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Abstract. Sterile alpha motif and histidine/aspartic acid 
domain-containing protein 1 (SAMHD1), the only deoxy-
nucleotide triphosphate (dNTP) hydrolase in eukaryotes, 
plays a crucial role in regulating the dynamic balance and 
ratio of cellular dNTP pools. Furthermore, SAMHD1 has 
been reported to be involved in the pathological process of 
several diseases. Homozygous SAMHD1 mutations have been 
identified in immune system disorders, such as autoimmune 
disease Aicardi-Goutières syndrome (AGS), whose primary 
pathogenesis is associated with the abnormal accumulation 
and disproportion of dNTPs. SAMHD1 is also considered to 
be an intrinsic virus-restriction factor by suppressing the viral 

infection process, including reverse transcription, replica-
tion, packaging and transmission. In addition, SAMHD1 has 
been shown to promote genome integrity during homologous 
recombination following DNA damage, thus being considered 
a promising candidate for oncotherapy applications. The 
present review summarizes the molecular mechanisms of 
SAMHD1 regarding the regulation of dNTP homeostasis and 
DNA damage response. Additionally, its potential effects on 
tumorigenesis and oncotherapy are reported.
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1. Introduction

Deoxynucleotide triphosphates (dNTPs) are the raw materials 
for DNA replication and repair, rendering them indispens-
able components for transmitting genetic information in 
cells and maintaining genomic stability (1,2). Sterile alpha 
motif and histidine/aspartic acid domain-containing protein 
1 (SAMHD1), the only dNTP hydrolase in eukaryotes, is 
involved in several pathological processes. SAMHD1 is well 
known for its vital role in the resistance to virus transcription 
and replication by limiting the volume of the dNTP pool, thus 
resulting in the protection of the host cellular genome integrity. 
It has been reported that SAMHD1 acetylation enhances its 
dNTP hydrolase (dNTPase) activity and regulates cancer cell 
proliferation (3). Moreobver, the dNTPase activity of SAMHD1 
is dependent on the stability of the catalytic core tetramer, 
which can be inhibited by cyclin-dependent kinase phosphory-
lation on threonine 592 (T592) (4-8). In addition, viral protein 
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kinases can also phosphorylate SAMHD1, thereby inhibiting 
its dNTPase activity (9,10). The transcriptional repression of 
Samhd1 is mediated by methylation of its promoter (11-13). 
It has been also reported that viral protein X (Vpx) interacts 
with SAMHD1, resulting in the proteasomal degradation of 
SAMHD1 and an increase in dNTP levels (14-17). Therefore, it 
is necessary to systematically summarize the modifications of 
SAMHD1 and reveal its related downstream functions.

In the present review, the current knowledge of the role 
of SAMHD1 in the dynamic regulation of dNTP cellular 
homeostasis and genomic stability is summarized. In addition, 
the potential role of SAMHD1 as a housekeeping protein in 
the maintenance of dNTP homeostasis and the prevention of 
tumorigenesis is discussed.

2. Overview of SAMHD1

The human SAMHD1 gene was first cloned in 2000 by 
Li et al via a human dendritic cell cDNA library (18) and it 
was identified as an effective interferon γ (IFN-γ)-induced 
protein (18,19). Based on its dNTPase activity, SAMHD1 
is recognized as an intrinsic host restriction factor against 
human immunodeficiency virus 1 (HIV‑1) (20). Additionally, 
SAMHD1 is also known as the AGS gene. Multipoint mutations 
in AGS induce severe familial autoimmune Aicardi-Goutières 
syndrome (AGS) (21-24).

