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Abstract. Glutathione S-transferase Pi (GSTP1) is an 
isozyme encoded by the GST pi gene that plays an important 
regulatory role in detoxification, anti‑oxidative damage, and 
the occurrence of various diseases. The aim of the present 
study was to review the association between the expression 
of GSTP1 and the development and treatment of various 
cancers, and discuss GSTP1 methylation in several malignant 
tumors, such as prostate, breast and lung cancer, as well as 
hepatocellular carcinoma; to review the association between 
polymorphism of the GSTP1 gene and various diseases; and 
to review the effects of GSTP1 on electrophilic oxidative 
stress, cell signal transduction, and the regulation of carcino-
genic factors. Collectively, GSTP1 plays a major role in the 
development of various diseases.
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1. GST family: Multifunctional enzymes involved in 
oxidative stress, poisoning, and cancer

The glutathione-S transferase (GST) family consists of a 
group of isoenzymes involved in phase II detoxification of 
xenobiotics by glutathione conjugation (1,2). It is widely 
found in nematodes, fruit flies, yeast, and the cytoplasm of 
higher vertebrates. Studies have shown that soluble GST 
accounts for 4% of total soluble protein in human and rodent 
livers (3). Three major protein subfamilies have been reported 
to exhibit glutathione transferase activity: Cytoplasmic, mito-
chondrial and microsomal GSTs (4,5). Microsomal GSTs are 
membrane-associated proteins in eicosanoid and glutathione 
metabolism (6,7). Cytoplasmic GSTs are the largest subfamily 
of these transferases and have unique activities. They catalyze 
the thiolysis of 4-nitrophenyl acetate, exhibit thiol transferase 
activity, reduce trinitroglycerin, dehydroascorbic acid and 
monomethyl decanoic acid, and catalyze ethyl maleate and 5-3 
isomerization of ketosteroids (8).

According to the similarity in amino acid sequences, 
different structures of genes, and immunological cross-reac-
tivity, GSTs are divided into seven subtypes (9) as follows: 
Alpha (α), pi (π), mu (μ), theta (θ), omega (ω), sigma (σ), and zeta 
(Table I). Among those, μ, θ and π are the most widely studied 
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GST subtypes in mammals (10). It is well known that μ-class 
glutathione S‑transferase 1 (GSTM1) plays an important role 
in the toxicity and effectiveness of medical drugs. GSTM10 
is the most common polymorphism, resulting in loss of enzy-
matic activity (11,12). Glutathione S‑transferase θ 1 (GSTT1) 
plays a role in human carcinogenesis (13). GSTM1‑null and 
GSTT1-null may contribute to the clinical course of patients 
with type 2 diabetes mellitus (T2DM) (14). GSTs interact 
with several factors, such as regulatory kinases, and modulate 
numerous pathways involved in cell proliferation, differentia-
tion and death. Previous studies have demonstrated that GST 
plays a major role in cancer cell proliferation and death via 
its cytoprotective and regulatory functions (15,16). GST 
enzymes also play an important role in detoxifying chemo-
therapy drugs (17). They may be used to detoxify oxidized 
or alkylated drugs directly by combining active compounds 
or drugs (18). In addition to their well‑characterized catalytic 
activity, there is evidence that GST isoenzymes also partici-
pate in regulating the expression of mitogen‑activated protein 
kinases, and promote S‑glutathionylation of cysteine residues 
in target proteins (19). In addition, genetic variants of GST 
have been reported to be involved in various fluorouracil‑ and 
platinum-based chemotherapies for the treatment of metastatic 
advanced cancers, such as acute myeloid leukemia (AML), 
gastrointestinal tumors, non-small cell lung cancer (NSCLC) 
and prostate cancer (PCa) (20,21). Therefore, it is clear that 
members of the GST family have a wide range of applications 
in detoxification and drug treatment.

2. GSTP1: A major regulator in the occurrence and 
development of cancer

GSTP1 is the most widely studied member of the GST 
family (22). The GSTP1 gene (π) is located on chromosome 
11q13. It consists of nine exons and is 3.2 kb in length, protects 
cells from carcinogens and cytotoxins, and was originally 
isolated from a cosmid library. The gene spans ~3 kb and 
is interrupted by six introns with regions around the 5'-end 
having high G + C and CpG content typical of HpaII micro-
fragment islands (23). In humans, GSTP1 usually consists of 
two identical dimeric subunits, each consisting of 210 amino 
acids and two binding sites, G and H. Different G and H sites 
with different amino acid residues in GST may play different 
roles. GSTP1 specifically binds to GSH or GSH analogs via 
the G site and catalyzes the interaction between GST amino 
acid residues and GSH thiols and conventional electrophiles 
at the H site (24). Therefore, G‑site modification generally 
contributes to the development of specific GSTP1 inhibitors.

