor suppression in PC (195), late development revealed a
SWI/SNF-independent action of SChLAPI in PC tumorigen-
esis (199); the mechanisms through which SChLAP1 affects
PC require further investigation.

The IncRNA urothelial carcinoma-associated 1 (UCA1)
marginally predicts the risk of BCR (200). The prediction
is consistent with the associations of UCA1 with reduc-
tions in the 5-year disease-free survival in PC (n=130; HR,
2.88; 95% CI, 1.36-6.21; P=0.007) (200) and in overall
survival (n=40, P<0.001) (201). Additionally, the upregula-
tion of UCALI has also been shown to be a risk factor for
the progression of ovarian cancer (202), gastric cancer (203),
melanoma (204), pancreatic cancer (205), glioma (206) and
others (207). Mechanistically, UCA1 facilitates PC at least
in part through upregulations of ATF2 and CXCR4 by
sponging miR-204 (208,209). Intriguingly, UCA1 sequesters
miR-204, leading to EMT in glioma, TGF-f signaling in oral
cancer and Sox4 actions in esophageal cancer (207); UCA1
also sponges other miRNAs in promoting tumorigenesis in
other cancer types (207). In this regard, the association of
UCAL1 with BCR could be strengthened by consideration of
UCA-regulated oncogenic factors.

The downregulation of the IncRNA prostate cancer-asso-
ciated transcript 7 (PCAT7) is an independent factor
predicting BCR (Table V) (210), consistent with its reduc-
tions following advance in GS and its downregulations
independently predicting metastasis (210). Similar clinical
associations were also confirmed by a multicenter study, in
which PCAT14 was found to be an independent risk factor of
metastasis (n=910; HR, 0.56, 95% CI, 0.41-0.71; P=1.09¢-6),
prostate cancer-specific survival (HR,0.53; 95% CI. 0.39-0.72;
P=6.54¢-5) and overall survival (HR, 0.67; 95% CI, 0.54-0.83;
P=0.00019) (211). Apart from these two investigations, the
involvement of PCAT14 in PC and other cancer types has not
yet been thoroughly examined; the potential mechanisms of
PCATI14 downregulation and its impact on PC progression
have yet to be reported. Nonetheless, it appears that PCAT14
affects tumorigenesis in a complex manner; in HCC, PCAT14
is upregulated and promotes HCC cell proliferation and inva-
sion (212).

Stratification of BCR risk with multi-IncRNAs (IncRNA
panels). Multi-IncRNA panels have been constructed to stratify
the risk of BCR, including a 4-IncRNA (213), 5-IncRNA (214),
7-IncRNA (215) and 8-IncRNA panels (Table VI) (216). All
these studies were bioinformatics analyses of the TCGA
dataset using different modules and sub-datasets. Differentially
expressed IncRNAs (DE-IncRNAs) in the setting of PCs vs.
prostate tissues were derived, followed by selection for their
associations with BCR using either univariate Cox anal-
ysis (213,215,216) or the LASSO (least absolute shrinkage and
selection operator) Cox regression (214); DE-IncRNAs with
significant associations with BCR constituted the individual
IncRNA panels (Table VI). Risk scores of these panels were
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Table V. Associations of IncRNAs with BCR.

IncRNAs Cobhort (n) HR (95% CI) P-value (Refs.)
LOC400891 81 2.12 (1.23-3.64)* 0.007 (181)
IncRNA-ATB 57 1.75 (2.31-14.25)* <0.001 (182)
LINCO01296 70 6.58 (1.95-22.22)° 0.002 (185)
SChLAPI1 157 2.34(1.29-427)° 0.005 (197)
UCA1 209 2.73 (0.97-7.63)° 0.056 (200)
PCAT14 585 0.64 (0.49-0.84)* 0.00126 (210)
“Multivariate Cox analysis; "univariate Cox analysis. HR, hazard ratio; BCR, biochemical recurrence.
Table VI. IncRNA panels predict BCR risk.
IncRNA panels Components Cohort (n) HR (95% CI), P-value (Refs.)
4-IncRNA RP11-108P20.4 2901 3.33 (1.59-6.97)*, P=0.01 (213)

RP11-757G1.6

RP11-347119.8 3.13 (1.45-6.78)°, P=0.004

LINCO1123
5-IncRNA RP11-783K16.13 457 0.44 (0.27-0.72)*¢, P<0.05 (214)

