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Abstract. Due to the positive association between neoadju-
vant chemotherapy (NACT) and the promising early response 
rates of patients with triple negative breast cancer (TNBC), 
including probabilities of pathological complete response, 
NACT is increasingly used in TNBC management. Liquid 
biopsy‑based biomarkers with the power to diagnose the early 
response to NACT may support established monitoring tools, 
which are to a certain extent imprecise and costly. Simple 
serum‑ or urine‑based analyses of non‑coding RNA (ncRNA) 
expression may allow for fast, minimally‑invasive testing 
and timely adjustment of the therapy regimen. The present 
study investigated breast cancer‑related ncRNAs [microRNA 
(miR)‑7, ‑9, ‑15a, ‑17, ‑18a, ‑19b, ‑21, ‑30b, ‑222 and ‑320c, 
PIWI‑interacting RNA‑36743 and GlyCCC2] in triple positive 
BT‑474 cells and three TNBC cell lines (BT‑20, HS‑578T and 
MDA‑MB‑231) treated with various chemotherapeutic agents 
using reverse transcription‑quantitative PCR. Intracellular 
and secreted microvesicular ncRNA expression levels were 
analysed using a multivariable statistical regression analysis. 
Chemotherapy‑driven effects were investigated by analysing 

cell cycle determinants at the mRNA and protein levels. 
Serum and urine specimens from 8 patients with TNBC were 
compared with 10 healthy females using two‑sample t‑tests. 
Samples from the patients with TNBC were compared at two 
time points. Chemotherapeutic treatments induced distinct 
changes in ncRNA expression in TNBC cell lines and the 
BT‑474 cell line in intra‑ and extracellular compartments. 
Serum and urine‑based ncRNA expression analysis was able to 
discriminate between patients with TNBC and controls. Time 
point comparisons in the urine samples of patients with TNBC 
revealed a general rise in the level of ncRNA. Serum data 
suggested a potential association between piR‑36743, miR‑17, 
‑19b and ‑30b expression levels and an NACT‑driven complete 
clinical response. The present study highlighted the potential of 
ncRNAs as liquid biopsy‑based biomarkers in TNBC chemo-
therapy treatment. The ncRNAs tested in the present study 
have been previously investigated for their involvement in BC 
or TNBC chemotherapy responses; however, these previous 
studies were restricted to patient tissue or in vitro models. The 
data from the present study offer novel insight into ncRNA 
expression in liquid samples from patients with TNBC, and 
the study serves as an initial step in the evaluation of ncRNAs 
as diagnostic biomarkers in the monitoring of TNBC therapy.

Introduction

As the most frequent malignancy occurring in females, breast 
cancer (BC) represents a great threat to women's health. In 
2018, the World Health Organization registered 2,088,849 BC 
cases and 626,679 BC‑associated deaths globally (1). However, 
the survival rate for patients with BC has been increasing since 
the 1990s. One reason for this is the improvement in systemic 
treatment concepts (2,3). Moreover, molecular subtyping has 
been implemented in clinical practice as an important tool for 
risk‑adapted therapy in patients with BC (4‑7).

Triple negative breast cancer (TNBC) is classified as the 
most aggressive molecular subtype of BC (8). TNBCs are 
estimated to comprise ~15% of all cases of BC (9,10), and 
its occurrence is highest in younger females (9) and those of 
African‑American ancestry (8,11). The prognosis for women 
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diagnosed with TNBC is less favourable than for those 
suffering from other intrinsic subtypes (12). Characterised 
by the absence of hormone receptors and a lack of Her2neu 
(ErbB2) gene amplification, TNBCs are heterogeneous 
carcinomas (9) and are often poorly differentiated. Several 
attempts have been made to further categorise TNBC subtypes 
according to distinct gene expression patterns. For example, 
Lehmann et al (13) analysed the gene expression profiles of 
587 TNBC cases and identified six distinct TNBC subtypes: 
Two basal‑like, an immunomodulatory, a mesenchymal, a 
mesenchymal stem‑like and a luminal androgen receptor 
subtype.

TNBC can be further classified into the basal‑like 
subtype  (12) or the claudin‑low subtype  (4). The terms 
‘basal‑like’ BC and TNBC are often used interchangeably; 
however, they do not describe the same condition, as not all 
basal‑like BCs are classified as TNBC and vice versa. Most 
basal‑like BC cases present without hormone receptor expres-
sion and Her2neu gene amplification, as in TNBC (14); in 
a study performed by Bertucci et al  (15), ~71% of TNBCs 
exhibited basal‑like gene expression. Characteristic basal‑like 
markers comprise cytokeratin 5/6 and epidermal growth 
factor receptor (14). The claudin‑low intrinsic subtype, which 
was described in 2007, is characterised by the high expres-
sion of epithelial‑mesenchymal transition markers and cancer 
stem cell‑like features, among other traits  (4). Unlike the 
basal‑like subtype, the claudin‑low intrinsic subtype exhibits 
lower expression of genes associated with proliferation, such 
as Ki67 (4). Prat et al (4) reported that the prognosis of the 
claudin‑low subtype was poorer than that of luminal A, but 
improved compared with that of the basal‑like subtype.

Due to the absence of hormone receptors and the lack of 
Her2neu gene amplification, therapy for patients with TNBC is 
restricted to neoadjuvant chemotherapy (NACT), radiotherapy 
and surgery  (16). In the case of NACT, chemotherapy is 
administered prior to surgery, while in adjuvant chemotherapy 
(ACT), surgery precedes the chemotherapy treatment. NACT 
is considered to be equivalent to ACT in terms of clinical 
outcome, and has become an established treatment in BC 
therapy  (17‑21). Additionally, fewer adverse effects were 
observed with NACT compared with ACT (17). The primary 
endpoint of NACT is defined as the pathologically determined 
response of the tumour in the breast and the axillary lymph 
nodes. Achieving pathological complete response (pCR) at the 
time of surgery, defined as no residual invasive or non‑invasive 
tumour tissue in the breast and the axillary lymph nodes, 
represents an important surrogate marker for beneficial 
overall survival in these patients (22‑27). Further advantages 
of NACT treatment can be seen in the increasing rate of 
breast conserving surgery and the evaluation of short‑term 
surrogate markers (pathological, clinical and molecular) for 
outcome prediction (21,27,28). In this context, it is known 
that an early tumour response (after 1‑2 cycles of NACT) is 
also a predictive factor for pCR, and offers the opportunity 
to distinguish responders from non‑responders at a very early 
time point of therapy (27). This early determination of poor 
response offers the chance to alter treatment regimens and 
drugs with the goal of achieving an optimized response up to a 
pCR. Therefore, reliable measures to determine early response 
to NACT represent an important prerequisite for innovative 

personalised treatment concepts for the improvement of the 
clinical outcome for patients with non‑responding tumours. 
The NACT regime for patients with TNBC includes both 
an anthracycline and a taxane that should be administered 
for 18‑24 weeks (28). The addition of platinum, irrespective 
of breast cancer susceptibility protein status, increases pCR 
rates; however, it is accompanied by enhanced drug‑dependent 
toxicity in patients with TNBC (7). A variety of diagnostic 
possibilities, including ultrasound (US), palpation, mammog-
raphy, magnetic resonance imaging (MRI) and positron 
emission tomography/computed tomography, are available 
for response monitoring during NACT (28). Although US 
measurements are used routinely in the clinic to assess tumour 
response to NACT, few data exist concerning the accuracy of 
US for the prediction of pCR (29,30). Morphological reactions 
of solid tumours during therapy (for example, fragmentation 
and tumour necrosis with or without stromal reaction) may 
compromise the accuracy of US in discriminating between 
responding and non‑responding tumours. A previous study 
performed by Chagpar et al (31) investigated the accuracy of 
physical examination, US and mammography in predicting 
residual tumour size in NACT‑treated patients with BC, 
and found only a moderate correlation. MRI appears to be 
an accurate method to detect residual disease; however, the 
false‑negative rate is increased in patients receiving chemo-
therapy. Furthermore, these methods depend on tumour size 
reduction, which can, in certain cases, take months (32).