Human SAMHD1 is 626 amino acids (aa) in length and 
contains an N-terminal nuclear localization domain 11KRPR14 
followed by a conserved sterile alpha motif (SAM) and a 
histidine/aspartic acid (HD) domain (25,26). These domains 
are connected by a short linker and flanked by unstruc-
tured regions. The SAM domain (44-110 aa) is involved in 
protein-protein and protein-DNA/RNA interactions, whereas 
the HD domain is a conserved sequence containing 160-339 
aa comprising an arrangement of alternating histidine/aspartic 
acid amino acids (27-29) (Fig. 1). HD is the main functional 
domain of SAMHD1 with antiviral activity, which is involved in 
nucleotide metabolism and exhibits dNTPase and ribonuclease 
(RNase) activity. However, the RNase activity of SAMHD1 
is controversial. Ryoo et al (31) suggested that SAMHD1 
restricted HIV-1 infection by cleaving the viral RNA genome 
via its RNase activity. In addition, the SAMHD1 phosphoryla-
tion at T592 negatively regulates its RNase activity in vivo and 
impedes HIV-1 restriction. By contrast, Antonucci et al (30) 
reported that SAMHD1 did not exhibit broad nuclease activity; 
however, they did not rule out a specific nucleolytic interac-
tion between SAMHD1 and incoming HIV-1 genomic RNA 
(gRNA). Furthermore, Antonucci et al (30) demonstrated that 
both SAMHD1D137N (RNase-positive and dNTPase-negative) 
and SAMHD1Q548A (RNase-negative and dNTPase-positive) 
mutants were expressed at comparable levels with wild-type 
SAMHD1 and each efficiently restricted HIV-1 infec-
tion (30,31). Several studies have demonstrated that the 
C-terminus of SAMHD1 (600-626 aa) is included in the 
crystal structure of the GTP/dNTP-bound tetramer and forms 
a short alpha-helical structure with an extended loop (32-34). 
The C-terminus of SAMHD1 is required for the efficient 
depletion of dNTP pools and the inhibition of HIV-1 infection 
in monocytes (35). Although the C-terminal region contains 
conserved amino acid sequences, it extends interspersed 

with more divergent ones among vertebrate species (17). A 
recent study demonstrated that SAMHD1 catalytic activity 
is regulated by redox signaling. SAMHD1 is inactivated in a 
dose-dependent, yet reversible manner when treated with the 
oxidizing agent, H2O2 (36).

The oxidation of SAMHD1 has been demonstrated to 
inhibit tetramerization, and has been emphasized as a central 
regulatory mechanism for the regulation of SAMHD1 activity 
in vivo (37). Recent research has highlighted that rapid protein 
degradation is not mediated by SAMHD1 phosphorylation at 
T592. In addition, it has been documented that the dNTPase 
activity of SAMHD1 is not only retained during the G1 and 
G0 phases, but throughout the entire cell cycle, independent 
of phosphorylation at T592 (38). Other researchers have indi-
cated that constructed mutant SAMHD1 fragments generated 
by deleting the HD domain and C-terminal segment inhibit 
the ability to restrict HIV-1 infection (39). In the absence of 
the dGTP co-factor, SAMHD1 exists as an inactive monomer 
or dimer in which the substrate-binding pocket is unable to 
bind dNTP, thus losing its dNTPase activity (27,35). Upon 
dGTP-Mg2+-dGTP binding at the allosteric sites, the catalyti-
cally inactive SAMHD1 dimers tetramerize, thereby inducing 
a large conformational change at the tetramer interface and 
the recovery of its catalytic activity. Therefore, the dNTPase 
activity of SAMHD1 is mainly dependent on its active 
tetramer structure (35,40). Taken together, the aforementioned 
features of SAMHD1 verify its ability to properly regulate 
dNTP levels, which are indispensable for the transcription 
and replication of viruses, such as herpes simplex virus (HSV) 
type 1 (41,42) and hepatitis B virus (HBV) (43,44), and the 
inhibition of HIV-1 reverse transcription. The structure of 
SAMHD1 forms the basis of its biological functions and may 
thus provide novel insight into the elucidatation of the internal 
regulatory mechanisms of immune disorders, viral infections, 
DNA damage responses and tumorigenesis (45).

