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Abstract. Prostate cancer (PCa) is the leading cause of male 
cancer‑associated mortality worldwide. Mortality is associ-
ated with metastasis and hormone resistance. Cellular, genetic 
and molecular mechanisms underlying metastatic progres-
sion and hormone resistance are poorly understood. Studies 
have investigated the local effects of gonadotropin‑releasing 
hormone (GnRH) analogs (used for androgen deprivation 
treatments) and the presence of the GnRH receptor (GnRH‑R) 
on PCa cells. Furthermore, cell subpopulations with stem‑like 
properties, or cancer stem cells, have been isolated and char-
acterized using a cell culture system derived from explants 
of human prostate tumors. In addition, the development of 
preclinical orthotopic models of human PCa in a nonobese 
diabetic/severe combined immunodeficiency mouse model 
of compromised immunity has enabled the establishment 
of a reproducible system of metastatic progression in vivo. 
There is increasing evidence that metastasis is a complex 
process involving the cooperative actions of different cancer 
cell subpopulations, in which cancer stem‑like cells would 
be responsible for the final step of colonizing premetastatic 
niches. It has been hypothesized that PCa cells with stemness 
and mesenchymal signatures act cooperatively in metastatic 
progression and the inhibition of stemness genes, and that 
overexpression of androgen receptor (AR) and GnRH‑R 
decreases the rate the metastasis and sensitizes tumors 
to hormone therapy. The aim of the present review is to 
analyze the evidence regarding this cooperative process and 

the possible influence of stem‑like cell phenotypes, AR and 
GnRH‑R in metastatic progression and hormone resistance. 
These aspects may represent an important contribution in the 
understanding of the mechanisms underlying metastasis and 
hormone resistance in PCa, and potential routes to blocking 
these processes, enabling the development of novel therapies 
that would be particularly relevant for patients with metastatic 
and castration‑resistant PCa.

Contents

1.	 Introduction
2.	� Androgen deprivation and local effects of GnRH analogs 

in prostate cancer
3.	� Epithelial‑mesenchymal transition and cancer stem cells in 

prostate cancer
4.	� Tumor cell phenotypic heterogeneity and metastatic 

processes
5.	� Different malignant cell types in a solid tumor may 

collaborate to produce distant metastasis
6.	� Orthotopic model for the study of human prostate cancer 

metastasis
7.	 Conclusions

1. Introduction

Prostate cancer (PCa) is one of the major causes of male 
cancer‑associated death worldwide  (1). Over the last few 
decades, screening programs have increased early diag-
nosis and identified treatments with the potential to cure 
the disease (2‑5). However, the high rates of recurrence and 
metastasis remain major challenges in treating PCa (6‑12). 
During a long period of the disease, PCa can become sensi-
tive to androgen treatment  (13,14). Testosterone controls 
cell proliferation, tumor growth and, potentially, dissemi-
nation  (15‑17), which is an advantage in treatments that 
involve androgen deprivation (AD), when curative surgery 
cannot be performed  (18,19). Pharmacological castration 
using gonadotropin‑releasing hormone (GnRH) analogs to 
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block the hypothalamus‑hypophysis‑testicular axis provides 
the first‑line treatment for disseminated PCa  (20‑22). 
However, during AD therapy, PCa cells frequently become 
androgen‑resistant, resulting in a castration‑resistant form of 
the disease with a poor prognosis (23‑25). The genetic and 
molecular mechanisms underlying androgen resistance remain 
poorly understood (26‑28). Research suggests that, in certain 
cases, the androgen receptor (AR) is involved in this resis-
tance (29‑31). On the other hand, recurrence and metastasis 
progression are complex processes that involve several mecha-
nisms and genomic modifications of malignant cells (32,33). It 
is well‑known that epithelial‑mesenchymal transition (EMT) 
is the main pathway via which malignant epithelial cells from 
carcinomas alter their gene expression profile to display a 
mesenchymal phenotype, acquiring, among other features, 
one of the hallmarks of cancer cells: Invasive behavior (34‑38). 
However, increasing evidence indicates that tumors contain a 
phenotypically heterogeneous cell population, and that the 
cooperative action of these different types of malignant cells 
is potentially required to accomplish a successful metastatic 
process (39‑42). In the past few years, a small subpopulation 
of malignant cells with stem‑like properties has been identi-
fied in numerous types of cancer, including PCa (43,44). These 
cells have been termed tumor‑initiating cells (TICs) or cancer 
stem cells (CSCs), and are hypothesized to be responsible for 
recurrence and metastasis (45‑48).

