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Abstract. Gastric cancer (GC) is one of the most frequently 
diagnosed digestive malignancies and is the third leading cause 
of cancer‑associated death worldwide. Delayed diagnosis and 
poor prognosis indicate the urgent need for new therapeutic 
strategies. The success of chimeric antigen receptor (CAR) 
T‑cell therapy for chemotherapy‑refractory hematological 
malignancies has inspired the development of a similar strategy 
for GC treatment. Although using CAR T‑cells against GC is 
not without difficulty, results from preclinical studies remain 
encouraging. The current review summarizes relevant preclin-
ical studies and ongoing clinical trials for the use of CAR 
T‑cells for GC treatment and investigates possible toxicities, as 
well as current clinical experiences and emerging approaches. 
With a deeper understanding of the tumor microenvironment, 
novel target epitopes and scientific‑technical progress, the 
potential of CAR T‑cell therapy for GC is anticipated in the 
near future.
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1. Introduction

Immunotherapies utilize monoclonal antibodies (mAbs), immu-
nological checkpoint blockade (ICB) agents, cytokine‑induced 
killer cells, tumor‑infiltrating lymphocytes (TILs) and T‑cell 
receptors (TCRs). In recent years, the rapid development of 
immunotherapies has produced novel treatment options for 
many different types of cancer (1,2). The most attractive feature 
of tumor immunotherapy is the ability to control or elimi-
nate tumors by restarting and maintaining the tumor‑immune 
cycle in vivo, as well as stimulating and restoring the body's 
normal anti‑tumor immune response (3). However, in contrast to 
other adoptive cell transfer therapies, chimeric antigen receptor 
(CAR) T‑cells recognize tumor surface‑associated antigens 
directly, independent of the major histocompatibility complex 
(MHC) restriction (4). The use of anti‑CD19 CAR T‑cells for the 
treatment of chemotherapy‑refractory hematological malignant 
tumors has revealed encouraging results, including effective 
targeting, killing and persistence (5). Furthermore, its use has 
provided novel solutions for immune cell therapy, demonstrating 
the tremendous potential for the development and clinical appli-
cation of CAR T‑cell therapy (6,7). Significant improvements in 
the efficacy of CAR T‑cell therapy for hematological malignan-
cies have prompted its development for use in solid tumors (8).

Gastric cancer (GC) is one of the most frequently diag-
nosed digestive malignancies and is the third leading cause 
of cancer‑associated death worldwide (9). According to the 
CONCORD‑3 (10) statistical data of GC obtained from 62 
countries in 2010 to 2014 revealed that 29 countries exhib-
ited a 5‑year survival rate <30%, occupying 46% of all 
countries studied. Furthermore, existing conventional treat-
ments, including surgery, chemotherapy and radiotherapy, 
have limited efficacy in GC; thus, there is an urgent need 
for novel therapeutic strategies. In contrast to TCR and 
ICB immunotherapy, the study of CAR T‑cells is still in 
its infancy and appears less efficacious for GC. However, 
producing an effective CAR T‑cell treatment for GC (11,12) 
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may be possible as the Food and Drug Administration have 
approved two second‑generation CAR T‑cell therapies, 
for the treatment of relapsed/refractory B‑cell lymphoma: 
Kymriah (CD28/CD3ζ costimulatory domain) and Yescarta 
(4‑1BB/CD3ζ costimulatory domain). Preclinical studies have 
demonstrated the anti‑tumor efficacy and persistent activity of 
CAR T‑cells against GC in vitro and in vivo using an animal 
xenotransplantation model (13‑17).

The current review assessed the potential of CAR T‑cell 
immunotherapy for patients with GC and discussed the history 
of its development, its current status and toxic side effects, as 
well as the management of these toxicities.