As an early response to NACT seems to be associated 
with achieving pCR and an improved prognosis for patients 
with TNBC, prediction of therapy response is particularly 
important in this BC subgroup (24,33‑35). A poor prognosis 
for patients with TNBC improves to a similarly high level if 
patients achieve a pCR (34). This underlines the need for more 
specific and sensitive predictive methods. Liquid biopsy‑based 
non‑coding RNAs (ncRNAs) in the serum and urine of 
patients undergoing NACT as innovative biomarkers may be 
a promising tool to predict early therapy response before the 
current standard imaging methods are employed.

ncRNAs comprise several classes, according to size, origin 
and function (36,37). The evidence for the involvement of 
ncRNAs in carcinogenesis is increasing (38). As ncRNAs are 
secreted by their cells of origin, they can be detected in body 
fluids, including serum and urine (39‑41). Several previous 
studies have reported an association between ncRNA expres-
sion, chemotherapy response and resistance (42‑45). Therefore, 
ncRNAs may serve as liquid‑biopsy‑based biomarkers to indi-
cate early response to NACT in TNBC.

To pursue this question, the present study examined 
the expression of 14 ncRNAs, including 12 microRNAs 
(miRNA/miRs; let‑7a; let‑7e; miR‑7, ‑9, ‑15a, ‑17, ‑18a, 
‑19b, ‑21, ‑30b, ‑222 and ‑320c), one PIWI‑interacting RNA 
(piRNA; piR‑36743) and one transfer RNA (GlyCCC2) in a 
triple positive (BT‑474) and three TNBC (BT‑20; HS‑578T; 
MDA‑MB‑231) cell lines treated with the cytostatic drugs 
carboplatin, epirubicin, gemcitabine and paclitaxel, both intra‑ 
and extracellularly. Analysis of cell cycle determinants [cyclin 
D1, DNA topoisomerase 2α (TOP2α) and targeting protein 
for Xklp2 (TPX2)] and RNA metabolic proteins [DEAD‑box 
polypeptide (DDX)5 and DDX17] were performed at the 
mRNA and protein level to investigate drug‑dependent 
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effects on the cell cycle. Subsequently, ncRNA expression 
was analysed in serum and urine specimens from patients 
with TNBC and healthy controls. Additionally, alterations in 
ncRNA expression in patients with TNBC prior to NACT (t0) 
and immediately prior to the third cycle of therapy (t1) were 
investigated.

Materials and methods

Cell culture conditions and treatments. BC cell lines BT‑474 
and BT‑20 (cat. nos. 300130 and 300131; CLS Cell Lines 
Service GmbH), HS‑578T (cat. no. 86082104; Sigma‑Aldrich; 

Merck KGaA) and MDA‑MB‑231 (cat.  no.  92020424; 
Sigma‑Aldrich; Merck KGaA)  (46) were incubated in 
DMEM/F12 medium (Gibco; Thermo Fisher Scientific, Inc.), 
supplemented with 5% FBS (Gibco; Thermo Fisher Scientific, 
Inc.), 1% HEPES buffer (Gibco; Thermo Fisher Scientific, Inc.) 
and 1% 100 U/ml penicillin/streptomycin (Sigma‑Aldrich; 
Merck KGaA). Insulin (2.5%; Insuman® rapid; Sanofi S.A.) was 
added to BT‑474 cells. Cells were incubated under humidified 
conditions at 37˚C and 5% CO2. The cell lines were authenti-
cated using PCR‑single‑locus‑technology. Mycoplasma testing 
is performed regularly.

Cells were treated with 2.0 µg/ml carboplatin (Abmole 
Biosciences Inc.), 1.0 µg/ml epirubicin (Sigma‑Aldrich; Merck 
KGaA), 40.0  µg/ml gemcitabine (Abmole Bioscience Inc.) 
or 2.0  µg/ml paclitaxel (Sigma‑Aldrich; Merck KGaA) in 
DMSO‑free solution for 18 h. Untreated cells served as a control.

Acquisition of patient samples. Female patients with histo-
logically proven, invasive TNBC as defined by the St. Gallen 
Consensus 2012  (47), who were subjected to NACT were 
included in the present study. The inclusion criteria were 
as follows: i) Primary diagnosis of TNBC; and ii)  age of 
≥18 years. The exclusion criteria were as follows: i) Distant 
metastasis at the time of diagnosis; and ii) other previous or 
coexistent malignancies. The present study was approved 
by the institutional ethical review board of the University of 
Freiburg (permit no. 607/16) and written informed consent was 
obtained from each participant. Patients (aged 40‑70 years) 
of the Department of Gynaecology and Obstetrics at the 
Medical Center‑University of Freiburg were enrolled between 
February 2017 and September 2017; additionally, 20 healthy 
controls (aged 23‑70 years) were enrolled between March 2016 
and August 2016, of whom 10 provided serum samples, and 10 
provided urine samples. All patients received NACT according 
to standard treatment protocols [90  mg/m² epirubicin + 
600 mg/m² cyclophosphamide (EC) x4 (once every 3 weeks), 
followed by 80 mg/m² paclitaxel (P) x12 (weekly)] (28). BC 
tissue biopsies were collected prior to NACT, and evaluated 
via haematoxylin and eosin (H&E) and Ki67 staining by the 
Pathology Department of the Medical Center‑University of 
Freiburg. Histopathological preparations of BC were graded 
according to the classification published by Elston and 
Ellis (48) on H&E‑stained slides, which includes counting 
of mitotic cells. Furthermore, the proliferation index was 
measured in sections immunohistochemically stained with the 
Ki67 antibody clone MIB‑1. Any nuclear positivity (nucleoli 
excluded) was counted. The percentage of positive nuclei was 
either calculated from counting at least 200 tumour cells or 

estimated semi‑quantitatively, especially for percentages 
<10 and >30%. In total, 9 patients with TNBC were enrolled. 
Patient characteristics are displayed in Table I. Blood (2‑9 ml) 
was drawn by physicians at two time points (t0, prior to NACT; 
t1, immediately prior to third cycle of NACT), according to 
standard protocols. In order to evaluate the individual response 
of each patient to NACT, follow‑up by US was performed 
and interpreted, according to the RECIST criteria (30). After 
coagulation for 20 min, whole blood was centrifuged (10 min, 
2,000 x g, 4˚C). Cell‑free serum specimens were transferred 
to a fresh test tube. Samples exhibiting haemolytic character-
istics were excluded. In total, 20 ml of urine was centrifuged 
(15 min, 2,000 x g, 4˚C) and the cell‑free supernatant was 
transferred to fresh test tubes. Serum and urine samples were 
stored at ‑20˚C. Of the nine serum and urine samples collected 
from patients with TNBC, only eight met quality standards 
and were further analysed.