3. Modifications of SAMHD1

SAMHD1 is subjected to a vast array of post-translational 
modifications, including phosphorylation, acetylation and 
methylation. It has been suggested that cyclin-dependent 
kinase 1 (CDK1)/cyclin A2 phosphorylates SAMHD1 at 
T592 only in proliferating cells and completely abolish its 
ability to resist viral infections (46). In addition, SAMHD1 
has been shown to be phosphorylated at T592 in proliferating 
leukocytes in the G1/S and G2/M phase of the cell cycle by 
the key S-phase kinase complex, CDK2-cyclin A (38). The 
study by Pauls et al (47) suggested that the CDK6-dependent 
CDK2 phosphorylation of SAMHD1 inhibited its restriction 
activity against HIV-1 replication in primary cells. Therefore, 
the synergistic effect of CDK2 and CDK6 during cell cycle 
progression is essential for determining the susceptibility to 
HIV-1 infection by modulating viral dNTP access through 
SAMHD1. Notably, SAMHD1 is also phosphorylated at T592 
from the G0 to G1 phase of the cell cycle through the activa-
tion of CDK2 and cyclin E expression, resulting in increased 
dNTP pools (47).

Furthermore, the levels of SAMHD1 phosphorylation at 
T592 may be reduced following treatment with type I IFN, 
reinforcing the link between the phosphorylation of SAMHD1 
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and its antiviral activity (46). Recently, several studies have 
suggested that the expression of p21Waf1/Cip1 (referred to as 
p21), a CDK inhibitor, may lead to reduced phosphorylation 
at T592 residue by CDKs. Thus, SAMHD1 antiviral activity is 
regulated by CDK1 phosphorylation at amino acid T592, and 
type I IFN renders Vpx unable to induce SAMHD1 degrada-
tion (48-50). Type II IFN can stimulate the transcription of 
SAMHD1 to degrade dNTP and to restrict viral infection posi-
tively (51,52) and type III IFN exhibits modest to undetectable 
activity (53). However, further research is required in this field 
to explore the underlying molecular biological mechanisms.

The folding of the SAMHD1 region is disrupted around 
T592E due to negative charge repulsion generated by a phos-
phomimetic mutation. Subsequently, this disruption leads 
to the substantial destabilization of the active tetrameric 
form of SAMHD1 and an approximately 3-fold decrease in 
its dNTPase activity. However, the T592V variant does not 
perturb the crystal structure of SAMHD1; thus, the available 
active SAMHD1 tetramers are not significantly decreased (54). 
In addition, the importance of SAMHD1 dephosphorylation 
has also been investigated. Thus, phosphatase PP2A-B55α is 
responsible for rendering the antiviral activity of SAMHD1. 
These results suggest that phosphorylation and dephosphory-
lation at T592, the key regulatory site of SAMHD1 protein, 
is responsible for the diverse physiological functions of 
SAMHD1 (55).

Although alanine substitution at T592 exerts only a minimal 
effect on the viral restriction ability of SAMHD1 in differenti-
ated U937 cells, phosphomimetic substitution by aspartate and 
glutamate completely eliminates its antiviral effect. In addi-
tion, introducing a T592A alanine mutation does not rescue 
SAMHD1 restriction in cycling U937 cells, suggesting that 
the inhibition of phosphorylation is not sufficient to restore 
SAMHD1 in proliferating cells (5,39). However, the antiviral 

activity of SAMHD1 is limited to non-cycling cells. As previ-
ously mentioned, SAMHD1 is phosphorylated on residue T592 
in cycling cells; however, the phosphorylation dissipates when 
cells are in a non-cycling state, thus modulating the ability of 
SAMHD1 to block retroviral infection without affecting its 
dNTPase activity (6).

Moreover, it has been reported that SAMHD1 is acetylated 
on K405 by the acetyltransferase arrest defective protein 1 
(ARD1) and enhances its dNTPase activity in vitro. However, 
the non-acetylated arginine substitution mutant (K405R) does 
not exert a similar effect. Compared with cells expressing 
wild-type SAMHD1, cancer cells expressing K405R mutant 
exhibit an attenuated G1/S cell cycle transition and a decreased 
cell proliferation. SAMHD1 acetylation levels are increased 
during the G1 phase of the cell cycle. Collectively, these find-
ings suggest that SAMHD1 acetylation enhances its ability 
to hydrolyze dNTPs and promote cancer cell proliferation. 
Therefore, SAMHD1 may be a potent effective target for 
cancer treatment (3).

Finally, it has been documented that promoter hypermeth-
ylation suppresses the transcriptional regulation of SAMHD1, 
thereby downregulating its protein expression and its tumori-
genesis-related functions (11-13).