2. The development and characteristics of CAR T‑cell 
therapy

Tumor immunotherapy has been prevalent for >100 years, with 
CAR T‑cell therapy being developed in the last ~30 years. 
The first‑generation CAR, derived from a chimeric TCR, was 
pioneered and constructed by Eshhar et al in 1993 (18,19). 
First‑generation CARs are modular in nature, containing a 
single‑chain variable fragment (ScFv) and CD3ζ domains, and 
they inhibit tumor cell escape by downregulating the expres-
sion of MHC on the surface of tumor cells (20). To address 
the poor cytokine production and T‑cell expansion observed 
in first‑generation CARs (21), Finney et al (22) constructed 
a second‑generation CAR that incorporated a costimulatory 
domain. The superiority of this second‑generation CAR in 
cytokine‑secretion and in T‑cell expansion and persistence has 
been demonstrated in several studies (23‑26) (Fig. 1A). Using 
second‑generation CAR as a foundation, a third‑generation 
CAR was created, which contained two tandem costimulatory 
molecules. The third‑generation CAR exhibited enhanced 
effector functions and persistence in vivo (27). However, to 
further enhance targeted anti‑tumor and trafficking activities 
of CARs in solid tumors and to reduce off‑target toxicity and 
immunosuppression, multiform fourth‑generation CARs were 
constructed using novel mechanisms, for example, T‑cells 
redirected for universal cytokine‑mediated killing, armored 
CARs, switchable CARs, bispecific CARs and CARs incor-
porating a suicide gene have been created (28). In addition, 
scientists are working to uncover a universal CAR structure to 
act against all target cells with an optimal outcome.

CAR is an artificially synthesized membrane protein 
composed of three domains: An extracellular antigen‑recog-
nition domain, a transmembrane domain and an intracellular 
signaling domain  (29) (Fig. 1A). The single‑chain variable 
fragment (ScFv) is a recombinant polypeptide derived from the 
heavy and light chains of a monoclonal antibody, which binds 
directly to the tumor surface‑associated antigens, indepen-
dently from MHC restriction (30). The hinge region provides 
ScFv flexibility and is associated with the target‑binding 
capacity of the CAR  (31). The transmembrane domain, 
primarily consisting of CD8 or immunoglobulin G4 
molecules, enhances CAR stability and provides a connec-
tion between the ectodomain and endodomain (32). In the 
intracellular domain, CD3ζ or Fc receptor γ provides the 
first signal for T‑cell activation (33). Although the B7‑CD28 
pathway provides essential signals for T‑cell activation, further 
studies have revealed that CD3ζ has a more optimal signaling 

efficacy  (34,35). Additionally, the endodomain commonly 
contains costimulatory signal domains that promote T‑cell 
proliferation, lymphokine secretion and effector function, 
including CD28  (36), inducible T‑cell costimulator  (34), 
DNAX‑activating protein 10 (DAP10) (37), CD134 (OX40) (38) 
or CD137 (4‑1BB) (39), which have also been studied succes-
sively in different generations of CARs (27). CD28 promotes 
the multiplication of naïve and CD4+ T‑cell subsets, whereas 
costimulatory CD137 promotes the proliferation of memory 
and CD8+ T‑cell subsets preferentially, improving persis-
tence  (40). CD28 has been demonstrated to promote the 
ability of CARs to enhance the resistance of modified T‑cells 
against regulatory T‑cells and to reduce antigen‑induced cell 
death (41). However, CD137 enhances the metabolic adapt-
ability and memory potential of CAR T‑cells to a greater extent 
than CD28 (42,43). Despite the aforementioned costimulatory 
molecules exhibiting antigen‑dependent immune‑cytolysis 
in vitro, there is still debate over which costimulatory molecule 
is most optimal (44). Previous evidence has suggested that the 
functional activity induced by T‑cell‑expressed CARs depends 
on the interaction of endogenous signaling moieties (45).

3. A novel and promising choice of immunotherapy

Based on previous clinical applications of adoptive immuno-
therapies, including TILs, CAR T‑cell therapy was designed 
for the treatment of various types of cancer. CAR T‑cell 
therapy is a complex and rigorous multi‑step adoptive cell 
transfer therapy as indicated in Fig. 1B (46).