2. Androgen deprivation and local effects of GnRH analogs 
in PCa

As aforementioned, GnRH analog therapy is the gold standard 
to treat disseminated PCa (20,49). This treatment induces AD 
by blocking the hypothalamus‑hypophysis‑testicular axis, 
resulting in pharmacological castration. This type of therapy 
is very efficient at delaying tumor growth until PCa becomes 
castration‑resistant (20). Gene amplification, mutations and 
other alterations in the AR gene have been identified (29,50‑52). 
In addition, overexpression or constitutive activation of other 
proliferation signaling pathways that overcome androgen 
control have been reported  (53,54). In addition, alterations 
in androgen metabolism within the prostate gland have been 
associated with androgen sensitivity (55,56). It is postulated 
that castration‑resistant PCa arises from a combination of these 
different mechanisms. Our previous research, as well as other 
studies, have reported the presence of GnRH receptor (GnRH‑R) 
in PCa cells (57‑59). Furthermore, it has been observed that 
GnRH analogs induce proliferation arrest and apoptosis in PCa 
cells in a primary culture system (57,58). GnRH‑R expression 
increases from benign prostatic hyperplasia to medium histo-
logical grade (Gleason score 6‑7), and subsequently decreases 
in samples from patients with higher Gleason scores  (60). 
Local cellular effects of GnRH analogs may be of clinical 
relevance, as these effects remain despite cell androgen insensi-
tivity (58,60). Concentrations >20 ng/ml are required to obtain 
significant in vitro apoptotic effects (61); however, the plasma 
concentrations in patients receiving AD treatment are below 
this level (62). This problem may be solved via intraprostatic 
administration of GnRH analogs. Unfortunately, patients who 
are castration‑resistant often have a higher Gleason score 
and, as aforementioned, GnRH‑R expression decreases with 

higher Gleason scores. There is evidence that GnRH‑R in PCa, 
specifically in the gonadotropic cells, is retained primarily 
in the endoplasmic reticulum, where it can be moved to the 
plasma membrane using peptide‑mimetic compounds called 
pharmacoperones (pharmacological chaperones) (60). Using 
this strategy, it is possible to increase GnRH‑R expression in 
cultured PCa cells and sensitize them to the apoptotic effects of 
GnRH analogs (Fig. 1).

3. EMT and CSCs in PCa

EMT is a process in which an epithelial genetic program 
switches to a mesenchymal program; as a result, an epithelial 
cell loses its polarity, proliferation, and differentiation control 
and positioning, changing to a mesenchymal phenotype (63‑65). 
This is a physiologically normal process occurring primarily 
during embryonic development (66). During carcinogenesis, 
similar genetic changes occur in carcinomas that transform a 
malignant epithelial cell into a highly proliferative and inva-
sive mesenchymal‑like cell (65,67). Epithelial malignant cells 
progressively lose adhesion molecules, such as E‑cadherin, 
syndecans and tight junction molecules, whereas gene‑regu-
lating factors, including Snail family transcriptional repressor 
SNAI1, SNAI2, zinc finger E‑box‑binding homeobox 1/2 and 
TWIST increase their expression, together with mesenchymal 
markers such as vimentin, N‑cadherin and metalloproteinases, 
resulting in an invasive cell phenotype (35,38,68‑70).

In PCa, syndecans are associated with Gleason score and 
EMT markers (71‑73). It is hypothesized that this mesenchymal 
and invasive phenotype is responsible for the metastatic 
process  (68,74). However, there is no direct evidence that 
these mesenchymal cells (MCs) also have colonizing abilities. 
Conversely, increasing evidence suggests that a small popula-
tion of malignant cells present in most types of tumor, CSCs, 
may be responsible for the final step in recurrence and metas-
tasis (75‑77). Our previous study identified and characterized a 
CSC population in PCa samples and determined their molecular 
stem signature (CD133+/CD44+/ABCG2+/CD24‑) (78). In addi-
tion, proliferative, migratory, invasive and clonogenic abilities 
have been evaluated in this cell population (79). It is possible to 
separate this CSC population from mesenchymal‑like cells by 
changing culture conditions, followed by magnetic‑associated 
cells sorting (MACS) (78). In adherent conditions, most cells 
remain in a mesenchymal differentiate state, which has been 
determined from using specific markers and functional assays. 
However, in non‑adherent conditions, most mesenchymal 
adherent cells die by anoikis (anchorage‑dependent apoptosis), 
whereas a few cells survive, and rapidly form spheres that 
grow and remain for several weeks (78). Following MACS, 
separated sphere‑forming cells represent an enriched CSC 
population (78). These CSCs exhibit a low proliferation rate, 
increased resistance to apoptosis and drug treatments, reduced 
invasive properties and a high clonogenic capacity compared 
with that in mesenchymal‑adherent cells  (79). In addition, 
these PCa CSCs have no expression of GnRH‑R or AR, nor 
of numerous differentiation markers (79). Preliminary experi-
ments within our laboratory using CSCs with stable expression 
of AR and GnRH‑R via lentiviral transduction suggest that 
these cells can become sensitive to androgens and GnRH 
analogs (unpublished data) (Fig. 2).
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4. Tumor cell phenotypic heterogeneity and metastatic 
processes