RP11-727F15.11

PRKAG2-AS1 343¢ 0.22 (0.09-0.56)*4, P<0.05

AC013460.1 141¢

CRNDE
7-IncRNA SNHGI1 457 0.32 (0.2-0.52), P<0.001 (215)

CRNDE

CTC-296K1.4

UBNX10-AS1

PART1

CTC-296K1.3

PGM5-AS1
8-IncRNA PCAT7 307 2.19 (1.67-2.88)*¢, P<0.0001 (216)

SLC12A9-AS1

RGMB-AS1 1844 2.19 (1.49-3.22)>¢, P<0.0001

PCATI1 1234

AP002992.1

AC025265.1 1.37 (1.09-1.71)*¢, P=0.006

LINCO00593 1.67 (1.06-2.63)*4, P=0.027

AC005632.2

“Univariate Cox analysis; "multivariate Cox analysis; “discovery set; ‘validation set. HR, hazard ratio; BCR, biochemical recurrence.

used to stratify the risk of BCR; the scores were calculated
based on the following formula: Risk scores=sum (coef; x
DE-IncRNA,), where DE-IncRNA; is the i"® DE-IncRNA
expression (i=1, ... n) and coef; is the Cox coefficient of
DE-IncRNAI (213-216).

These IncRNA panels (Table VI) are novel. In the
4-IncRNA panel, only LINCO1123 was reported in a
prognostic IncRNA panel of head and neck squamous cell
carcinoma (217). The IncRNA colorectal neoplasial differen-
tially expressed (CRNDE) of the 5-IncRNA panel (Table VI)
has been relatively well studied (n=72 in PubMed under
‘CRNDE’ AND ‘Cancer’). CRNDE is upregulated in CRC,

glioma, HCC, lung cancer, ovarian cancer, breast cancer and
others; it may play a role in cell proliferation, migration, inva-
sion and apoptosis (218). Apart from CRNDE, other IncRNAs
of the 5-IncRNA panel have not yet been reported, at least to
the best of our knowledge.

In the 7-IncRNA panel (Table VI), small nucleolar
RNA host gene 1 (SNHGI) was reported to upregulate
CDK7 by sponging miR-199-3p, thereby enhancing PC
cell proliferation (219); its involvement in cancer has been
widely investigated (n=64 in PubMed under ‘SNHG1” AND
‘Cancer’). In addition to PC, SNHGI is upregulated in CRC,
liver cancer, lung cancer, gastric cancer and others; the
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upregulation correlated with adverse features of cancer (220).
For PART1, PubMed has listed 16 articles related to ‘PARTI’
AND ‘Cancer’. The IncRNA prostate androgen-regulated tran-
script 1 (PARTY) facilitates the progression of prostate cancer
through the Toll-like receptor pathway (221) and non-small
cell lung cancer via the JAK-STAT pathway (222); it displays
oncogenic activities in bladder cancer (223). The IncRNA
PGM5-ASI has been limitedly studied (n=4 in PubMed under
‘PGMS5-AST’). Evidence suggests PGM5-AS1 suppresses
esophageal squamous cell carcinoma by facilitating PTEN
actions though sponging miR-466 (224). Apart from SNHGI,
CRNDE, PART1 and PGM5-ASI, the others in the 7-IncRNA
panel (Table VI) have not yet been reported, at least to the best
of our knowledge

In the 8-IncRNA panel (Table VI), the IncRNA PCAT7
has been investigated in 3 articles based on PubMed; evidence
suggests that it enhances non-small cell lung cancer progression
by inhibiting miR-134-5p (225). For the IncRNA PCAT], there
are 31 publications listed under PubMed that are related with
‘PCATT’ and ‘Cancer’, in which 20 articles are PC-related. In
PC, PCAT!1 is a disease risk factor (226) and enhances CRPC
by activating the AKT and NF-»B signaling (227). PCAT1
was mapped to 8q24, a well-studied cancer (including PC)
risk region (228). In line with this notion, PCAT1 promotes
esophageal squamous cell carcinoma through sponging
miR-326 (229), is a risk factor of CRC (230), and is associ-
ated with a poor prognosis in endometrial carcinoma (231).
Apart from PCAT7, PGMS5-AS1 and PCAT], the others in the
8-IncRNA panel have not yet been reported, at least to the best
of our knowledge.