Isolation of ncRNA. Intracellular ncRNA was isolated using an 
EURx® GeneMATRIX Universal RNA/miRNA Purification 
kit (EURx Sp. z o.o.) according to the manufacturer's protocol. 
For the isolation of secreted microvesicular extracellular 
ncRNA, conditioned cell culture medium from BC cells was 
decanted into a 15‑ml tube and centrifuged at 4˚C at 8,000 x g 
for 5 min. In total, 10 ml supernatant was transferred to a new 
15‑ml tube. Microvesicles from liquid samples (conditioned 
cell culture medium, serum and urine) were isolated via filtra-
tion. RNA was subsequently isolated using a Norgen Total 
RNA Purification kit (Norgen Biotek Corp.), according to the 
manufacturer's protocol. In total, 20 ml urine and 2 ml serum 
were applied. The RNA concentration was determined using 
a NanoDrop™ ND1000 (Thermo Fisher Scientific, Inc.) and 
RNA was stored at ‑20˚C until further processing.

Reverse transcription (RT). cDNA was generated in a total reac-
tion volume of 20 µl using poly(A) tailing‑based RT. The RT 
reaction mix was as follows: 4 µl RT‑buffer (5X), 1 µl 2.5 µM 
poly A adapter/primer (Integrated DNA Technologies, Inc.), 1 µl 
5 mM dNTPs (Jena Bioscience), 0.25 µl Maxima™ H Minus 
reverse transcriptase (Thermo Fisher Scientific, Inc.), 0.25 µl 
SUPERase In™ RNase inhibitor (Thermo Fisher Scientific, Inc.), 
0.5 µl 10 mM ATP (New England BioLabs, Inc.), 0.25 µl poly 
A polymerase (New England BioLabs, Inc.) and the required 
amount of RNA sample. Briefly, 1,000 ng of isolated intracel-
lular ncRNA and 50 ng of isolated microvesicular extracellular 
ncRNA were used for RT. Due to the small amount of ncRNA 
in serum and urine, a fixed volume of 5 µl was used. RT was 
performed at 42˚C for 30 min and 85˚C for 10 min. Processed 
cDNA was stored at 4˚C. Additionally, 2,000 ng of RNA was 
used for the RT of mRNA. The RT reaction mix contained 5 µl 
RT‑buffer (5X), 1 µl 5 mM dNTPs (Jena Bioscience), 1 µl RT 
primer (10 µM), 0.25 µl Maxima™ H Minus reverse transcrip-
tase (Thermo Fisher Scientific, Inc.), 0.25 µl SUPERase In™ 
RNase inhibitor (Thermo Fisher Scientific, Inc.) and the RT 
was carried out in a total volume of 25 µl. The RT temperature 
protocol was performed as follows: 65˚C for 1 min, 25˚C for 
10 min, 50˚C for 45 min and 85˚C for 10 min.

Quantitative PCR (qPCR). In total, 1 µl cDNA at a concentra-
tion of 5 ng/µl was used for qPCR at a 1:10 dilution with the 
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master mix. Master mix was composed of 1 µl qPCR buffer 
(10X), 0.5 µl 5 mM dNTPs (Jena Bioscience), 0.5 µl SYBR® 
Green (Jena Bioscience), 6.45 µl nuclease‑free water (Analytik 
Jena AG), 0.05 µl HotStart Taq polymerase (Jena Bioscience) 
and 0.5 µl primer pair mix. The primers were designed using 
miRprimer  (49). Sequences of specific sense and antisense 
primers are listed in Table SI. Duplicate analysis was performed 
on a LightCycler® 480 Instrument II (Roche Diagnostics) with 
pre‑incubation at 95˚C for 2 min and a two‑step amplification 
of 40 cycles at 95˚C for 5 sec and 60˚C for 30 sec. Based on 
an extensive literature review (date, 28/02/2019) employing the 
academic web resource PubMed (https://www.ncbi.nlm.nih.

gov/pubmed/) with a focus on (TN)BC‑related ncRNAs and 
their involvement in chemotherapy response and resistance, the 
following panel of ncRNAs was selected and subsequently anal-
ysed: Let‑7a; let‑7e; miR‑7, ‑9, ‑15a, ‑17, ‑18a, ‑19b, ‑21, ‑30b, ‑222 
and ‑320c; piR‑36743; and GlyCCC2. The following key words 
were used: ‘miRNA’ or ‘piRNA’, combined with ‘breast cancer’ 
(4,571 and 4,581 hits, respectively) and ‘TNBC’ (261 and 157 
hits, respectively). The literature review on the chosen panel of 
ncRNAs was extended by searching for each target name indi-
vidually combined with the key words ‘breast cancer’, ‘TNBC’, 
‘chemotherapy’, ‘chemoresponse’ and ‘chemoresistance’. The 
findings from this literature search are summarised in Table II.

Table I. Characteristics of patients with TNBC and the control cohort.

A, Patients with TNBC

	 Serum cohort (n=8)	 Urine cohort (n=8)
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑  -‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Characteristics	 N	 %	 Mean	 N	 %	 Mean

Age	 8		  55.4	 8		  53.6
Initial tumour stage (T)					   
  cT1	 6	 75.0		  6	 75.0	
  cT2	 2	 25.0		  2	 25.0	
Initial nodal status (N)					   
  cN0	 7	 87.5		  7	 87.5	
  n.a.	 1	 12.5		  1	 12.5	
Initial tumour grade						    
  G2	 4	 50.0		  3	 37.5	
  G3	 4	 50.0		  5	 62.5	
Lymphovascular invasion (L)						    
  L0	 5	 62.5		  4	 50.0	
  L1	 1	 12.5		  1	 12.5	
  n.a.	 2	 25.0		  3	 37.5	
Proliferation rate (MIB‑1 reactivity)		  64.3			   60.3	
Menopausal status						    
  Premenopausal	 1	 12.5		  2	 25.0	
  Postmenopausal	 4	 50.0		  4	 50.0	
  n.a.	 3	 37.5		  2	 25.0	
Early responsea	 3	 37.5		  4	 50.0	
  cCRb	 4	 50.0		  4	 50.0	
  pCRc	 3	 37.5		  5	 62.5	

B, Controls

	 Serum cohort (n=10)	 Urine cohort (n=10)
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑  -‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Control cohort	 N	 Mean	 N	 Mean

Age	 10	 52.0	 10	 49.5

aAccording to RECIST criteria, defined as clinically partial response or cCR immediately prior to the third cycle of NACT, and determined by 
ultrasonography. bAchievement of cCR throughout the course of NACT. cAchivement of pCR. All patients displayed a histological subtype 
of invasive ductal carcinoma. TNBC, triple negative breast cancer; cCR, clinically complete response; pCR, pathological complete response; 
NACT, neoadjuvant chemotherapy; MIB‑1, anti‑Ki67 antibody; n.a., no information available.
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According to the ΔΔCq method (50,51), relative quanti-
fication of intracellular ncRNA expression was performed 
by normalising the quantification cycle (Cq) values to the 
geometric mean of the two endogenous controls, RNU‑44 and 
‑48 (51‑54), which were determined as stably expressed using 
the BestKeeper software tool (55). Due to a lack of reliable 
endogenous controls in conditioned cell culture media, raw 
data of extracellular microvesicular ncRNA were normalised 
to the global mean of all assessed ncRNAs in this setting. 
Although recommended for larger data sets, this approach 
is commonly accepted when no suitable endogenous control 
can be established and can lead to more accurate performance 
than normalising to stable genes (52,56,57). Within the anal-
ysed serum samples, BestKeeper identified miR‑26b and ‑191 
as the most suitable endogenous controls. Similarly, miR‑16 
and ‑26b served as endogenous controls in the urine‑based 
analysis (58,59). Additionally, 5 fmol of exogenous synthetic 
miRNA from Arabidopsis  thaliana (ath‑miR‑159a) and 
Caenorhabditis elegans (cel‑miR‑39; both from biomers.net 
GmbH) were mixed with serum and urine samples as spike‑in 
controls to optimise normalisation (60).