SAMHD1 activity demonstrates a significant association 
between dNTP homeostasis and disease progression. Thus, 
further research on the post-translational modifications 
of SAMHD1 is urgently required in order for its additional 
benefits to be fully elucidated.

4. Role of SAMHD1 in dNTP homeostasis

SAMHD1, as a dNTP hydrolytic enzyme, plays a key role in the 
maintenance of homeostasis of cellular dNTP pools (20,56,57) 
and it is essential for preserving genome integrity. It has been 

Figure 1. Overview of SAMHD1. SAMHD1, sterile alpha motif and histidine/aspartic acid domain-containing protein 1; dNTPs, deoxynucleotide triphos-
phates.
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reported that dNTP pool imbalance caused by SAMHD1 
deficiency may lead to DNA damage, accompanied by the 
activation of IFN signaling (57). In addition, the surplus of 
dNTPs induces mismatches and increases the mutation rate 
during cellular DNA replication (58), which is an important 
molecular mechanism of tumorigenesis (1). There is increasing 
evidence to suggest that imbalanced dNTP levels are associ-
ated with the rate of replication fork formation under DNA 
replication stress, leading to gene mutations, genomic insta-
bility and cancer development (59,60). Therefore, SAMHD1 is 
considered a key regulator involved in the maintenance of the 
dNTP pool and genome homeostasis. The role of SAMHD1 is 
illustrated in Fig. 2.

5. Role of SAMHD1 in DNA damage response

DNA damage in cells, mainly single-strand breaks, arises 
frequently (approximately 10,000 lesions per cell per day) 
by a variety of endogenous and exogenous stimuli (61,62). 
It has been well established that the DNA damage response 
(DDR) pathway detects lesions in DNA strands and activates 
the repair system (63). Subsequently, cell cycle checkpoints 
are activated, providing sufficient time to allow lesions to be 
repaired. However, an unrepaired or improperly repaired DNA 
response leads to cell death or abnormal cell mitosis, which 
may induce malignant transformation and proliferation (64,65). 
Additionally, inherited defects in DNA damage repair 
mechanisms are associated with cancer predisposition (66), 
immunodeficiency (67), neurodegenerative disorders (68), 
infertility (69) and premature aging, highlighting the critical 
role of DDR in human health.

Several studies have demonstrated that SAMHD1 
participates in the DDR process. Thus, SAMHD1 promotes 
dNTPase-independent DNA end resection to facilitate 

DNA double-strand breaks (DSBs) repair by homologous 
recombination (HR) (70). In addition, SAMHD1 exhibits 
a hydrolase-independent function though its C-terminal 
recruitment of interacting proteins (CTIP) to DSB sites. 
These observations suggest that SAMHD1 may contribute 
to anticancer therapy (71). Clifford et al (72) investigated the 
expression of SAMHD1 in patients with chronic lymphocytic 
leukemia (CLL) in the UK and revealed that SAMHD1 
affected cell proliferation and survival following DNA 
damage induction. More specifically, the overexpression of 
wild-type SAMHD1 inhibited proliferation and increased cell 
death following DSB treatment. Furthermore, SAMHD1 was 
co-localized with p53-binding protein 1 (53BP1) at the DNA 
DSB site in the nucleus, which further indicated that SAMHD1 
is involved in the DDR process and related diseases (72). By 
contrast, SAMHD1 downregulation may cause excess dNTPs 
and a subsequent imbalance of dNTP pools, resulting in base 
mismatches and mutations during replication, eventually 
leading to the activation of the intrinsic interferon signal (57). 
These findings indicate a novel association between SAMHD1 
and DDR process in the pathogenesis of several diseases.