GSTP1 has a wide range of physiological functions: It 
is involved in metabolism, detoxification and elimination of 
potentially genotoxic foreign complexes, metabolizes a variety 
of carcinogenic compounds, and protects cells against DNA 
damage and canceration. In the GST family, early studies 
demonstrated that the GSTP1 gene plays an important role in 
several cellular processes, including catalysis and deoxylation 
of electrophilic compounds, oxidative stress regulation, cell 
signaling and carcinogenesis (25,26). GSTP1 actively protects 
cells from carcinogens and electrophilic compounds (27,28). It 
has been suggested that GSTP1 also protects cells from oxidants 
and electrophilic‑mediated genomic damage (29). GSTP1 is 

involved in apoptosis resistance and metabolism of several 
chemotherapeutic agents. Platinum‑based drugs have been found 
to be metabolized by GSTP1, allowing GSTP1 to be expressed 
in ovarian tumors. Therefore, GSTP1 may be used as a target 
gene and candidate response biomarker for platinum‑based 
chemotherapy. In addition, GSTP1 plays a major role in the 
metabolism of cisplatin and carboplatin in ovarian cancer 
cells (30,31). Differences in expression of GSTP1 may affect 
the response of patients with ovarian cancer to platinum‑based 
chemotherapy (32). Taken together, the studies on changes 
in GSTP1 expression of tumor cells may contribute to the 
development of antitumor drugs. GSTP1 appears hold promise 
in drug development, and the GSTP1 gene is involved in the 
regulation of activator proteins. It plays an important role in the 
regulation of tumor necrosis factor. Both activator protein 1 and 
nuclear factor (NF)-κB mediate regulation of GSTP through a 
redox process (33). A chimeric inhibitor that binds the affinity 
recognition moiety to a chelated transition metal has been 
explored to develop metal‑mediated affinity reagents or drugs 
for hGSTP1‑1 (34). GSTP1 is also a key regulator of hepatocyte 
proliferation during the initial stages of liver regeneration (35). 
The -323/‑314 sequence located in the GSTP1 promoter binds to 
NF-κBp50/65 and p65/p65 dimers, and is involved in the regula-
tion of this gene by tumor necrosis factor α (36‑38). The GSTP1 
gene (OMIM 134660) encoding the π-GST partial GSTP1-1 
protein is widely expressed in most tissues, particularly in 
the lungs, esophagus and placenta (39). Ubiquitous epigenetic 
silencing of GSTP1 in PCa leads to increased survival and accu-
mulation of potential priming DNA conjugates after exposure to 
long‑term oxidative damage, suggesting that GSTP1 has protec-
tive and antitumor functions (40). As mentioned above, GSTP1 
has important physiological functions in the detoxification and 
antioxidation of metabolites.