The targets of the mRNA analysis included cyclin D1, 
TOP2α, TPX2, DDX5 and ‑17. Cq values were normalised to 
the housekeeping gene, 5'‑aminolevulinate synthase 1 (61).

Protein isolation and western blotting. Proteins from the 
BC cell lines were isolated from the flow‑through of the 
RNA‑binding columns used to purify RNA by the addition of 
1 ml of isopropanol and subsequent centrifugation for 30 min 
at 12,000 x g at 4˚C. The protein pellet was washed with 70% 
ethanol and lysed in protein lysis buffer (1% SDS, 1% triton, 
1 mM EDTA, 0.1 M HEPES) for 30 min at 1,000 RPM and 50˚C 
in an Eppendorf ThermoMixer®. Protein concentrations were 
determined using the bicinchoninic acid method as previously 
described (62). Western blotting was conducted as described by 
Schagger and von Jagow (63). Briefly, 10 µg/lane of protein was 
separated on a 10% SDS gel. Proteins were transferred onto a 
0.45‑µm PVDF membrane (Sigma‑Aldrich; Merck KGaA) and 
membranes were blocked with 3% skimmed milk in PBS‑Tween 
20 at room temperature for 30  min. Monoclonal mouse 
anti‑human antibodies for immunodetection were purchased 
from Santa Cruz Biotechnology, Inc. The following dilutions 
were used: Cyclin D1 (1:500; cat. no. sc‑8396); DDX5 (1:5,000; 
cat.  no.  sc‑365164); DDX17 (1:10,000; cat.  no.  sc‑398168); 
β‑Actin (1:1,000; cat.  no.  sc‑47778); and proliferating cell 
nuclear antigen (PCNA; 1:1,000; cat. no. sc‑56). Membranes 
were incubated with primary antibodies overnight at  4˚C. 
A secondary peroxidase‑conjugated anti‑mouse antibody 
was purchased from Jackson ImmunoResearch Europe, Ltd. 
(cat. no. 115‑036‑146) and was incubated at room temperature 
with the membrane for 1 h (1:10,000). Bands were visualised 
using ECL reagent (Santa Cruz Biotechnology, Inc.). PCNA and 
β‑Actin served as loading controls.

Statistical analysis. All statistical tests were performed in 
R 3.5.2  (64). Multivariable statistical analysis of in  vitro 
results, including three independent experimental repeats, 
consisted of three factors: Cell line (BT‑474, BT‑20, HS‑578T, 
MDA‑MB‑231), treatment (control, carboplatin, epirubicin, 
gemcitabine, paclitaxel) and compartment (intracellular, 

extracellular). The untreated BT‑20 cell line was defined as 
the expected control value (intercept) in the statistical data 
assessment. A linear model for the log‑transformed in vitro 
results was selected with the main effect of the cell line, 
three two‑way interactions of the cell line and treatment, cell 
line and compartment, and treatment and compartment, and 
the three‑way interaction of all three factors. In vivo results 
were statistically analysed by performing a two‑sample t‑test 
comparing patients with TNBC to the healthy control group. 
For a time point comparison (t0 vs. t1) within the TNBC group, 
a two‑tailed paired t‑test was applied. Preliminary two‑tailed 
paired t‑tests were performed for the serum data in a clinical 
complete response (cCR) vs. no cCR subgroup analysis, defined 
by the RECIST criteria (30). P<0.05 indicated a statistically 
significant difference.

Results

In the present study, the influence of chemotherapeutic 
treatment on the expression levels of 14 BC‑related ncRNAs 
(let‑7a/e, miR‑7, ‑9, ‑15a, ‑17, ‑18a, ‑19b, ‑21, ‑30b, ‑222 and 
‑320c, piR‑36743 and GlyCCC2) was investigated in three 
TNBC (BT‑20, HS‑578T and MDA‑MB‑231) cell lines and 
one triple positive BC (BT‑474) cell line, both intra‑ and extra-
cellularly.

All examined cell lines expressed all of the 14 investigated 
ncRNA targets. In addition to intracellular expression, the vast 
majority of the panel were detectable as secreted molecules 
in microvesicles in cell culture medium, with the exception of 
miR‑7, ‑9 and ‑15a in the medium of MDA‑MB‑231, and miR‑9 
in the medium of HS‑578T cells. Chemotherapy treatment of 
cells with carboplatin, epirubicin, gemcitabine and paclitaxel 
resulted in distinct ncRNA expression alterations depending 
both on the cytotoxic agent and on the specific BC cell line 
(Fig. 1).

Epirubicin. Epirubicin treatment (1.0  µg/ml) influenced 
intracellular and secreted microvesicular expression levels of 
all the ncRNAs in the panel in all the cell lines investigated. 
A uniform downregulation of all analysed targets, except for 
piR‑36743 in BT‑474 was observed, intracellularly. The levels 
of secreted microvesicular ncRNAs did not suggest a distinct 
regulation pattern in respect of target and cell line (Fig. 1).

Multivariable analysis confirmed the inhibitory effect 
of epirubicin on ncRNA expression, especially in hormone 
receptor positive BT‑474 and TNBC cell lines BT‑20 and 
MDA‑MB‑231. miR‑7, ‑15a, ‑17, ‑18a, ‑19b, ‑21, ‑30b and ‑222 
were downregulated in BT‑474, BT‑20 and MDA‑MB‑231 
cell lines compared with the intercept, while reduced expres-
sion of miR‑9 was restricted to BT‑474 and MDA‑MB‑231 
cells. GlyCCC2 expression was downregulated in BT‑20 and 
MDA‑MB‑231 cells. piR‑36743 expression decreased following 
epirubicin treatment in MDA‑MB‑231 cells, while an increase 
in expression was found in BT‑474 cells. In HS‑578T, the 
effect of epirubicin was limited to miR‑17 and ‑18a expression. 
All estimates of multivariable analysis, including confidence 
intervals (CIs) and P‑values are listed in Table SII.

Gemcitabine. Gemcitabine (40.0  µg/ml) predominantly 
triggered a decrease in the expression of ncRNAs in the 
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intracellular compartment, except in the cases of miR‑320c, 
piR‑36743 and GlyCCC2 in BT‑474 cells, where an upregu-
lation was observed. The levels of secreted microvesicular 
ncRNAs were altered bidirectionally (Fig. 1).

In a multivariable analysis, gemcitabine treatment caused 
major changes in the expression levels of ncRNAs in BT‑474 
cells, while few detectable alterations were observed in the 
TNBC cell lines. Specifically, miR‑7, ‑9, ‑15a, ‑17, ‑18a, ‑19b, 
‑21 and ‑30b were downregulated compared with the intercept, 
while miR‑320c, piR‑36743 and GlyCCC2 were upregulated in 
BT‑474 cells. In the TNBC cell lines, downregulated expres-
sion was detected for miR‑17, ‑18a and ‑21 in BT‑20, and 
miR‑7 and ‑21 in MDA‑MB‑231 cells. No significant effect 
was detected in HS‑578T cells. All estimates of multivariable 
analysis, including CIs and P‑values are listed in Table SII.