6. Role of SAMHD1 in immune disorders and viral 
infections

SAMHD1 is widely expressed in the majority of tissues and 
cells, and its restrictive function in the innate immunity 
has been extensively reviewed since it was first discovered. 
The SAMHD1 gene mutation was detected in autoimmune 
AGS (22,73‑75), which was first described by Jean Aicardi 
and Francoise Goutières in 1984 (76). The common clinical 
features of AGS overlap with the autoimmune disease systemic 
lupus erythematosus (SLE), including brain atrophy and 
severe sequelae (75,77,78). It has been reported that SAMHD1 

Figure 2. Role of SAMHD1. SAMHD1, sterile alpha motif and histidine/aspartic acid domain-containing protein 1; dNTP, deoxynucleotide triphosphate; 
CDK1, cyclin-dependent kinase 1.
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mutations at residues 123, 143, 145, 201, 209, 254, 369 and 385 
result in impaired endogenous SAMHD1 protein function and 
induce nucleotide metabolism disorders in myeloid cells (22). 
Abnormally increased dNTP pools in fibroblasts derived 
from patients with AGS are caused by the loss of functional 
SAMHD1. Subsequently, dNTP accumulation may induce the 
immune system to secrete excessive amount of antibodies, as 
it has been previously described (57). These results suggest 
that SAMHD1 is a key regulator of the immune system by 
maintaining nucleotide pool homeostasis.

Reverse transcription is a unique DNA synthesis process 
through which retroviruses and retrotransposons convert 
single stranded RNA genomes into double stranded DNA. This 
process is catalyzed by reverse transcriptase, which is a virally 
encoded DNA polymerase (79,80). Retroviruses consume 
cellular dNTPs regulated by SAMHD1 to convert their RNA 
genomes into proviral DNA through reverse transcription (81). 
DNTPs differ by only a single atom from ribonucleotide 
triphosphates (NTPs), yet are maintained at 10-1,000-fold 
lower concentrations (82). Ryoo et al also found that SAMHD1 
restricted HIV-1 infection through its RNase activity by 
cleaving the viral RNA genome, and SAMHD1 associated 
with HIV-1 RNA and degraded it during the early phases of 
cell infection (31). The poor dNTP availability in macrophages 
infected with HIV infection mainly promotes viral mutagen-
esis induced by frequent rNMP and non-canonical dUMP 
incorporation (83,84). Finally, SAMHD1 may be a primitive 
cellular defense tool that was developed to effectively control 
the replication of dNTP-utilizing pathogens (81).

Human SAMHD1 is a key restriction factor against HIV-1 
infection and is highly expressed in non-circulating cells, such 
as resting CD4+ T cells and terminally differentiated macro-
phages. SAMHD1 limits HIV-1 infection in non-dividing cells 
by reducing the levels of intracellular dNTPs during viral 
reverse transcription, which is indispensable for viral storage 
and incubation (85). Thus, the overexpression of wild-type 
SAMHD1 inhibits HIV-1 long terminal repeat (LTR)-driven 
gene expression at the transcriptional level. In addition, it 
has been well documented that non-phosphorylated (T592A) 
and dNTPase inactive [H206D R207N (HD/RN)] mutants of 
SAMHD1 fail to efficiently inhibit HIV‑1 LTR‑driven gene 
expression or the latent virus reactivation (85). SAMHD1 has 
been reported to be a potent inhibitor of LINE-1 retrotrans-
position. SAMHD1 is a potent regulator of LINE-1 and 
LINE-1-mediated Alu/SVA reverse transcriptional trans-
poson. It has also been found that the mutant of SAMHD1 
has a defect in LINE-1 inhibition. At the same time, the 
ability of SAMHD1 to inhibit ORF2p-mediated LINE-1 RNP 
reverse transcription has been shown to be associated with 
SAMHD1-mediated LINE-1 inhibition (86). Furthermore, 
SAMHD1 attenuates IFN- and T-cell-mediated responses by 
suppressing the induction of virus‑specific cytotoxic T‑cells 
in vivo (87). Of note, HIV‑2 and simian immunodeficiency 
viruses (SIVs) with Vpx or viral protein R (Vpr) can induce 
SAMHD1 degradation, by inhibiting SAMHD1 downregula-
tion during viral infection (25,88-91). Additionally, it has been 
reported that SAMHD1 blocks feline immunodeficiency virus 
(FIV), bovine immunodeficiency virus (BIV), equine infec-
tious anemia virus (EIAV), N-tropic murine leukemia virus 
(N-MLV) and B-tropic murine leukemia virus (B-MLV) 

infections (92). These findings indicate that SAMHD1 exerts 
inhibitory effects on infectious diseases.