Evaluation of BCR risk using IncRNAs: Perspectives
and limitations. Since the discovery of the IncRNA H19 in
1991 (232) and Xist in 1992 (233), a large number and complex
sets of IncRNAs have been identified; the discovery rate has
been significantly accelerated since 2013 (174). Although the
field of IncRNA is new, it is clear that IncRNA affects tumori-
genesis via complex mechanisms at the genome, RNA and
protein levels (172,174). With respect to gene expression, the
actions of IncRNA are likely complex. For instance, a preva-
lent mechanism is to associate with miRNAs, which prevent
miRNAs from inhibiting mRNAs (172,173). miRNAs are
known to affect the expression of a large number of genes. Of
note, miR-130b target genes are approaching 600 (61). It will
thus be important to illustrate the major mechanisms, pathways
and factors through which IncRNAs predict the risk of BCR;
this will facilitate the formulation of IncRNA signatures with
enhanced accuracy to stratify the risk of BCR. As an emerging
and rapidly developing field, the biology of IncRNAs and the
mechanisms mediating their biological actions have not been
thoroughly investigated. In this regard, their potential as clas-
sifiers of BCR risk has yet to be fully recognized.

5. Management of patients with biochemical recurrence

PSA relapse offers the early identification of patients with
failure following initial curative therapies with RP and RT.
While BCR precedes clinical disease recurrence, the manage-
ment of males with PSA relapse needs to consider multiple
factors including tumor recurrence (234,235). The nature of
BCR is heterogeneous with local and distant recurrence (236).
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Additionally, not all patients with BCR will progress to
lethal disease (13). In addition to these variations are the
improvements in risk stratification of BCR and metastasis as
well as advances in salvage treatment. The heterogeneity of
BCR along with the aforementioned advances complicates
the management of patients with BCR. This topic has been
recently discussed by several recent reviews (236-238). We
also highlight the recent advances and suggest improvement
on management of these patients in the context of BCR risk
stratification using RNA-based biomarkers.

Detection of clinical recurrence following BCR. Recent devel-
opments have improved the diagnosis of clinical recurrence
following BCR using the prostate-specific membrane antigen
(PSMA)-based positron emission tomography (PET) imaging
in comparison to conventional imaging modalities: Computed
tomography (CT), magnetic resonance imaging (MRI) and
bone scan (239,240). PMSA (glutamate carboxypeptidase 1)
is an enzyme encoded by the folate hydrolase 1 (FOLHI)
gene (https://en.wikipedia.org/wiki/Glutamate_carboxypep-
tidase_II) (241). It is mainly expressed in the prostate with
weaker expressions detected in the brain, salivary gland
and small intestine (242). PSMA expression is markedly
upregulated in PC and the level of overexpression is associated
with PC progression, including castration-resistant prostate
adenocarcinoma (242-245). Nonetheless, its expression is
suppressed in neuroendocrine prostate cancer (NEPC) (246),
which will produce false negativities. False positivity is also
a concern (246). Nonetheless, PSMA-PET has higher sensi-
tivities in detecting recurrent sites at BCR in comparison to
other imaging modalities (247). In a recent single-arm clinical
trial on patients with BCR (n=635) to assess the accuracy of
8Ga-PSMA-11 PET in detecting recurrent PCs, the overall
detection rate was 75% (475/635) and the PET-positive rates
in different PSA groups were 38% for <0.5 ng/ml, 57% for
0.5-<1.0ng/ml,84% for 1.0-<2.0 ng/ml,86% for 2.0-<5.0 ng/ml,
and 97% for =5.0 ng/ml respectively (248). In a recent diag-
nostic study of 100 patients with BCR using "*F-PSMA-1007
PET/CT, the PET-positive rate was 86, 89, 100 and 100% for
patients with PSA levels <0.5,0.51-1.0, 1.0-2.0, and =2.0 ng/ml,
respectively (249).