Paclitaxel. Intracellularly, the expression levels of the ncRNAs 
predominantly decreased following paclitaxel (2.0 µg/ml) treat-
ment. However, in the cases of miR‑7 (HS‑578T), ‑222 (BT‑20 
and HS‑578T), ‑320c (BT‑474, BT‑20 and MDA‑MB‑231) and 
piR‑36743 (all cell lines), upregulation was detected. The levels 
of secreted microvesicular ncRNAs were influenced by pacli-
taxel and differed among the investigated cell lines (Fig. 1).

Multivariable analysis found that paclitaxel triggered 
ncRNA expression fluctuations predominantly in the TNBC cell 
lines BT‑20 and MDA‑MB‑231. Compared with the intercept, 
miR‑17, ‑18a, ‑19b and ‑21 were downregulated in BT‑20 cells, 
while piR‑36743 was upregulated. In MDA‑MB‑231 cells, the 
expression levels of let‑7a, let‑7e, miR‑7, ‑9, ‑15a, ‑17, ‑18a, 19b, 
‑21, ‑30b and ‑222 were decreased, and piR‑36743 was upregu-
lated. In the HS‑578T cell line, no alteration in the investigated 
ncRNA profiles was detected, except for the upregulation of 

piR‑36743. Paclitaxel treatment caused the downregulation 
of miR‑17 in BT‑474 cells compared with the intercept. All 
estimates of multivariable analysis, including CIs and P‑value 
are listed in Table SII.

Carboplatin. Treatment with carboplatin (2.0 µg/ml) did not 
influence ncRNA expression in this model (Table SII).

Intracellular vs. secreted microvesicular ncRNA expression 
levels. Focusing on the extracellular compartment, no conclu-
sions can be drawn from the observation of an increase in the 
relative levels of ncRNA expression under control conditions 
compared with the intracellular expression levels for all targets, 
which was mirrored by significantly increased estimates in 
multivariable analysis (Table SIII). This phenomenon cannot 
be explained by biological variation but is, at least in part, 
observed due to different normalisation methods in intra‑ and 
extracellular analysis.

The applied model of multivariable analysis allowed the 
estimation of the additional impact on ncRNA expression 
caused by three‑way interactions with the variables ‘chemo-
therapy’, ‘cell line’ and ‘extracellular compartment’. Most of 
these influences were observed in the BT‑474 cell line and 
were less frequent in the TNBC cell lines. Depending on the 
estimate, the aforementioned regulation of the expression 
of the ncRNAs will be increased (estimate >1) or alleviated 
(estimate <1; Table SIII). For the most part, the three‑way 
interactions attenuated the effects presented in Table SII. This 
was observed for miR‑15a, ‑17, ‑18a, ‑19b, ‑21, ‑30b, ‑320c and 
piR‑36743 following gemcitabine treatment, as well as for 
miR‑15a, ‑17, ‑30b, ‑320c and piR‑36743 following epirubicin 
treatment in BT‑474 cells. In the TNBC cell line HS‑578T, 

Figure 1. Chemotherapy‑driven ncRNA regulations in (triple negative) breast cancer cells. Relative expression levels (ΔΔCq) of ncRNAs in BT‑474, BT‑20, 
HS‑578T and MDA‑MB‑231 cells treated with 2.0 µg/ml carboplatin, 1.0 µg/ml epirubicin, 40.0 µg/ml gemcitabine and 2.0 µg/ml paclitaxel for 18 h as 
determined by reverse transcription‑quantitative PCR. Heatmaps demonstrate (A) intracellular expression levels normalised to the geometric mean of RNU‑44 
and ‑48, and (B) secreted microvesicular ncRNA levels normalised to the global mean of all investigated targets. Black squares indicate no reliably detectable 
ncRNA expression. ncRNAs, non‑coding RNAs; miR, microRNA; piR, PIWI‑interacting RNA; C, carboplatin; E, epirubicin; G, gemcitabine; P, paclitaxel.
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the three‑way interactions resulted in the opposite effects on 
miR‑18a, ‑21 and piR‑36743 following gemcitabine treatment. 
The same applied to miR‑21 and ‑222 following epirubicin 
treatment, and for miR‑17 and ‑19b following paclitaxel treat-
ment in MDA‑MB‑231 cells (Table SIII).

While lacking significance in the aforementioned 
observations, three‑way interaction influences estimated by 
multivariable analysis added to the effect of piR‑36743 upregu-
lation in HS‑578T cells following epirubicin treatment (1.310; 
P=0.208) by 2.662 (P=0.024). Similarly, let‑7a expression 
following gemcitabine treatment (0.929; P=0.760) decreased 
by 0.357 (P=0.036) in this cell line. Let‑7e expression (0.887; 
P=0.619) further decreased in the same context by 0.337 
(P=0.027). The reduced GlyCCC2 expression induced by 
paclitaxel treatment in MDA‑MB‑231 cells (0.772; P=0.372) 
was further decreased by a value of 0.277 (P=0.029). In 
BT‑474 cells, paclitaxel induced the downregulation of miR‑9 
(0.752; P=0.233), which was increased by 0.332 (P=0.023). 
These effects may indicate that let‑7a and ‑7e, and GlyCCC2 
may be promising liquid biomarker candidates depending on 
the administered chemotherapy (Table SIII). In the case of 
piR‑36743, three‑way interaction influences added to already 
significant findings as aforementioned. While the upregulation 
of piR‑36743 following paclitaxel treatment in HS‑578T cells 
(1.793; P=0.008) increased by 3.492 (P=0.004), piR‑36743 
increased in MDA‑MB‑231 cells (2.922; P<0.001) by 2.428 
(P=0.040; Table SIII).

Chemotherapy‑induced ncRNA regulation pattern. Several 
ncRNAs analysed in the present study showed a similar 
regulation pattern, especially in the intracellular analysis. This 
phenomenon was observed for miRNAs of the miR‑17~92 
cluster (miR‑17, ‑18a and ‑19b), and for miR‑15a and ‑30b 
(Figs. 2 and 3).

Markers of proliferation. Cyclin D1 mRNA expres-
sion levels reduced after treatment with epirubicin and 
gemcitabine (Fig.  4A). Multivariable analysis indicated 
a decrease in cyclin D1 expression levels in BT‑474 and 
HS‑578T cells (epirubicin, P<0.001 and P=0.010, respec-
tively), and in BT‑474, HS‑578T and MDA‑MB‑231 cells 
(gemcitabine, P=0.002, P<0.001 and P=0.016, respectively) 
compared with the intercept. A reduction was also observed 
in paclitaxel‑treated HS‑578T cells (P=0.007). Carboplatin 
did not inf luence cyclin D1 mRNA expression in this 
setting. All estimates of multivariable analysis, including 
CIs and P‑values are listed in Table SIV.

TOP2α mRNA levels were reduced following chemo-
therapy, except following carboplatin treatment in all the cell 
lines tested (Fig. 4B). P‑values, estimates and CIs are listed in 
Table SIV.

TPX2 mRNA level alterations were similar to those of 
cyclin D1, with reductions in expression caused by epiru-
bicin (BT‑20, HS‑578T and MDA‑MB‑231; P<0.001) and 
gemcitabine (all cell lines; P<0.001) treatment (Fig.  4C). 
Paclitaxel treatment reduced TPX2 levels in BT‑474 and 
MDA‑MB‑231 cells (P<0.001), but increased TPX2 expression 
in HS‑578T cells (P=0.001; Table SIV).