It is becoming apparent that tumors present a significant 
degree of cell heterogeneity  (80,81). Tumor heterogeneity 
may be understood at the phenotypic and genetic level (82). 
Tumor cell phenotypic heterogeneity will specifically be 
discussed. Cellular and molecular mechanisms responsible 
for this heterogeneous cell population remain poorly under-
stood. There remains controversy regarding the origin of 
CSCs, and several hypotheses have been suggested (76,83‑85). 
However, regardless of the origin of CSCs, the relevant point, 
particularly for clinical application, is that such a population 
is present in the majority of cancers studied. The multifocal 
origin of cancer cells within the organ and the distinct differ-
entiation fate during EMT process may explain, in part, this 
phenomenon (75,86). As with the process of microevolution, 
cancer cells adapt to different microenvironments, first within 
the tumor niche and subsequently in potential metastatic 
niches (87,88). Within the tumor, it is possible to find a hypoxic 
microenvironment, for instance in the center of a solid tumor, 
whereas in the periphery, where neoangiogenesis is occurring, 
a more oxygenated milieu is more prevalent (89,90); cancer 
cells adapt differently to these distinct microenvironments. 
Therefore, it is possible that during EMT progression, certain 
cells express a stem gene program, forming a stable CSC 
population within a tumor (91‑93).

Metastasis is an inefficient process; it is estimated that 
<2% of total cancer cells entering the blood stream from a 
solid tumor will be able to colonize a premetastatic niche (94). 
Furthermore, <0.02% will be able to survive in that niche and 
support sustained growth to give rise to clinically evident meta-
static foci (94). Evidence suggests that this is not a stochastic 
process, indicating that not all malignant cells are able to sustain 
metastasis (94). Furthermore, very few cells have the ability to 
colonize, survive and grow in a tissue or organ different to the 
one from which it originated (95). The majority of researchers 
investigating CSCs have concluded that these metastatic cells 
express stemness genes and exhibit little invasive capacity (96). 
Previous results from our laboratory in CSCs from PCa are 

consistent with this hypothesis  (78). Instead, PCa CSCs, as 
with other CSCs, have a low proliferation rate, high resistance 
to drugs and apoptosis (particularly anoikis), sphere‑growing 
ability and a high clonogenic capacity (97‑99). Determining how 
these CSCs, with little invasive activity, can leave the tumor and 
colonize premetastatic niches will be subsequently addressed. 

Metastasis is a complex process. Premetastatic niches 
are developed in advance by several signals originating from 
the initiating tumor determining the tissue tropism of the future 
metastatic foci (100,101). It is proposed that, once in the blood 
stream, CSCs are guided by homing signals from these premet-
astatic niches (102,103). Once colonizing a metastatic site has 
begun, CSCs can be induced by niche milieu factors to survive 
and proliferate, or to become quiescent (104,105). In the event 
of quiescence, future microenvironmental changes can subse-
quently induce cell proliferation and tumor growth, resulting in 
relapse, even if curative surgery was performed to remove the 
primary tumor (104). In human PCa, bone is one of the main 
sites of distant metastasis (106). Stromal‑cell‑derived‑factor 
1, acting through C‑X‑C chemokine receptor 4 on malig-
nant cells, is hypothesized to promote cell survival in the 
niche (106). Secretion of several interleukins, tumor necrosis 
factor‑α and other factors by cancer cells stimulates secretion 
of the receptor activator of NF‑κB ligand (RANKL), which 
in turn stimulates osteoclast differentiation (107). Increased 
osteoclast activity releases bone matrix and growth factors 
that promote CSC survival and growth for metastatic progres-
sion (106‑108). Exosomes secreted by CSCs and bulk cancer 
cell cultures derived from PCa contain various microRNAs 
(miRNAs/miRs). Comparing those miRNAs using next‑gener-
ation sequencing followed by bioinformatics analysis, specific 
miRNAs, such as miR‑100‑5p, miR‑21‑5p and miR‑139‑5p were 
found to be overexpressed and, analyzed in an in vitro system, 
they increased the expression of metalloproteinases‑2, ‑9 and 
‑13, and RANKL, as well as fibroblast migration, supporting 
the idea that the different PCa cells contribute cooperatively to 
prepare the premetastatic niche (100).