Following a decade of study, the curative effect of CAR 
T‑cells in hematological malignancies has provided valuable 
information. First‑generation anti‑CD19 CAR T‑cells were 
demonstrated to persist for 6 months at high levels in periph-
eral blood and bone marrow. Kochenderfer et al  (47) first 
reported that a chemotherapy‑refractory patient with stage IV 
B‑cell non‑Hodgkin lymphoma (B‑NHL) achieved partial 
remission lasting for 8 months after receiving anti‑CD19 CAR 
T‑cell therapy. Subsequently, a patient with refractory chronic 
lymphocytic leukemia achieved a 10‑month complete remis-
sion (CR) (48). CD20, a second form of CAR T‑cell treatment 
administered to patients with B‑NHL also demonstrated 
similar results (32,49). However, a phase II trial of anti‑CD20 
CAR T‑cell therapy achieved promising effects without 
inducing severe toxicities, with an overall objective response 
rate (ORR) of 81.8% (8/11) and six patients with B‑NHL 
demonstrating CR (50). The curative efficacy of CAR T‑cells 
in hematological malignancies has improved, with ORR rates 
increasing from 52 to 92% and CR rates ranging from 43 to 
90% (51‑55). Furthermore, encouraging results from the use 
of CAR T‑cells for the treatment of B cell malignancies has 
resulted in the application of this therapy to solid tumors.

The first CAR T‑cell therapy clinical trials were performed 
two decades ago in the USA for the treatment of patients 
with ovarian cancer and metastatic renal carcinoma (56,57). 
To date, a total of 692 clinical trials have been registered 
worldwide on ClinicalTrials.gov, which is over three times 
the total number of registrations recorded at the end of 2016 
(Fig. 2A). Of these clinical trials, >400 are associated with 
cancer therapy. Currently, the majority of clinical trials are in 
phase I or II, where appropriate dosage, safety and efficacy 
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is being established. Only 8% of CAR T‑cell therapy clinical 
trials have been completed (Fig. 2B).

4. Promising preclinical results for future clinical 
investigation

A single high fidelity target antigen is the most critical 
factor for the successful clinical application of CAR T‑cell 
therapy  (58). Previous literature has indicated that an 
ideal specific antigen must be expressed on the extracellular 
surface of cancer cells and be preferentially selected for its 
density and differential expression in tumors rather than in 
normal tissues (59). If this does not occur, severe or lethal 
off‑target toxicity, in addition to poor curative effects, may 

occur  (59). The expression of surface antigens in GC is 
highly heterogeneous, providing tumor cells with the ability 
to escape host immune surveillance  (60). Therefore, the 
design of CAR T‑cell immunotherapy for GC poses a great 
challenge.

However, promising results have been obtained using 
preclinical models of first‑generation CAR T‑cells for the 
treatment of ovarian cancer (57), renal cell carcinoma (57,61) 
and neuroblastoma (62). Furthermore, the durable efficacy of 
CAR T‑cell therapy has been high in patients with recurrent 
or end‑stage glioblastoma, demonstrating anti‑tumor activity 
with acceptable toxicities in subsequent GD2‑targeting 
trials (62,63). In murine GC models and in vitro experiments, 
the anti‑tumor activity and persistence of CAR T‑cells targeting 