While epirubicin treatment induced differential regula-
tion of DDX5 and ‑17 mRNA levels, DDX17 was regulated 

in a similar manner as the miR‑17~92 cluster (Figs. 2 and 5). 
Specifically, DDX5 mRNA was upregulated by epirubicin 
compared with the intercept (BT‑20 and MDA‑MB‑231, 
P<0.001) and downregulated in BT‑474 by gemcitabine 
(P=0.034). By contrast, DDX17 mRNA was downregulated 
following epirubicin treatment in all the cell lines tested 
(all P<0.001). Downregulation was also observed following 
gemcitabine treatment in BT‑20, BT‑474, HS‑578T (P<0.001) 
and MDA‑MB‑231 cells (P=0.049), as well as by paclitaxel in 
MDA‑MB‑231cells (P=0.006; Table SIV).

At the protein level, cyclin D1 was detected at a molecular 
weight of ~65 kDa. This immunoprecipitated protein may repre-
sent a ubiquitylated form of cyclin D1 and was detected in all 
investigated cell lines. The expression of cyclin D1 in HS‑578T 
cells, however, was present at modest levels. Compared with 
the control conditions, no regulation of cyclin D1 was observed, 
except for a modest reduction caused by epirubicin treatment 
in MDA‑MB‑231 cells (Fig. 6A). Western blotting revealed 
differential DDX5 regulation following epirubicin treatment 
at the protein level compared with mRNA regulation; DDX5 
was downregulated at the protein level. Following gemcitabine 
treatment, DDX5 protein levels also declined in BT‑474 and 
HS‑578T cells, while they declined in MDA‑MB‑231 cells 
following paclitaxel treatment. A reduced DDX17 protein 
level caused by epirubicin is consistent with reduced DDX17 
mRNA. In BT‑474 and BT‑20 cells, gemcitabine led to lower 
DDX17 protein expression; paclitaxel had the same effect in 
MDA‑MB‑231 cells (Fig. 6B and C).

In vivo pilot study. In serum, untreated patients with TNBC 
(t0) could be clearly distinguished from healthy controls by the 
expression levels of the vast majority of ncRNAs investigated, 
with the exception of miR‑222, ‑320c and piR‑36743 (Fig. 7). 
A two‑sample t‑test confirmed upregulated let‑7a (P=0.008, 
SE=0.662), ‑7e (P=0.005, SE=0.179) and miR‑21 (P=0.039, 
SE=4.090) expression levels in serum from patients with 
TNBC compared with the control group. Decreased expression 
was observed for miR‑15a (P=0.008, SE=0.154), ‑17 (P=0.023, 
SE=0.087), ‑18a (P=0.015, SE=0.015), ‑19b (P=0.002, 
SE=0.209), ‑30b (P<0.001, SE=0.031) and GlyCCC2 (P<0.001, 
SE=0.623) in TNBC. In urine, untreated patients with TNBC 
could be distinguished from healthy women by decreased levels 
of miR‑18a (P=0.021, SE=0.006), ‑19b (P=0.006, SE=0.159), 
‑30b (P=0.002, SE=0.484), ‑222 (P=0.001, SE=0.071), ‑320c 
(P<0.001, SE=0.087) and GlyCCC2 expression (P=0.001, 
SE=5.803; Fig. 8).

In the present study, no clear pattern was observed 
when dividing the TNBC group into early responder and 
non‑responder [early response as defined by the achievement 
of a clinical partial response (cPR) according to RECIST 
criteria (30) immediately prior to the third cycle of NACT]. 
Also, no association was observed regarding pCR as an 
outcome (data not shown). However, a trend was discovered 
in the serum of patients receiving a cCR during NACT 
(Fig. 9). In this respect, those patients (n=4) showed a different 
ncRNA regulation pattern immediately prior to the third 
cycle of NACT (t1) compared with patients (n=4) who did 
not achieve a cCR during NACT. A two‑tailed paired t‑test 
estimated a difference from t0 to t1 between the two groups 
in terms of serum expression of miR‑17 (P=0.029, SE=0.173), 
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‑19b (P=0.030, SE=0.282), ‑30b (P=0.011, SE=0.048) and 
piR‑36743 (P=0.028, SE=0.072). However, these results 
remain preliminary due the small sample size. By contrast, no 
specific pattern was detected within the TNBC group using 
the urine specimens. A general rise of ncRNA expression from 
t0 to t1 was evident (Fig. 10).

Discussion

The present study demonstrated that dysregulation of ncRNAs 
in TNBC cell lines, serum and urine can be induced by chemo-
therapy treatment. In vitro, the influences of chemotherapeutic 
treatment with epirubicin, gemcitabine and paclitaxel on the 
expression levels of a (TN)BC‑related ncRNA panel were 
evaluated. Even in the extracellular compartment, influences 
were detected, indicating the effects of chemotherapy‑driven 
ncRNA secretion. The expression profiles differed depending 
on cell line and cytostatic drug. In this in vitro model, epiru-
bicin caused the strongest effect on ncRNA regulation.

Except for miR‑7 and ‑9, the present study reliably detected 
all targets in microvesicles from liquid samples (conditioned 

cell culture media, serum and urine). As intracellularly, miR‑7 
and ‑9 resulted in distinct expression alterations caused by 
chemotherapy treatment, these ncRNAs may still be involved 
in therapy response mechanisms. Previous studies have 
demonstrated associations between BC therapy response, 
and the dysregulation of miR‑7 and ‑9 in cell lines and 
tissue (65‑68). However, these two miRNAs were not detect-
able in microvesicles of liquid samples in the present study, 
and cannot be recommended as suitable liquid biopsy marker 
candidates in this context.

ncRNA expression alterations occurred along with altered 
expression of cell cycle markers and, therefore, may be asso-
ciated with it. While epirubicin exhibited the most potent 
effects on ncRNA regulation, carboplatin treatment did not 
significantly influence ncRNA expression in the present study. 
This observation is consistent with the present findings on the 
influence of chemotherapeutic treatment on cell cycle deter-
minants. Cyclin D1, TOP2α and TPX2 were not influenced by 
carboplatin, indicating limitations of this in vitro model. All 
cells were treated with the chemotherapeutic agent for 18 h. 
Carboplatin may cause an inhibitory effect on cell proliferation, 

Figure 2. Expression profile of miR‑17~92 cluster miRNAs. Relative expression levels (ΔCq) of the miR‑17~92 cluster miRNAs (A) miR‑17, (B) ‑18a and 
(C) ‑19b in BT‑474, BT‑20, HS‑578T and MDA‑MB‑231 breast cancer cells treated with 2.0 µg/ml carboplatin, 1.0 µg/ml epirubicin, 40.0 µg/ml gemcitabine 
and 2.0 µg/ml paclitaxel for 18 h as determined by reverse transcription‑quantitative PCR. Data are normalised to the geometric mean of RNU‑44 and ‑48. 
Untreated cells served as the control. Boxplots indicate median (thick line), first and third quartile (box lines) and maximal/minimal value (upper and lower 
line). Y‑axis scaling can deviate to improve readability. miR/miRNA, microRNA; C, carboplatin; E, epirubicin; G, gemcitabine; P, paclitaxel; Ctrl, control.
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Figure 3. Chemotherapy‑driven regulation of miR‑15a and ‑30b in (triple negative) breast cancer cells. Relative expression levels (ΔCq) of (A) miR‑15a and 
(B) ‑30b in BT‑474, BT‑20, HS‑578T and MDA‑MB‑231 cells treated with 2.0 µg/ml carboplatin, 1.0 µg/ml epirubicin, 40.0 µg/ml gemcitabine and 2.0 µg/ml 
paclitaxel for 18 h, normalised to the geometric mean of RNU‑44 and ‑48, as determined by reverse transcription‑quantitative PCR. Untreated cells served 
as the control. Boxplots indicate median (thick line), first and third quartile (box lines) and maximal/minimal value (upper and lower line). Y‑axis scaling can 
deviate to improve readability. miR, microRNA; C, carboplatin; E, epirubicin; G, gemcitabine; P, paclitaxel; Ctrl, control.