Clinical recurrence in the setting of BCR can also be at
distant sites or metastasis. The diagnosis of metastasis can be
facilitated using the Decipher test (GenomeDx Bioscience),
a 22-gene genomic classifier (GC). This is an RNA-based
gene panel consisting of coding and non-coding transcripts
that function in multiple pathways including cell prolifera-
tion, adhesion, immune response, cell cycle progression and
others (132). The Decipher GC predicts metastasis in patients
following RP (132-134). In a recent multicenter study on 561
males with adverse pathological features, GC independently
stratified the risk of prostate cancer-specific mortality
(PCSM) following RP (250). The prediction was improved
by combining GS with CAPRA-S (251) a classifier of BCR
risk following PR (21,22). In this regard, it would be expected
that combination of GS with those RNA-based biomarkers
discussed herein may strengthen the accuracy in predicting
PCSM in the setting of RP; this will facilitate management of
patients with BCR with respect to decision making on salvage
treatment selection.
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Other biomarkers could also be considered. RP produces
excellent outcomes in patients with localized low- and inter-
mediate-risk PCs. However, the biochemical relapse rates for
high-risk localized disease [PSA>20 ng/ml, GS>7, or cT2c (3)]
can increase to 50-80% (252). Males with high-risk tumors
can be managed with adjuvant therapy following RP; in a
small group of patients (n=127) treated with adjuvant hormone
therapy, high level of PDL1 expression is an independent risk
factor of BCR (253). The PDLI1 expression status could facili-
tate the diagnosis of BCR following RP.

Salvage therapies following BCR. Treatment selection for
patients with BCR depends on the site of recurrence and the
extent of progression; this information will be derived using
imaging and other assessment including biomarker-based
(such as GS) risk evaluation and PSA changes (236). Life
expectancy, quality of life (QOL) and the time span of
approximately 8 years for metastatic progression from
BCR (7,13) are among the factors that affect treatment deci-
sion making (237,254).

Salvage radiotherapy (SRT) to the prostate bed is
commonly used in patients with BCR following RP; it controls
biochemical failure in approximately 50% cases, reduces
distant metastasis and improves PCSM (236,255,256).
The PSA status can guide local salvage treatment.
EAU-ESTRO-SIOG recommends surveillance and delayed
SRT in males exhibiting an increase in PSA with a favor-
able prognostic setting [<pT3a; time to BCR, >3 years; PSA
doubling time (DT), >12 months; and GS <7], and beginning
SRT at PSA <0.5 ng/ml (7). On the other hand, the National
Comprehensive Cancer Network (NCCN) recommends the
initiation of SRT with confirmed increasing PSA levels, and
many favor SRT at PSA 0.2 ng/ml (238). For patients with BCR
following RT, salvage RP is an option with confirmed local
recurrence according to EAU-ESTRO-SIOG guidelines (7).
Similarly, the prostate cancer guidelines from the European
Association of Nuclear Medicine (EAU-EANM)-European
Society of Urogenital Radiology (ESTRO-ESUR)-SIOG
classify males with BCR into a low-risk [PSA-DT >1 year
and pathological GS (pGS) <8 or International Society of
Urological Pathology (ISUP) grade <4] and high-risk group
(PSA-DT <1 year, pGS 8-10 or ISUP grade 4-5) for biological
recurrence following RP or a low-risk [IBF (interval from
primary therapy to biochemical failure) >18 months and
biopsy GC (bGS) <8 or ISUP grade <4] and high-risk (IBF
<18 months and ) groups (pGS 8-10 or ISUP grade 4-5) (254).
The stratification was recently validated based on the 5-year
risk of developing metastasis and PCSM in a large cohort of
patients with BCR (n=1,040) (257). The guidelines call for
the surveillance for males with BCR in the low-risk group
and salvage ADT should not be given to these patients (254).
It appears that SRT plus hormone therapy (bicalutamide)
improved the outcome (258,259). The risk of metastasis
following SRT in patients with BCR can be stratified using
Decipher GC (260). It is thus possible to assign patients
with BCR following RP with combination therapy of SRT
and ADT based on GC scores. Following this logic, whether
incorporating BCR risk stratification with GS will enhance
the decision making warrants further investigations in the
future.
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6. Perspectives

BCR precedes clinical disease recurrence and is significantly
associated with increases in metastasis development and
CRPC (13,14,261), conditions to which our knowledge and
ability to intervene remain poor. While more than half of
patients with high-risk PCs will experience BCR following
RP (252), the curative therapy yields good results in males
with low- and intermediate-risk tumors. Accurately predicting
the risk of BCR is thus highly relevant in the management of
these patients. In view of the metastasis progression following
BCR, the stratification of the risk of BCR also contributes
to the management of males with PSA relapse (please see
section above entitled ‘Salvage therapies following BCR’).
Collectively, the effective evaluation of the risk of BCR
is an essential aspect of patient management. With this
recognition, a major research focus has been searching for
biomarkers to robustly assess BCR risk, which is evident by
2,502 articles listed under ‘prostate cancer’ AND ‘biomarker’
AND ‘biochemical recurrence’ by PubMed. However, none
of these had succeeded in progressing to routine clinical
application (262); this clearly outlines the challenges in the
identification of effective biomarkers.