Figure 1. CAR‑T cell structure and the clinical application process. (A) The construction of 1st, 2nd and 3rd generation CARs. (B) The clinical treatment is as 
listed: i) CAR construction: ScFv is used as the ligand‑binding domain to mediate tumor cell recognition with heavy chain variable and light chain variable, 
and is connected to the transmembrane and intracellular domains with a flexible linker; ii) T lymphocyte collection: T lymphocytes are isolated from the 
PBMCs of patients with cancer; iii) CAR T‑cell manufacturing: CAR genes are retrovirally transduced into T lymphocytes; iv) CAR T‑cell amplification 
and screening in vitro; v) Quality control: Evaluation of the expansion level, T cell quality, cytokine secretion and infectious contamination; vi) CAR‑T cells 
are infused back into patients; vii) Anti‑tumor activity: CAR‑T cells are transported to the tumor site and perform their function in the tumor microenviron-
ment. CARs, chimeric antigen receptors; ScFv, single‑chain variable fragment; VH, heavy chain variable; VL, light chain variable; PMBC, peripheral blood 
mononuclear cells; TME, tumor microenvironment; mAb, monoclonal antibody; IgG, immunoglobulin G; TM, transmembrane domain; ICOS, inducible T‑cell 
costimulator; DAP10, DNAX‑activating protein 10.
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folate receptor 1 (FOLR1), 3H11 and human epidermal growth 
factor receptor 2 (HER2) has been validated (13‑17).

Kim  et  al  (15) constructed a second‑generation CAR 
T‑cell consisting of FOLR1‑scFv, CD28 and CD3ζ signaling 
domains. The cytotoxicity of this CAR T‑cell construct against 
GC cells was assessed using a luciferase assay. Furthermore, 
Western blot analysis and ELISA demonstrated, elevated levels 
of apoptosis‑associated proteins and cytokines, respectively. 
These proteins and cytokines, including interferon (IFN)‑γ, 
tumor necrosis factor (TNF)‑α, granulocyte‑macrophage 
colony‑stimulating factor and granzyme B are crucial for 
T‑cell activation, proliferation and differentiation in target GC 
cells (15).

In a xenograft subcutaneous mouse model, significant 
tumor‑killing abilities of CAR‑T cell have been demon-
strated in MKN1 cells  (16). An additional HER2‑specific 
CAR T‑cell construct has exhibited specific and persistent 
anti‑tumor efficacy, along with a strong homing ability 
against xenografts derived from HER2+ GC cell lines in 
mice  (16). Similarly, specific tumor‑killing abilities and 
high affinities were also verified in primary patient‑derived 
GC cells through intravenous infusion, which also occurred 

during HER2 expression knockdown, and these positive 
outcomes were further investigated by constructing human-
ized chA21‑4‑1BBz CAR T‑cells (13). Additionally, striking 
tumor inhibition was observed in an established and advanced 
intraperitoneal metastatic GC model (13). As a major compo-
nent of the ErbB2 (CD340) family, HER2 is highly expressed 
on gastrointestinal epithelial cells and has been extensively 
investigated as a potential immunotherapy target for various 
solid tumors (64). The monoclonal antibody, trastuzumab, has 
been approved as first‑line treatment following its successful 
clinical application against advanced GC (65). Furthermore, 
following the intravenous injection of HER2‑directed CAR 
T‑cells, the tumorigenicity of cancer stem cells (CSCs) 
derived from patients with GC was markedly inhibited in a 
tumor‑bearing mouse model and was efficiently phagocy-
tized and degraded in vitro via a sphere‑forming assay (16). 
Previous studies have indicated that HER2 signaling serves an 
important role in maintaining CSC populations in GC (66‑68). 
Thus, the eradication of CSCs that possess a capacity for 
clonal tumor initiation and contribute to carcinogenesis, 
tumor invasion, recurrence, metastasis and drug resistance, 
has been identified as a promising immunological approach 