Figure 4. Influence of chemotherapy treatment on cell cycle determinants in (triple negative) breast cancer cell lines. Relative mRNA expression levels (Δ Cq) 
of (A) cyclin D1, (B) TOP2α and (C) TPX2 in BT‑474, BT‑20, HS‑578T and MDA‑MB‑231 cells under control conditions, and treated with 2.0 µg/ml carbo-
platin, 1.0 µg/ml epirubicin, 40.0 µg/ml gemcitabine and 2.0 µg/ml paclitaxel for 18 h. Data are normalised to 5'‑aminolevulinate synthase 1 and values were 
determined by reverse transcription‑quantitative PCR. Boxplots indicate median (thick line), first and third quartile (box lines) and maximal/minimal value 
(upper and lower line). Y‑axis scaling can deviate to improve readability. TPX2, targeting protein for Xklp2; TOP2α, DNA topoisomerase 2α; C, carboplatin; 
E, epirubicin; G, gemcitabine; P, paclitaxel; Ctrl, control.
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and possibly affect ncRNA expression, when treatment time is 
prolonged (69‑72). In western blotting, cyclin D1 could not be 
detected in its native conformation, with a molecular weight 
of 37 kDa. However, the product detected was of 65 kDa, and 
may represent a dimer or a ubiquitylated form of cyclin D1. 
Cyclin D1 is degraded by ubiquitylation and the native protein 
possesses a short half‑life of <30 min (73,74).

Apart from carboplatin‑treated cells, mRNA expression 
of cell cycle determinants was reduced in most of the other 

samples as aforementioned. Epirubicin and gemcitabine treat-
ment impacted proliferation and led to ncRNA expression 
alterations.

DDX proteins, a family of RNA helicases, are dysregu-
lated in several types of cancer, including BC (75). Their 
cellular functions are highly context‑dependent and influ-
enced by posttranslational regulation  (75‑77). DDX5 and 
‑17 are closely related and part of multiprotein complexes. 
One function of these two proteins is oestrogen receptor‑α 

Figure 5. Influence of chemotherapy treatment on DDX proteins in (triple negative) breast cancer cell lines. Relative mRNA expression levels (ΔCq) of 
(A) DDX5 and (B) DDX17 in BT‑474, BT‑20, HS‑578T and MDA‑MB‑231 cells under control conditions, and treated with 2.0 µg/ml carboplatin, 1.0 µg/ml 
epirubicin, 40.0 µg/ml gemcitabine and 2.0 µg/ml paclitaxel for 18 h. Data are normalised to 5'‑aminolevulinate synthase 1. Values were determined using 
reverse transcription‑quantitative PCR. Boxplots indicate median (thick line), first and third quartile (box lines) and maximal/minimal value (upper and lower 
line). Y‑axis scaling can deviate to improve readability. DDX, DEAD‑box polypeptide; C, carboplatin; E, epirubicin; G, gemcitabine; P, paclitaxel; Ctrl, control.

Figure 6. Chemotherapy treatment influences DDX5 and ‑17 protein levels in (triple negative) breast cancer cells. Protein expression of (A) DDX5, (B) DDX17 
and (C) cyclin D1 in BT‑474, BT‑20, HS‑578T and MDA‑MB‑231 cells treated with 2.0 µg/ml carboplatin (lane 2), 1.0 µg/ml epirubicin (lane 3), 40.0 µg/ml 
gemcitabine (lane 4) and 2.0 µg/ml paclitaxel (lane 5) for 18 h, as determined by western blotting compared with untreated cells (lane 1). β‑actin and PCNA 
served as loading control. DDX, DEAD‑box polypeptide; PCNA, proliferating cell nuclear antigen.
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co‑activation, which may not play an important role in TNBC; 
however, the co‑activation of p53, RNA metabolism and 
processing may be of importance (75,78,79). Additionally, 
DDX proteins are involved in the processing of miRNAs (75). 
The interplay between DDX proteins and miRNA dysregula-
tion may be an important feature of TNBC. In the present 
study, it was found that DDX5 and ‑17 mRNA expression in 
TNBC cells was influenced by chemotherapy treatment. The 
mRNA and protein downregulation observed supports results 
from previous studies that described an inhibition of cancer 
cell proliferation when simultaneously depleting DDX5 and 
‑17 (80,81). The findings of the present study suggested an 
oncogenic function for these DDX proteins in TNBC cells. 
However, the mRNA upregulation of DDX5 triggered by 
epirubicin is of interest. As protein levels of DDX5 were 
reduced after epirubicin treatment, a feedback loop may be 
involved.

The widely studied miR‑17~92 cluster exerts oncogenic 
functions, with its members upregulated in several types of 
cancer, including TNBC (82‑84). Furthermore, the expression 
of miR‑17~92 varies in different BC subtypes  (85). In the 
present study, it was observed that miRNAs of the miR‑17~92 

cluster (miR‑17, ‑18a and ‑19b), as well as miR‑15a and ‑30b, 
were regulated in a similar manner; DDX17 mRNA displayed 
a similar expression profile to the miR‑17~92 cluster. The 
present study demonstrates that the expression levels of 
miR‑17~92 cluster miRNAs, and miR‑15a and ‑30b, were 
reduced by epirubicin, gemcitabine and paclitaxel treatment in 
the in vitro cell models. It was also found that the miR‑17~92 
cluster miRNA expression levels were reduced in serum 
and urine samples from patients with TNBC compared with 
healthy controls.

piR‑36743 was of interest due to the chemotherapy‑driven 
expression alterations found in the in vitro models. piR‑36743 
was upregulated, while most of the other investigated ncRNAs 
experienced chemotherapy‑dependent downregulation. The 
functional background of piR‑36743 remains poorly under-
stood. Hashim et al (86) found that piR‑36743 (also known as 
DQ598677) was upregulated in BC biopsies compared with 
healthy breast tissue.

The present in  vivo study found a clear liquid biopsy 
biomarker‑based distinction between patients with TNBC and 
healthy controls. Serum and urine samples allowed patients 
with TNBC to be distinguished from healthy women. ncRNA 

Figure 7. ncRNA expression in serum distinguishes patients with TNBC from controls. Relative expression levels (ΔCq) of microvesicular ncRNAs (let‑7a/e, 
miR‑15a, ‑17, ‑18a,‑19b, ‑21, ‑30b, ‑222 and ‑320c, piR‑36743 and GlyCCC2) in the serum of 8 patients with TNBC and 10 healthy controls, normalised to 
the geometric mean of miR‑26b and ‑191, as determined by reverse transcription‑quantitative PCR. Let‑7a/e and miR‑21 expression levels were increased in 
patients with TNBC compared to controls (two‑tailed t‑test; P<0.05). miR‑15a, ‑17, ‑18a, ‑19b, ‑30b and GlyCCC2 were decreased. Boxplots indicate median 
(thick line), first and third quartile (box lines), maximal/minimal value (upper and lower line) and ˚ (moderate outlier). Y‑axis scaling can deviate to improve 
readability. ncRNAs, non‑coding RNAs; miR, microRNA; TNBC, triple negative breast cancer; piR, PIWI‑interacting RNA; Ctrl, control.
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dysregulation in TNBC was directed almost uniformly in both 
serum and urine specimens.