7. Role of SAMHD1 in tumorigenesis and cancer treatment

Recently, SAMHD1 has been shown to be associated with the 
development of CLL (72,93). Thus, SAMHD1 gene mutations 
have been detected in leukemia cells, and SAMHD1 mRNA 
and protein expression levels have been found to be signifi-
cantly and differentially downregulated. The loss-of-function 
mutation of SAMHD1 usually occurs early in the evolutionary 
stage of the molecular cloning of CLL and promotes the devel-
opment of the disease. In addition, some SAMHD1 mutations 
are detected in both AGS and CLL, thus AGS patients with 
SAMHD1 mutations are more likely to suffer concomitant 
CLL (72).

Several studies have demonstrated that SAMHD1 is 
associated with the development of multiple types of cancer, 
such as lung and colon cancer. Thus, in lung adenocarcinoma, 
SAMHD1 mRNA and protein levels have been shown to be 
downregulated compared with those noted in adjacent normal 
tissues. In addition, it has been suggested that the SAMHD1 
promoter is highly methylated in lung adenocarcinoma, 
resulting in a suppressed SAMHD1 expression (13). Similarly, 
frequent mutations in SAMHD1 in colon cancer cells induce 
SAMHD1 downregulation (94). The aforementioned results 
suggest that SAMHD1 is closely associated with an increased 
risk of both lung and colon cancer, and presumably with other 
types of cancer.

Recently, it was demonstrated that a low level of exog-
enous SAMHD1 expression can significantly reduce the 
growth, proliferation and colony formation of HuT78 cells by 
increasing apoptosis; thus, it may play a potential anticancer 
role in cutaneous T cell lymphoma (CTCL) (95). In view of 
the role of SAMHD1 in maintaining genomic stability, it may 
play an additional role in cells as a cancer suppressor enzyme.

Exogenous SAMHD1 expression in HuT78 cells has 
also been shown to result in increased spontaneous and Fas 
ligand (Fas-L)-induced apoptosis levels via the activation 
of the extrinsic pathway, including caspase-8, -3 and -7. 
Mechanistically, SAMHD1 expression in HuT78 cells leads 
to a significant reduction in the expression of cFLIPS, a key 
anti-apoptotic regulator that is commonly overexpressed in 
patients with CTCL (95-97).

The catalogue of somatic mutations in cancer (COSMOS) 
records 164 unique mutations in SAMHD1 found in samples 
from various cancer tissues (98). Widely expressed in several 
tissues, SAMHD1 mutations have also been detected in breast 
cancer, myeloma, pancreatic cancer and others. The mutation 
and modification sites of SAMHD1 in different types of cancer 
are presented in Tables I (99-104) and II, respectively.

The importance of SAMHD1 in dNTP metabolism and 
genome integrity has been well established; thus, strategies 
targeting SAMHD1 gene replication, post-translational modi-
fications and protein expression have been evaluated for the 
treatment of cancer and autoimmune diseases (105). SAMHD1 
acetylation enhances its dNTPase activity, and thereby, cancer 
cell arrest at the G1 phase to aid G1/S phase transition and 
promote cell cycle progression. This observation suggests 
that the acetylation level of SAMHD1 may be a potential 
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therapeutic target for cancer treatment. In addition, this finding 
also unveils a potential method for therapeutically targeting 
SAMHD1 activity in cells through the use of small molecule 
inhibitors of acetyltransferases (3). Furthermore, SAMHD1 
protects cancer cells from several antinucleoside metabolite 
treatments, such as cytarabine (Ara-C) which is mainly used 
in the treatment of acute myeloid leukemia (AML) (106-109). 
Combination therapy with an anthracycline (commonly 
doxorubicin or daunorubicin) and Ara-C is the standard treat-
ment for AML (110). Ara-C is converted by the canonical 
dNTP synthesis pathway to Ara-CTP, the active triphosphate 
of Ara-C, which serves as a substrate of SAMHD1 (107). 
Herold et al (106) demonstrated that wild-type SAMHD1 
reduced Ara‑C treatment efficacy in vivo in an AML mouse 
model. In addition, THP-1 cells lacking a functional SAMHD1 
gene have been shown to exhibit an increased sensitivity to 
antimetabolites, including fludarabine, decitabine, vidarabine 