While individual biomarkers, regardless of whether they
are clinical feature-, DNA-, RNA-, and protein-based, may
display a significant association with BCR, it is unlikely that
they can effectively stratify BCR risk individually. BCR is
regulated by complex mechanisms, which is likely an attribute
to the lack of overlapping genes between two commercially
available multigene panels, Oncotype DX GPS and Prolaris,
despite both assessing the risk of BCR (135,137). It is thus
conceivable that multigene panels will certainly enhance the
effectiveness of BCR biomarkers. In this regard, it will be
intriguing to systemically analyze Oncotype DX, Prolaris
and other RNA-based biomarkers along with clinical
feature-based (PSA, GS, stage, surgical margin status, lymph
node status and others) BCR risk classifiers (CAPRA-S,
Walz nomogram, and others) for the stratification of the
risk of BCR. This may produce a much more robust system,
covering essential pathways leading to BCR, in predicting
the risk of BCR, which will greatly improve patient manage-
ment with prostate cancer.

Another avenue worthy of exploration for the improvement
of the stratification of the risk of BCR is the process of DNA
damage response (DDR). Genomic instability is a hallmark
of cancer and the driving force of cancer progression (263);
genomic stability is maintained through DDR by coordinating
checkpoint activation and DNA lesion repairs (264-266). It is
surprising that factors in DDR regulation have not been inten-
sively investigated for their biomarker potential.

The same situation applies to stromal factors. While a
variety of tumor properties have been examined for prognostic
purposes, the stromal contributions and the communica-
tions between he stroma and tumor have not been actively
determined for biomarker purposes. A potential mechanism
causing stromal alterations is through PC-associated meta-
bolic reprogramming, which results in the accumulation of
metabolic intermediates (267); these materials affect gene
expression via epigenetic alterations (268). Metabolic repro-
gramming is a well-established mechanism supporting not
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only tumorigenesis, but also cancer progression (36,267,268).
In this regard, PC-associated metabolic alterations will have
a prognostic potential which has been recently reviewed by
Lucarelli et al (267). It is of interest that PCs can be grouped
into two metabolic profiles: Phopho-AKT"&"/MYC™ or
phopho-AKT""/MYC"¢" with the former and latter affecting
the glucose-related processes and lipid metabolism,
respectively (269). Nonetheless, the prognostic potential of
PC-associated metabolic alterations remains complex. For
instance, the AKT- and MYC-related metabolic signatures
are not associated with GS and pathological stage (269); of
note, neither MYC overexpression nor AKT phosphorylation
displays a strong prognostic potential in PC (267,270,271).
While increases in body mass index (BMI) and obesity are
associated with PC-related mortality (272), there is also
evidence to support the reverse association (273). A similar
situation also applies to the association between cholesterol
and PC progression. A meta-analysis of 27 clinical studies
up to 2012 with a pooled population of 1.8 million males
revealed a 7% reduction in PC cases and a 20% decrease in
PC progression in statin users (274). Statins were reported
to reduce BCR following RT (275) and RP (276). However,
other studies observed no clinical benefits in males with PC
who were statin users (277,278) and reported statins having
no impact on BCR following RP (279). Clearly, the prog-
nostic values of metabolic alterations in PC warrant further
investigations.

The plasticity of cancer, including PC, presents a major
challenge not only in cancer therapy, but also in assessing
the risk of cancer progression. Cancer plasticity is regu-
lated by complex mechanisms, including those functioning
in CSCs and DDR (280,281). It is noteworthy that BMII,
a well-established factor in maintaining CSC (282), also
compromises genomic instability via attenuating ATM and
ATR functions (264,283-285). In this regard, DDR regula-
tions and stroma-cancer cell communications, both of which
contribute to cancer plasticity, should be actively brought into
the picture of BCR risk assessment; with these components
incorporated, the ability to accurately classify BCR risk will
likely be significantly improved.

PC is associated with high levels of intratumoral and
intertumoral heterogeneity (286). This aspect has not been
given sufficient consideration and should be pursued in PC
biomarker development. Collaborative efforts involving
multiple institutes in sharing materials and expertise will
certainly be helpful to achieve this goal.
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