The comparison of microvesicular ncRNA expression 
levels in the urine and serum of patients with TNBC prior 
to NACT and immediately prior to the third cycle of therapy 
provided preliminary results. Urinary ncRNA expression 
showed a general increase from t0 to t1, except for let‑7a/e and 
miR‑17. This observation may be explained by the general 
effects of treatment or other factors. In serum, a different 
picture was observed. To evaluate the ncRNA panel for their 
liquid biopsy biomarker potential in TNBC therapy response 
evaluation, patients undergoing NACT were divided into 
a (early) responder and non‑responder group. However, it is 
emphasised that due to a small sample size (8 patients with 
TNBC), the present study only provided a preliminary result 
in this respect. As aforementioned, in an attempt to visualize 
ncRNA differences in the serum of patients with TNBC from t0 

to t1 of NACT, no clear pattern could be distinguished between 
the early responders and non‑responders, and no association 
with the achievement of a pCR could be drawn. However, 
larger cohorts may shed further light on this issue and should 
be analysed to further investigate this question. It is hoped that 

the investigated ncRNA types of the present study may act as 
potential minimally‑invasive biomarkers to indicate therapy 
response in TNBC. This hypothesis is supported as different 
ncRNA regulation was identified in the serum of patients 
with TNBC who achieved a cCR during NACT compared 
with those who did not. Therefore, the involvement of these 
ncRNAs in TNBC is likely. However, the small patient number 
in this pilot study is a limitation. Only studies using bigger 
cohorts can clarify if this ncRNA panel may serve as a liquid 
biopsy tool in predicting therapy response.

To date, few studies have been published connecting 
serum‑based ncRNAs to the response of patients with BC to 
NACT. Liu et al (87) reported reduced miR‑125b expression 
levels in responding vs. non‑responding patients with BC 
before, during and after NACT. Additionally, miR‑21 expres-
sion decreased throughout NACT in responding patients. 
Furthermore, Gu et al (88) reported that lower miR‑451 expres-
sion in serum was associated with the resistance of patients 
with BC to NACT. Supporting this, Al‑Khanbashi et al (89) 
reported an association between elevated serum levels of 
miR‑451, and improved clinical and pathological response to 
NACT of locally advanced BC.

Figure 8. ncRNA expression in urine can distinguish patients with TNBC from controls. Relative expression levels (ΔCq) of microvesicular ncRNAs (let‑7a/e, 
miR‑15a, ‑17, ‑18a, ‑19b, ‑21, ‑30b, ‑222 and ‑320c, piR‑36743 and GlyCCC2) in the urine of 8 patients with TNBC and 10 healthy controls, normalised to the 
geometric mean of miR‑16 and ‑26b, as determined by reverse transcription‑quantitative PCR. miR‑18a, ‑19b, ‑30b, ‑222 and ‑320c, and GlyCCC2 expression 
levels were decreased in patients with TNBC compared to controls (two‑tailed t‑test; P<0.05). Boxplots indicate median (thick line), first and third quartile (box 
lines), maximal/minimal value (upper and lower line) and ˚ (moderate outlier). Y‑axis scaling can deviate to improve readability. ncRNA, non‑coding RNA; 
TNBC, triple negative breast cancer; miR, microRNA; piR, PIWI‑interacting RNA; Ctrl, control.
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In the present study, expression analysis was conducted 
using relative quantification. As each experimental setup 
requires the evaluation of the most suitable reference genes, 
an individual normalisation for each matrix was conducted. 
As aforementioned, intracellular ncRNA expression was 

normalised to the geometric mean of RNU44 and ‑48, while 
microvesicular ncRNA in conditioned cell culture media 
was normalised to the global mean. In serum, miR‑26b and 
‑191 served as endogenous controls and in urine, miR‑16 and 
‑26b were used as endogenous controls. The most suitable 
endogenous controls were assessed using the BestKeeper 
software tool (55). However, different normalisation strategies 
can complicate the comparability of results. Nevertheless, it 
is essential to choose an appropriate normalisation approach 
according to each experiment.

Different sample matrices can represent different 
physiological and pathophysiological processes. Precise 
TNBC‑related ncRNA expression profiles can be obtained 
from tumour tissue; however, sample acquisition remains 
invasive. TNBC cells can serve as a model for tumour tissue. 
In the case of liquid biopsies, specimens derived from the 
blood (for example, serum), an altered ncRNA profile could 
result from tumour‑derived and secreted ncRNAs. However, 
dysregulated ncRNAs may originate from other malignant 
or non‑malignant cells, or may originate from an immune 
response to the tumour. The latter may indirectly indicate 
the existence of a malignancy. Immune cells constitutively 
release exosomes, which can carry ncRNAs (90). Urine‑based 
ncRNAs are further away still from the tumour site. It is 
assumed that urine‑based altered ncRNA levels originate 
directly from tumour tissue and undergo glomerular filtra-
tion by the kidneys after secretion into the circulation. In this 
manner, ncRNAs may be found in urine. Similarly to serum 
specimens, urine‑based ncRNAs may also be secreted by 
immune cells. Furthermore, ncRNAs can enter urine from 
the cells of the urinary tract (91).

The present study detected chemotherapy‑driven expres-
sion alterations of a (TN)BC‑related panel of ncRNAs in vitro. 
Furthermore, the vast majority of this panel was detectable in 

Figure 9. NACT influences ncRNA expression in the serum of patients with TNBC. Relative expression levels (ΔCq) of microvesicular ncRNAs (miR‑17, ‑19b. 
‑30b and piR‑36743) in the serum of 4 patients with TNBC who achieved a cCR during NACT and 4 patients with TNBC who did not (no cCR), normalised 
to the geometric mean of miR‑26b and ‑191, as determined by reverse transcription‑quantitative PCR. Samples were taken at two time points: t0 and t1. Y‑axis 
scaling can deviate to improve readability. ncRNA, non‑coding RNA; TNBC, triple negative breast cancer; miR, microRNA; cCR, clinical complete response; 
NACT, neoadjuvant chemotherapy; piR, PIWI‑interacting RNA; t0, prior to NACT; t1, immediately prior to the third cycle of therapy.

Figure 10. NACT influences ncRNA expression in the urine of patients with 
TNBC. Relative expression levels (ΔCq) of microvesicular ncRNAs in the 
urine of 8 patients with TNBC during NACT, normalised to the geometric 
mean of miR‑16 and ‑26b, as determined by reverse transcription‑quantita-
tive PCR. Heatmap demonstrates fold change of ncRNA expression levels 
from t0 to t1. Black squares indicate no reliably detectable ncRNA expres-
sion. ncRNA, non‑coding RNA; TNBC, triple negative breast cancer; miR, 
microRNA; cCR, clinical complete response; NACT, neoadjuvant chemo-
therapy; piR, PIWI‑interacting RNA; t0, prior to NACT; t1, immediately prior 
to third cycle of therapy.
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serum and urine specimens, and could be used to discriminate 
between patients with TNBC and healthy controls. Results 
regarding the eligibility of this panel in predicting therapy 
response in vivo remain preliminary due to the small sample 
size. The liquid biopsy potential of the investigated ncRNAs in 
the evaluation of the response of patients with TNBC to NACT 
should be further investigated in larger cohorts.
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