Figure 2. Registered CAR‑T cell clinical trials. (A) The geographical distribution of registered clinical trials for CAR T‑cell therapy. (B) The status of CAR 
T‑cell clinical trials performed for cancer therapy. CAR, chimeric antigen receptor.
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for cancer treatment (69). Luo et al (17) constructed a bifunc-
tional αHER2/CD3 RNA‑engineered CAR T‑cell with a 
more effective and specific tumor‑killing capacity to reduce 
the possibility of tumor antigen escape and to transfer these 
attributes to bystander T‑cells, which exhibited similar effects 
against HER2+ GC cells. Additionally, the persistence duration 
of this bispecific αHER2/CD3 CAR T‑cell in vivo was 6 days, 
outlasting other conventional bispecific CAR T‑cells  (70). 
Third‑generation 3H11‑directed CAR T‑cells also exhibited 
similar cytotoxicity and secretion in vitro and in vivo, while 
poor trafficking was observed by tail intravenous injection (14). 
The HER2‑directed CAR T‑cell therapeutic approach has 
been continually developed and validated in different types 
of cancer, including breast cancer (71), renal cancer (72) and 
osteosarcoma (73). It is worth noting that adverse toxicities 
may occur unnoticed due to the evaluation of therapeutic 

effect being implemented on diverse tumor‑bearing mouse 
models. However, CAR T‑cell therapy is still considered to 
have great potential in GC treatment and therefore warrants 
further clinical development.

5. Exploration of GC treatment in the clinic

A major priority for the development of GC CAR T‑cell immu-
notherapy is the discovery and validation of authentic and 
specific antigens which minimize potential life‑threatening 
complications. Clinically, various antigens have been targeted 
for CAR T‑cell therapy in solid tumors. These include: 
Epidermal growth factor receptor, mesothelin, GPC3, GD2 
and HER2 (Fig. 3A). On account of the constraints applied to 
the selection of optimizing antigens (74), only 38% of trials 
are performed on solid tumors, of which 2.96% are for GC 

Figure 3. (A) CAR‑T target antigen selection and treatment information of different tumors. Target antigens used in the construction of chimeric antigen 
receptor T‑cells for solid tumor therapy. (B) The percentage of solid tumors compared with hematological and lymphatic system malignancies, as well as the 
percentage of solid tumors that are gastric cancers.
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(Fig. 3B). There are still no published clinical outcomes of CAR 
T‑cells used for GC treatment. Therefore, the current review 
summarized the clinical trials registered on ClinicalTrial.gov. 
As presented in Table I, a total of 12 registered clinical trials, 
utilizing seven different antigens, are distributed in China and 
the USA, the majority of which are in the recruitment phase. The 
eligibility criteria for participants were as follows: Individuals 
aged between 18 to 75 years, without restrictions of sex or 
nationality. A good physical condition was required, which 
was quantified as an Eastern Cooperative Oncology Group 
score of ≤2 or a Karnofsky score of ≥60 (75,76). Currently, 
the majority of trials are conducted for orthotopic GC sites 
via intravenous injection, while only two ongoing trials (trail 
nos. NCT03563326 and NCT03682744) have investigated the 
risk and potential benefits of CAR T‑cell intraperitoneal infu-
sion for patients with epithelial cell adhesion molecule‑ and 
carcinoembryonic antigen‑expressing GC with peritoneal 
metastasis. Despite the support of previous research, each 
clinical trial is conducted discreetly, with strictly controlled 
input dosages, interval times and monitoring indicators, to 
minimize potentially life‑threatening accompanying side 
effects.

6. Severe side effects

CAR T‑cell therapy has produced a durable remission in a 
subset of patients with relapsed or refractory hematological 
malignancies (5); however, its efficacy in GC is yet to be fully 