GSTP1 not only has important physiological functions, but 
also major pathological functions. GSTP1 is closely associ-
ated with exposure to low doses of ionizing radiation, heavy 
metals, and other chemicals (Table II). Manganese (Mn) has 
been shown to be a naturally occurring trace element that is 
essential for human health and development, but is neurotoxic 
at high concentrations (41,42). Studies have shown a possible 
synergistic effect between the blood Mn concentration and 
GSTP1 in autism spectrum disorder (43). GSTP1 is induced 
by lead and may be used as a biomarker for lead exposure. It 
is only involved in the changes during the later stages of lead 
poisoning (44,45). Previous studies have found that arsenic 
compounds are useful as drugs, but have toxic effects, and 
GSTP1 is a major factor in resistance to these drugs (46,47). 
GSTP1 detoxifies arsenic‑based drugs by isolating the active 
site and dimer interface, reacting with cysteine in the pres-
ence of sufficient GSH under low GSH conditions (48,49). 
GSTP1 also reduces the retention time of As2O3 in the cells. 
Catabolism of H2O2 reduces the amount of H2O2 in the 
cells, thereby blocking apoptosis of lymphoma cells induced 
by As2O3 (50). In addition, GSTP1 may participate in the 
elimination of carcinogens in tobacco and participates in the 
occurrence of smoking‑related lung adenocarcinoma. GSTP1 
plays a role in the elimination of toxic substances from ciga-
rette smoke in both normal lung and cancer cells (51). GSTP1 
is also involved in the detoxification process of benzo(a)pyrene 
(BaP), which excretes the conjugates of BaP metabolism and 
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detoxification (52). It is also involved in the protection of 
cells against 222Rn‑induced DNA damage (53). GSTP1 also 
blocks lipopolysaccharide (LPS) ‑induced overproduction of 
proinflammatory factors and has anti‑inflammatory effects on 
the LPS response (54). Therefore, as a detoxifying enzyme, 
GSTP1 plays an important role in the detoxification of heavy 
metals and may facilitate exploring metal‑mediated affinity 
drugs. GSTP1 is also closely associated with radiation damage. 
Our previous studies indicated that GSTP1 is involved in the 
radiation‑induced stress response of liver tissue in C57BL/6J 
mice and it may be used as a biomarker of low‑dose radiation 
for early identification of radiation contamination. Therefore, 

the mechanism of GSTP1 in the radiation-induced stress 
response is worthy of further investigation (55,56). Of note, 
the involvement of GSTP1 in the development of diseases 
is a complex process involving multiple steps and factors. 
GSTP1 is a key regulator in the occurrence and development 
of multiple cancer types.

3. Expression of GSTP1: A factor involved in the 
development of multiple cancer types

There is a close association between GSTP1 expression and 
tumor development. In several tumor tissues, >90% of active 

Table I. Classification of members of the GST family.

Class Gene Chromosome location Gene size, kb  Protein size (AA) Primary location Refs.

Alpha GSTA1  12.53  Liver, kidneys (9)
 GSTA2  13.48  Liver 
 GSTA3 6p12.2 13.16 222 Adrenal 
 GSTA4  17.43  Adrenal, skin 
 GSTA5  14.44  Liver, kidneys 
Mu GSTM1  21.14 218 Liver, ovary (10,11)
 GSTM2  41.53 218 Ovary, skin 
 GSTM3 1p13.3 7.1 225 Testes, kidneys 
 GSTM4  18.76 218 Duodenum, intestine 
 GSTM5  63.66 218 Ovary, gallbladder 
Omega GSTO 10q25.1 32.1 241 Liver, heart (9)
Pi GSTP1 11q13 3.06 210 Esophagus, thyroid (9)
Theta GSTT1 22q11.23 8.18 240 Gastric tissues   (13)
 GSTT2  3.88 244 Adrenal, skin 
Zeta GSTZ1 14q24.3 10.71 216 Liver, testes (9)
Kappa GSTK1 7q34 26.76 226 Duodenum, small Intestine (9)

GST, glutathione S‑transferase.

Table II. Related mechanism of GSTP1 in pathological functions.

Exposure or irradiation Related mechanism Refs.

Heavy metals
  Manganese Cooperate with blood Mn concentration in Autism Spectrum Disorder (41,42)
  Lead Serves as a biomarker of lead exposure (44,45)
  Arsenic Blocks arsenic trioxide‑induced apoptosis in lymphoma cells (46,47)
Ionizing radiation
  137Cs Stress response induced by low‑dose irradiation in mouse liver (55,56)
  222Rn Protects cells from DNA damage (53)
Other  
  Smoking Is involved in the occurrence of smoking‑related lung adenocarcinoma (51)
  Tobacco Participates in the elimination of carcinogens in tobacco  (51)
  BaP Involved in the detoxification process of BaP (52)