and clofarabine (106). SAMHD1 downregulation or the inhibi-
tion of its post‑translational modifications may be promising 
strategies with which overcome tumor resistance. Therefore, 
SAMHD1 is considered a potential biomarker for the strati-
fication of patients with AML and a target for the treatment 
of Ara‑C‑refractory AML (109). The aforementioned findings 
suggest that the invention of a potent SAMHD1 inhibitor that 
enhances the efficiency of nucleotide analogues should perhaps 
be a top priority for researchers. Thus, high-throughput 
assays have already been established from several research 
groups (111,112). Such approaches seem to be particularly 
promising for future developments in this field.

8. Conclusions and future perspectives

Studies on the unique, natural viral restriction and dNTPase 
properties of SAMHD1 have demonstrated its involvement in 

Table I. Modifications to SAMHD1 in various human diseases.

 Modifications to SAMHD1
 --------------------------------------------------------------
Type of disease Modifications Results (Refs.)

Breast cancer N.A. Reduction in protein (99)
Skin T-cell lymphoma Methylation Reduction in protein and mRNA (95,100)
Lung cancer Methylation Reduction in protein and mRNA (101,102)
Colorectal cancer N.A. N.A. (94,99,103)
Cervical cancer Acetylation N.A. (3)
HIV-1 Phosphorylation Reduction in protein (19,53)
AGS N.A. Reduction in protein (104)
HBV Phosphorylation N.A. (43,44)
HSV-1 Phosphorylation N.A. (41,42)
EBV Phosphorylation N.A. (9)
HCMV Phosphorylation N.A. (10)

N.A., no information available; SAMHD1, sterile alpha motif and histidine/aspartic acid domain-containing protein 1; HIV-1, human immu-
nodeficiency virus 1; AGS, Aicardi‑Goutières syndrome; HBV, hepatitis B virus; HSV‑1, herpes simplex virus 1; EBV, Epstein‑Barr virus; 
HCMV, human cytomegalovirus.

Table II. Mutations of SAMHD1 in different human cancers.

 Mutations of SAMHD1
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Type of cancers Frequency (%) Mutation type DNA alterations Results (Refs.)

Skin cancer 53.01 Multipoint chr20:g.35551400G>A N.A. N.A.
Liver cancer 24.42 Multipoint chr20:g.35585008A>- Reduction in protein (43)
Blood cancer 14.29 Single point chr20:g.35559188C>A N.A. N.A.
Breast cancer 12.13 Multipoint chr20:g.35513711A>- Reduction in protein (99)
Lung cancer 11.76 Multipoint chr20:g.35518800T>C Reduction in protein and mRNA (13)
Pancreatic cancer 7.84 Multipoint chr20:g.35519255C>T N.A. N.A.
Prostate cancer 1.54 Single point chr20:g.35517455T>A N.A. N.A.
Cervical cancer 0.52 Single point chr20:g.35515883C>G N.A. N.A.

N.A., no information available; SAMHD1, sterile alpha motif and histidine/aspartic acid domain-containing protein 1.
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the pathogenesis of several diseases and have provided guid-
ance for progress in the development of clinical applications. 
More specifically, studies on the underlying mechanisms of 
antiviral agents to fight infection have revealed that SAMHD1 
inhibits HIV-1 infection in non-dividing cells by restricting 
viral reverse transcription, resulting in decreased virus activity 
and storage (14,15,113,114). In addition, SAMHD1 inhibits SIV 
activity containing Vpx or Vpr (116-118).

The dNTPase activity of SAMHD1 maintains balanced 
cellular dNTP pools, thus preventing genomic instability 
and tumorigenesis. SAMHD1 loss-of-function mutations are 
associated with abnormal dNTP accumulation, which induces 
rapid cancer cell proliferation (37,105,119,120) and immune 
system disfunctions. On the other hand, SAMHD1 protects 
cancer cells from DNA replication inhibitors, such as pyrimi-
dine antimetabolite antitumor agents (104,105).

Therefore, future studies on SAMHD1 may provide further 
insight into the clinical treatment of cancer and other severe 
diseases. Finally, strategies targeting SAMHD1 are expected 
to provide more effective health-related interventions.
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