elucidated. Severe toxicity is a main restriction to the promo-
tion and development of CAR T‑cell therapy for patients 
with GC (47,51). The most common and serious toxicity is 
cytokine release syndrome (CRS), a non‑antigen‑specific 
toxicity that leads to respiratory distress syndrome and 
multiple organ dysfunction syndrome (MODS). This toxicity 
occurs due to the rapid and excessive activation of various 
cytokines, including TNF‑α, interleukin (IL)‑1, IL‑6, IL‑8, 
IL‑12, IFN‑α, IFN‑β and IFN‑γ (77). Lymphocyte‑depleting 
chemotherapy regimens, including fludarabine or cyclophos-
phamide, enhance the activation of CAR T‑cells in the human 
body and are associated with CRS and neurotoxicity (78). 
In one instance, a patient with colon cancer immediately 
developed rapid respiratory distress and ultimately died of 
MODS 5 days following treatment. The death resulted from 
normal cardiopulmonary tissue with slight HER2 expression 
being recognized and attacked by high‑affinity targeting CAR 
T‑cells (79). Additionally, a clinical trial was suspended due 
to manufactured anti‑CD19‑redirected CAR T‑cells inducing 
CRS, resulting in two deaths (80). Clinical symptomatology of 
CRS, on‑target off‑tumor toxicity and neurotoxicity of CAR 
T‑cells are summarized in Table II (81‑83). The majority of 
complications are reversible and self‑healing. However, fatal 
complications as a result of CRS and neurotoxicity emphasizes 
the importance of assessing the preclinical safety of CAR 
T‑cell therapy  (79,84,85). Biological informatics analyses 
that predict target protein distributions in human organs are 
incomplete and the superior penetrability of CAR T‑cells in 

Table I. CAR‑T cell therapy trials for gastric cancer registered in ClinicalTrials.gov.

Targeted	 Study	 Age	 Estimated no.			   Estimated	 ClinicalTrials
antigen	 phase	 (years)	 of patients	 Status	 Study institution	 end date	 number

EPCAM	 II	 ≤75	 19	 Recruiting	 Anhui Province Hospital, Hefei, China	 2019 Nov	 NCT02725125
EPCAM	 I	 18‑75	 40	 Recruiting	 West China Hospital, Chengdu, China	 2022 Dec	 NCT03563326
MUC1	 I	 18‑80	 20	 Unknown	 PersonGen Bio Therapeutics, Suzhou,	 2018 Nov	 NCT02617134
					     China
CEA	 I	 18‑80	 75	 Recruiting	 SHTMMU, Chongqing, China	 2019 Dec	 NCT02349724
HER2	 I/II	 18‑80	 60	 Recruiting	 SHTMMU, Chongqing, China	 2019 Sep	 NCT02713984
EPCAM	 I/II	 18‑80	 60	 Recruiting	 ICE of Chengdu Medical College, 	 2022 Dec	 NCT03013712
					     Chengdu, China
Mesothelin	 I/II	 4‑70	 73	 Recruiting	 TFAHZZU, Zhengzhou, China	 2023 Mar	 NCT03638206
CEA	 I	 ≥18	 18	 Recruiting	 Rutgers Cancer Institute, 	 2019 Sep	 NCT03682744
					     New Jersey, USA
CEA	 I	 ≥18	 8	 Not recruiting	 RWMC, Rhode Island, USA	 2019 Jan	 NCT02416466
HER2	 I	 ≥18	 39	 Not open	 Baylor College of Medicine, 	 2037 Jan	 NCT03740256
					     Texas, USA
BPX‑601	 I /II	 ≥18	 138	 Recruiting	 Moffitt Cancer Center Tampa, 	 2020 Dec	 NCT02744287
					     Florida, USA
EGFR	 I /II	 18‑65	 20	 Recruiting	 Shanghai International Medical	 2018 Mar	 NCT02862028
					     Center, Shanghai, China

Male and female patients were recruited into each listed study. CAR, chimeric antigen receptor; EPCAM, epithelial cell adhesion molecule; 
MUC1, mucin 1 cell surface associated; CEA, carcinoembryonic antigen; HER2, human epidermal growth factor receptor 2; EGFR, epidermal 
growth factor receptor; SHTMMU, Southwest Hospital of the Third Military Medical University; ICE, The First Affiliated Hospital of Chengdu 
Medical College; TFAHZZU, The First Affiliated Hospital of Zhengzhou University; RWMC, Roger Williams Medical Center Providence.
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solid tissue limits the use of safety‑associated conclusions 
drawn from studies with mAbs (86). A patient with chronic 
lymphoid leukemia was diagnosed with tumor lysis syndrome 
on day 22 following anti‑CD19‑redirected CAR T‑cell infu-
sion. However, the kidney and hepatic function of the patient 
recovered after fluid resuscitation and rasburicase treatment 
(trail no.  NCT01029366)  (32). Therefore, accumulating 
evidence has indicated that CAR T‑cell‑associated toxicities 
may be minimized or controlled using preventive or protective 
interventions (87). Furthermore, well‑controlled liver toxicity 
may be achieved by blocking antigenic sites in tumors that are 
distant to the tumor (88).