BaP, benzo(a)pyrene.
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GSTs is GSTP1 (57). Therefore, the difference in expression 
of GSTP1 in diseases such as tumors has attracted signifi-
cant attention. Compared with normal tissues, the difference 
in GSTP1 expression is associated with multiple diseases 
(Table III). GSTP1 is highly expressed in various types of 
cancer and preneoplastic legions, such as colorectal, esopha-
geal, lung, bladder, thyroid and breast cancer (58,59). GSTP1 
is overexpressed at various stages of colorectal cancer, from 
abnormal crypt foci to advanced cancer (8,60). GSTP1 may 
be used as a clinically useful target for anti-colon cancer 
drugs (61). High expression of GSTP1 in esophageal cancer 
tissues may reduce the chemosensitivity of cancer cells (62,63). 
Increased expression of GSTP1 in bladder transitional cell 
carcinoma is associated with altered apoptotic pathways (64). 
Upregulation of GSTP1 expression contributes to an increase 
in the antioxidant capacity of bladder transitional cell carci-
noma cells (65,66). High expression of GSTP1 plays a role 
in tumor growth and carcinogenesis of papillary thyroid 
cancer (67). Moreover, high expression of GSTP1 confers 
resistance of breast cancer cells to adriamycin by promoting 
autophagy (68). In addition, overexpression of GSTP1 inhibits 
the proliferation of HepG2 and Huh7 liver cancer (69). GSTP1 
and multidrug resistance protein 1 (MRP1) are overexpressed 
in malignant melanoma. GSTP1 acts together with MRP1 
to protect melanoma cells against the toxic effects of etopo-
side (70).

It is interesting that miRNAs regulate GSTP1, particu-
larly in relation to human diseases. miR‑133b overexpression 
contributes to the suppression of malignant growth and aggres-
siveness of cisplatin‑resistant NSCLC cells by targeting 
GSTP1 (71). miRNA‑130b may be involved in the develop-
ment of drug resistance of ovarian cancer by regulating 
the expression level of the GSTP1 protein (72). Similarly, 
miR-133a directly regulates the GSTP1 gene in bladder cancer 
(BC) and mediates GSTP1-mediated anti-apoptotic effects by 
downregulation of miR‑133a in human BC (73). There are also 
data suggesting that miR-133α in head and neck squamous 
cell carcinoma (HNSCC) regulates the carcinogenic effects of 
GSTP1, thereby providing new insights into the mechanisms 

underlying HNSCC carcinogenesis (74). Downregulation of 
GSTP1 may facilitate the function of miR-124 in doxorubicin 
resistance and enable the development of new treatments 
to overcome chemoresistance in colorectal cancer (CRC) 
patients (75). miR‑513a‑3p sensitizes human lung adenocarci-
noma cells to cisplatin by regulating GSTP1 (76). Therefore, 
the regulation of GSTP1 by miRNA is crucial in several 
human diseases.

The expression of GSTP1 in tumors is low; for example, 
its expression in PCa is low, and downregulation of GSTP1 
expression may play an important role in the progression of 
PCa (77). Downregulation of GSTP1 expression in PCa may 
be a useful biomarker for early detection and prognosis (78). 
Loss of GSTP1 expression in human PCa cells increases their 
susceptibility to oxidative stress‑induced DNA damage and 
may be an important target for primary prevention of PCa (79). 
In certain diseases, the expression of GSTP1 may also play a 
regulatory and predictive role. GSTP1 expression may predict 
the pathological response to 5‑fluorouracil/epirubicin/cyclo-
phosphamide in estrogen receptor (ER)‑negative tumors (80). 
The difference in the expression of GSTP1 is associated with 
multiple diseases and plays an important role in prediction and 
treatment.

4. GSTP1 methylation: A tissue biomarker that performs 
well in several types of malignancies

The promoter region of the GSTP1 gene is usually affected 
by methylation, and changes in methylation status suppress 
normal gene expression, which may lead to weakening or 
loss of its detoxification and antioxidant functions. In several 
cancer types, the GSTP1 gene is affected by hypermeth-
ylation. GSTP1 is a major tissue biomarker that performs 
well in several types of malignancies, such as PCa, breast 
and lung cancer, and hepatocellular carcinoma (HCC) (81). 
GSTP1 methylation has been found to be associated with the 
development of several diseases (Fig. 1). Recent research has 
confirmed that hypermethylation of GSTP1 inactivates the 
GSTP1 gene and plays a major role in liver cancer. It may 

Table III. Differences in the expression of GSTP1 are involved in the development of various types of cancer.

GSTP1 expression Disease Function Refs.

Upregulation Colorectal cancer A clinically useful biomarker of colon cancer (8,60)
  and a target for anti-colon cancer drugs
 Esophageal cancer Reduces the chemosensitivity of cancer cells  (62,63)
 Thyroid cancer Involved in carcinogenesis and growth of papillary thyroid cancer (69)
 Breast cancer Promotes autophagy resistance to ADR in breast cancer cells (65)
 Non‑small cell lung cancer Inhibition of malignant growth and invasiveness of (64)
  cisplatin-resistant NSCLC cells
 TCC Contributes to increase in antioxidant capacity in TCC (67,68)
 HCC Inhibits the proliferation of HCC cells (71)
 Malignant melanoma Protects melanoma cells from toxic effects of etoposide (72)
Downregulation Prostate cancer A useful biomarker for early detection and prognosis (74)

TCC, transitional cell carcinoma; HCC, hepatocellular carcinoma; ADR, adriamycin.
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increase the risk of HCC, and is also significantly associated 
with a poor prognosis of patients with HCC (82,83). It has been 
reported that hypermethylation of the GSTP1 gene promoter 
region may be a potential biomarker for distinguishing HCC 
from other liver diseases (84). Of note, methylation of the 
GSTP1 gene promoter may be associated with the invasive-
ness of HCC. Chronic hepatitis B virus infection may be 
responsible for inactivation of p16 induced by GSTP1 meth-
ylation (85). GSTP1 methylation is associated with oxidative 
stress‑induced liver injury in acute‑chronic hepatitis B liver 
failure. Abnormal methylation of the GSTP1 promoter is also 
present in acute‑chronic hepatitis B liver failure and may have 
a high predictive value for short‑term mortality. Therefore, 
GSTP1 may be a potential prognostic indicator of acute hepa-
titis B‑related acute liver failure (86). GSTP1 methylation has 
a strong influence on liver‑related diseases and may play a role 
in the treatment of liver‑related diseases. GSTP1 methylation 
is associated with the recurrence and prognosis of PCa, and 
may be a potential epigenetic marker (87‑92). Similar to PCa, 
GSTP1 hypermethylation also occurs in early events of breast 
cancer (93). The heterogenous DNA methylation pattern in 
the GSTP1 promoter is a major obstacle for DNA methyla-
tion analysis of the GSTP1 gene, which explains some of the 
contradictory differences in the role of GSTP1 promoter meth-
ylation in breast cancer (94). Although previous studies have 
shown no clear correlation between the GSTP1 status and the 
clinicopathological characteristics of PCa, GSTP1 methylation 
is associated with a more aggressive ER‑positive breast cancer 
phenotype (95). Furthermore, GSTP1 methylation is associ-
ated with ER positivity (96‑98). GSTP1 methylation was found 
to be correlated with the clinicopathological characteristics of 
breast cancer (99). Therefore, GSTP1 methylation is important 
for breast cancer research. The frequency of GSTP1 methyla-

tion in cancer tissues of patients with NSCLC ranges from 0 
to 25%, while lower or no methylation is observed in adjacent 
benign tissues (100‑105). Abnormal methylation of GSTP1 
may contribute to the carcinogenesis of neuroblastoma and 
may be used as a new marker (106). In addition, in acromegaly, 
methylation of the GSTP1 gene is associated with resistance 
to treatment with somatostatin analogues (107). Therefore, 
GSTP1 methylation appears to play a key role in numerous 
diseases.

5. GSTP1 polymorphism: A potential biomarker for 
cancer risk

It has been demonstrated that GSTP1 enzymatic activity is 
strongly dependent on a single-nucleotide polymorphism, 
the A313 G polymorphism, which replaces isoleucine (Ile) 
with valine (Val) at the 105 amino acid position (Ile105Val) 
(IE), producing three GSTP1 genotypes: Ile/Ile homozygous 
wildtype, Ile/Val heterozygotes, and Val/Val homozygous 
variants (108,109). Genetic polymorphism of GSTP1 is associ-
ated with several cancer types. The genetic polymorphism of 
GSTP1 may be associated with the detoxification of polycyclic 
aromatic hydrocarbons in cigarette smoke and exhibits the 
highest expression in lung tissue (110,111). In the Chinese 
population, the GSTP1 Ile105Val polymorphism may increase 
the risk of lung cancer (112‑114). Furthermore, GSTP1 exon 5 
polymorphism is associated with lung cancer susceptibility. 
Stratified analysis has revealed a correlation between the 
GSTP1 exon 5 gene polymorphism and the risk of lung 
squamous cell carcinoma (115). GSTP1 genotyping may help 
identify patients at higher risk of developing anti‑tuberculosis 
treatment‑related hepatotoxicity (114,116). GSTP1 gene poly-
morphism may also be used as an independent prognostic 

Figure 1. GSTP1 methylation is associated with the development of numerous diseases. GSTP1, glutathione S‑transferase Pi.
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marker for patients with HCC (117). GSTP1 Ile105Val may 
be associated with an increased risk of CRC (118,116). The 
Ile105Val polymorphism of the GSTP1 gene may also have 
a genetic effect on the occurrence of skin cancer (119,120). 