7. Toxicity management and guidelines for future clinical 
applications

Cancer immunotherapy aims to eradicate malignant cells by 
harnessing the power of the human immune system. While 
CAR T‑cells attack targets on the surface of tumor cells to 
exert its therapeutic effect, they also cause inevitable harm to 
normal tissues in other organs of the body. Therefore, early 
recognition, vigilant monitoring and timely intervention are 
necessary to reduce CAR T‑cell‑associated toxicity (82,89). 
Thus, based on the National Cancer Institute Common 
Terminology Criteria for Adverse Events (version 4.0), toxicity 
grading systems are considered to be an important measure 
for standardized treatment (90). Furthermore, according to 
the Experimental Transplantation and Immunology Branch of 
the National Cancer Institute (NCI), a normal cardiovascular 
system and a healthy bone marrow function may reduce the 
incidence of potential adverse toxicities, demonstrating the 

necessity for adequate patient condition assessment before 
receiving CAR‑T therapy  (82). It has been reported that 
IL‑6 and C‑reactive protein can be used as highly sensitive 
biomarkers for the diagnosis and potential quantification of 
CRS severity (90,91). Previous studies have also indicated 
that the IL‑6 receptor antagonist, tocilizumab, can attenuate 
or eliminate CRS toxicities without affecting the efficacy 
of CAR T‑cell infusion (44,92). In addition, corticosteroids 
and other immunosuppressive drugs (including etanercept, 
siltuximab and anakinra) have been effectively applied to 
reduce CRS‑associated toxicities (93). However, due to the 
inhibition of CAR T‑cell anti‑tumor efficacy and persistence, 
these drugs are administered second to tocilizumab  (93). 
Neurotoxicity, which may be associated with the increased 
permeability of cerebrospinal fluid, often occurs concurrently 
with CRS due to the blood‑brain barrier, resulting in the 
wide usage of dexamethasone and corticosteroids instead of 
tocilizumab (94).

Despite clinical practice experience being derived from 
the use of CAR T‑cells or treatment against hematological 
malignancies, previous studies are valuable for the future 
management of CAR T‑cell‑associated toxicities in GC 
therapy.

8. Emerging approaches against GC treatment

Although CAR T‑cell therapy is promising, several chal-
lenges must be overcome to improve its efficacy for the 
clinical treatment of GC. Due to the ubiquitous expres-
sion of CD19 in the B cell lineage, infections associated 
with B cell deficiency or hypoplasia can be prevented or 

Table II. Toxicities of CAR‑T cell therapies.

Toxicity	 Organ system	 Clinical symptomatology

Cytokine release syndrome 	 Constitutional	 Fever, rigors, fatigue, arthralgias, anorexia, myalgias and malaise
	 Hematologic	 Anemia, lymphopenia, thrombocytopenia, febrile neutropenia,
		  B‑cell aplasia, elevated d‑dimer, hypofibrinogenemia, prolonged
		  prothrombin time and activated partial thromboplastin time
	 Cardiovascular	 Tachycardia, arrhythmias, hypotension, Q‑T prolongation, widened
		  pulse pressure and variable cardiac output
	 Pulmonary	 Hypoxia and tachypnea
	 Hepatic	 Transaminitis and hyperbilirubinemia
	 Renal	 Acute kidney injury, hyponatremia, hypokalemia, hypophosphatemia,
		  tumor lysis syndrome and azotemia
	 Gastrointestinal	 Nausea, emesis, vomiting, diarrhea and elevated creatine kinase 
	 Musculoskeletal	 Weakness and elevated creatine kinase
Neurotoxicity	 Brain	 Headache, mental status changes, confusion, delirium, aphasia,
		  hallucinations, tremor, seizures, somnolence and weakness
	 Limbs	 Focal motor and sensory defects and altered gait
Off‑target/on‑ target toxicities	 Multi‑organ	 Hepatic, gastrointestinal, respiratory, cardiovascular, endocrine, and 
		  neurological dysfunctions, fatal pulmonary complications and
		  B cell aplasia
Tumor lysis syndrome 	 Multi‑organ	 Fatigue, fever, rigors, diaphoresis, anorexia, nausea and diarrhea

CAR, chimeric antigen receptor.
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alleviated by immunoglobulin intervention, providing the 
rationale for the use of CD19 CAR T‑cells against hemato-
logical tumors (95,96). Similarly, the efficacy of CAR T‑cell 
therapy largely depends on the selection of an ideal epitope 
target unique to GC that will also prevent off‑target effects. 
A single GC‑associated surface neo‑antigen is optimal 
but time‑consuming. Thus, a multi‑targeted approach is 
advocated as a promising solution for CAR T‑cell efficacy 
and safety in vivo (97). An additional issue to overcome 
is the limitation of complex tumor microenvironments 
(TME): GC cells generate a physical and metabolic barrier 
characterized by hypoxia, nutrient starvation and cytokine 
secretion, contributing to tumorigenesis and facilitating 
CAR T‑cell tolerance  (98). It has been indicated that 
combined pre‑condition treatment, including chemo-
therapy, radiotherapy, immune checkpoint molecules and 
other drugs involving small molecules, may contribute to 
the removal of regulatory T lymphocytes. This makes the 
TME permissive for immunotherapy and for the improve-
ment of antitumor effects  (99,100). However, compared 
with traditional cell experiments, GC organoids can 
simulate the GC microenvironment in vitro and accurately 
assess the specific efficacy and toxicities of CAR T‑cells for 
GC in vitro (101). Traditional subcutaneous tumor implant 
and patient‑derived xenograft models have the disadvantage 
of not simulating human immunity and human‑derived 
tumors, resulting in different preclinical and clinical study 
outcomes (102).

Further study assessing GC CAR T‑cell therapy should 
focus on the following aspects: i) Seeking ideal CAR T‑cell 
therapeutic targets with higher positive expression rates in 
GC tissues; ii) clarifying the specific role of other combined 
precondition treatments used in CAR T‑cell therapy for GC; 
and iii) developing a novel GC organoid model and humanized 
tumor implantation model to improve the reliable evaluation 
of CAR T‑cell efficacy and toxicity in preclinical research. 
Additionally, the development of a generic CAR structure 
may lead to an increase in the number of patients with GC 
benefiting from CAR T‑cell therapy, causing a reduction in 
medical costs.

9. Conclusion and perspective

CAR T‑cell immunotherapy is confronted with many chal-
lenges and difficulties; however, it is still recognized as the 
most potent cure for GC  (103). Although GC CAR T‑cell 
research is in its infancy, the positive results of preliminary 
trials provides a rationale for the further exploration of its use 
in clinical practice. This indicates that CAR T‑cell therapeutic 
models are advancing and may eventually improve with 
continued exploration. Combined with a deeper understanding 
of the TME, novel target epitopes and scientific‑technical 
progress, CAR T‑cell therapy may improve its current standing 
in the near future. Improving the tumor‑killing effect and 
prolonging the survival time of patients should also be readily 
solved with future study. Furthermore, combining CAR T‑cell 
therapy with precondition treatment may address its current 
ineffectiveness. In conclusion, the available evidence strongly 
supports the potential of CAR T‑cells in the treatment of 
patients with GC.
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