The GSTP1 polymorphism has been shown to be a potential 
biomarker for PCa risk (121,122). The GSTP1 Ile105Val 
polymorphism may also be associated with the risk of gastric 
cancer (123,124), and the GSTP1 Val allele appears to reduce 

Table IV. Related mechanism of action of GSTP1 gene polymorphism in various diseases.

Tissue/Cell GSTP1 polymorphism Disease Related mechanism Refs.

Cancer or tumor GSTP1 exon 5 Lung cancer Increased lung cancer susceptibility (111)
 polymorphism   
 GSTP1 Ile105Val Colorectal cancer Increased risk of colorectal cancer (114,115)
 GSTP1 Ile105Val Skin cancer Genetic contribution to (116,117)
   the development of skin cancer 
 GSTP1*B Prostate cancer Biomarker of prostate cancer risk (116,118)
 GSTP1*C   
 GSTP1 Ile105Val Gastric cancer Reduces the risk for premalignant lesions (119,120)
 GSTP1: rs4147581 Hepatocellular Independent prognostic (114)
 genotypes carcinoma marker for HCC patients 
 GSTP1 rs1695 GG Osteosarcoma Affects prognosis of osteosarcoma (124,125)
 genotype  patients receiving chemotherapy 
 GSTP1 Val/Val genotype Oral squamous cell Affects the risk of (128)
  carcinoma developing oral squamous cell carcinoma 
 GSTP1 gene I105V Leukemia Affects the risk of developing leukemia (130)
Other diseases GSTP1 Ile105Val Type 2 diabetes Affects the risk of (136,137)
  mellitus developing type 2 diabetes mellitus 
 GSTP1 A114V Motor neuron disease Affects the risk of motor neuron disease (140)
 GSTP1 A114V Chronic kidney disease Affects the incidence of (141,142)
   chronic kidney disease 

Figure 2. GSTP1 is involved in endogenous regulation of cellular signaling pathways. GSTP1, glutathione S‑transferase Pi.
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the risk of premalignant lesions (125,126). An interesting 
finding is that the GSTP1 *C variant may exert protective 
effects against pancreatic cancer in the elderly (127). It has 
been demonstrated that GSTP1 is associated with response to 
chemotherapy, PFS and OS in patients with osteosarcoma, and 
GSTP1 polymorphism may help design individualized treat-
ments (128,129). GSTP1 gene polymorphism may also play 
an important role in the prognosis of osteosarcoma patients 
treated with chemotherapy (130,131). In addition, GSTP1 
gene polymorphism is associated with risk of oral SCC (132). 
The GSTP1 codon 105 polymorphism may play a major role 
in leukemia by altering the protein function and reducing its 
ability to detoxify certain mutagens and carcinogens, which 
may result in increased DNA damage and mutations that 
increase cancer risk (133). An individual with at least one Val 
allele at codon 105 of the GSTP1 enzyme may be susceptible 
to cancer. Following cytotoxic chemotherapy, the Val allele at 
GSTP1 codon 105 may result in treatment‑related AML (134). 
It has been reported that GSTP1 polymorphism is important for 
the development of AML and the formation of AML‑specific 
chromosomal abnormalities (135,136). Variant genotypes of 
the GSTP1 Ile105Val gene polymorphism may contribute to 
the risk of chronic myelogenous leukemia (137‑139). Therefore, 
GSTP1 gene polymorphism may contribute to the treatment of 
leukemia.

GSTP1 gene polymorphism is not only involved in the 
development of cancer, but is also associated with a number 
of other diseases (Table IV). Diabetic neuropathy is a common 
complication of T2DM, and GSTP1 gene polymorphism may 
contribute to the development of T2DM (140,141). There is no 
clinical proof that GSTP1 IIe105Val polymorphisms affect 
the risk of gestational diabetes mellitus in a Chinese popula-
tion (142). A significant correlation has been found between 
the GSTP1 (105) Ile/(105)Ile genotype and the development 
of grade ≥2 docetaxel (taxotere)‑induced peripheral neurop-
athy (143). It has been demonstrated that the presence of the 
GSTP1 A114V rather than the I105V variant increases the 
risk of motor neuron disease (MND). Moreover, the combi-
nation of GSTP1 polymorphisms in codons 105 and 114 may 
result in protective reduction in the toxicity of electrophilic 
compounds to organic and inorganic hydrogen peroxides in 
MND patients (144). GSTP1 polymorphism plays a role in 
the incidence of chronic kidney disease and is associated 
with higher numbers of micronuclei (145,146). The GSTP1 
Ile105Val genotype may affect the excretion and metabolism 
of inorganic arsenic (147). Furthermore, changes in GSTP1 
may affect the risk of non‑photo‑induced drug eruptions (148). 
It has been found that the GSTP1 Ile105Val polymorphism is 
also associated with inter‑individual variations in urinary and 
blood arsenic levels (132). Thus, GSTP1 gene polymorphism is 
closely associated with various diseases and may prove to be 
helpful for the development of therapeutic drugs.

6. GSTP1: A key factor involved in complex processes 
mediated by multiple signals

GSTP1 may mediate the storage and transport mechanisms 
of gases and react with some compounds. Nitric oxide 
(NO) plays an important role in cell signaling, blood pres-
sure, coagulation, and tumor cell killing. A novel GSTP1 

and multidrug resistance protein 1-mediated NO storage 
and transport mechanism (MRP1/ABCC1) protects an 
M1‑macrophage model from the effect of NO (149‑153). 
GSTP1 also reduces the inducible NO synthase (iNOS) 
protein level. GSTP1 regulates iNOS by affecting 
S‑nitrosylation, dimerization and stability (154). It is 
also associated with some chemicals in the human body, 
and 1-octyl-3-methylimidazolium bromide upregulates 
GSTP1 (155). The compound 4b (‘p‑cyano‑PABA/NO’) 
is more favorable for product distribution in the presence 
of GSTP1 (156). GSTP1 is also involved in endogenous 
regulation of cellular signaling pathways (Fig. 2). The c‑Jun 
N‑terminal kinase (JNK)‑mediated cell signaling pathway 
is endogenously regulated by protein-protein interactions 
with GSTP1 (157). It is believed that there is a direct 
interaction between the C‑terminus of JNK and GSTP1, 
and GSTP1 is considered to act as a key ligand‑binding 
protein that regulates the kinase pathway (158). GSTP1 
binds to mitogen‑activated protein kinase JNK and inhibits 
JNK downstream signaling (159). Epidermal growth factor 
receptor phosphorylation of GSTP1 enhances JNK signaling 
and provides a survival advantage for tumors (160). GSTP1 
acts as a direct inhibitor of JNK in vivo to regulate constitu-
tive expression of specific downstream molecular targets 
of the JNK signaling pathway (161). The mechanism of 
GSTP1 protection against serum depletion-induced cell 
death is mediated through an apoptosis signal-regulating 
kinase 1 (ASK1) pathway, ASK1‑MKK7‑JNK (162). There 
may also be a novel non‑enzymatic effect of GSTP, which 
plays an important role in the regulation of the classical 
ERα signaling pathway by modification of transcriptional 
cofactors, such as receptor interacting protein 140 (163). 
Increased levels of GSTP1 may be another mechanism 
regulating cyclin‑dependent kinase‑5 signaling, eliminating 
oxidative stress, and preventing neurodegeneration (164). 
Transcriptional activation of the GSTP1 gene is also regu-
lated by the Nrf2 pathway (165). GSTP1 plays an important 
role in the regulation of signal transduction. Therefore, 
GSTP1 may be involved in complex processes mediated by 
multiple factors and multiple signals.

7. Conclusion

As an important phase II detoxification enzyme, GSTP1 
is involved in the development and progression of various 
types of cancer. The expression, methylation and genetic 
polymorphisms of GSTP1 are closely associated with cancer. 
GSTP1 plays an important regulatory role in the metabolism, 
detoxification and elimination of potentially genotoxic foreign 
complexes. Therefore, GSTP1 may act as a critical regulator 
in the occurrence and development of multiple cancer types.
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