Considering that CSCs appear to be the only cells within 
a tumor with the ability to form metastasis, it is reasonable to 
propose that any increase in circulating CSCs will raise the risk 

Figure 1. Comparison of systemic and local effects of GnRH analogs. (A) Systemic delivery of GnRH analogs blocks the hypothalamus‑hypophysis‑testicular 
axis, producing pharmacological castration that inhibits the AR‑induced cell growth and survival of PCa cells. (B) Locally, in PCa cells, GnRH analogs 
activate GnRH‑R, inducing phosphorylation of p53, and resulting in increased expression of TrkA and p75, which inhibits cell growth and stimulates the 
apoptosis of PCa cells. These effects can be potentiated with pharmacoperone IN3 by increasing GnRH‑R availability in the cell membrane. AR, androgen 
receptor; DHT, dihydrotestosterone; FSH, follicle‑stimulating hormone; GnRH, gonadotropin‑releasing hormone; GnRH‑R, GnRH receptor; LH, luteinizing 
hormone; PCa, prostate cancer; TrkA, tropomyosin receptor kinase A.
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of metastasis or recurrence (88,109‑111). Our previous study 
investigated the expression of stem signatures in PCa samples 
of different histological grades, using a tissue microarray and 
quantitative immunohistochemistry (78). It was observed that 
the number of cells expressing stem markers increases with 
Gleason grade, reaching maximal levels at medium Gleason, 
and decreasing thereafter in high‑Gleason grade, lymph node 
and bone metastatic samples (78). Considering that malignant 
cells begin to enter the blood stream shortly after the tumor 
becomes locally invasive (low‑to‑medium histological grade), it 
is possible that a patient with a localized tumor with a medium 
Gleason score will contain the maximal number of CSCs 
potentially leaving the tumor and spreading throughout blood 
stream. At this stage, the indicated therapy is surgical removal 
of prostate gland (112). However, if CSCs already released 
from the tumor have seeded the metastatic niches, recurrence 
risk would be high. This is an important point to consider, 
particularly in patients with localized tumors of low Gleason 
grade where the therapeutic recommendation is active surveil-
lance (5,113). Therefore, identifying and quantifying CSCs in 
PCa biopsies may be a valuable prognostic factor for relapse.

5. Different malignant cell types in a solid tumor may 
collaborate to produce distant metastasis

Reanalyzing the problem of how CSCs with little invasive activity 
can leave the tumor and colonize premetastatic niches, it is 
reasonable to suggest that some type of collaboration with highly 
invasive mesenchymal‑like cells occurs  (45,96). Previously, 
Celià‑Terrassa et al  (114) provided evidence regarding this 
potential cooperative action. Using commercial cell lines derived 
from PCa (PC3) and bladder cancer (TSU‑Pr1), these were 
enriched with metastatic TICs, a cell population with a strong 

epithelial profile. In turn, they deprived TICs, a cell population 
with a mesenchymal profile. Overexpression of mesenchymal 
genes in the former cell population (epithelial phenotype) 
decreased its TIC ability, whereas knockdown of these genes in 
the latter cell population (mesenchymal phenotype) enhanced 
its TIC capacity (114). Using immunocompromised nonobese 
diabetic/severe combined immunodeficiency (NOD/SCID) 
mice, it was observed that, injected in combination, mesen-
chymal‑like cells increased the metastatic potential of epithelial 
TIC‑enriched cell populations, suggesting a cooperative action 
between both cell types (114). Subsequently, the same research 
group described that secreted protein acidic and rich in cysteine 
(SPARC) mediates the metastatic cooperation between CSC 
and non‑CSC cell subpopulations (39). 

Recently, it was reported that SPARC induced EMT, 
increasing the invasive capacities of PCa cells  (115). 
Collectively, these findings support the hypothesis that within 
a tumor, MCs become the predominant population via EMT, 
increasing the invasive capacity of the tumor. However, it has 
been proposed that a small cell population that expresses a 
stem‑like program (CSCs) remains in the tumor and can escape 
passively with the bulk of MCs. Once in the metastatic niche, it 
is hypothesized that CSCs proliferate and produce progenitor 
cells that may further differentiate to an epithelial‑like 
phenotype. This may explain certain findings revealing that 
in metastatic PCa samples, an increase in epithelial markers 
and a decrease in mesenchymal markers is observed, which 
has been called mesenchymal‑epithelial transition (116,117). 
It is postulated that the metastatic foci will generate the full 
heterogeneity of the original tumor, in which epithelial‑like 
cells will undergo EMT again, whilst a small number of CSCs 
are retained in the tumor. On the other hand, tumor cell plas-
ticity influences the phenotypic heterogeneity of tumor cells, 

Figure 2. Resensibilization of CSCs to AD therapy could achieve long‑term remission of metastatic CRPC. (A) CSCs are characterized by high resistance to 
apoptosis, low proliferation rates and low invasive capacities; as they do not express AR and GnRH‑R, they are not responsive to AD therapies. (B) MCs have 
less resistance to apoptosis, and high invasive and migratory capacities; as they express AR and GnRH‑R, they are responsive to AD therapies. (C) In a PCa 
tumor, characterized by heterogenous subpopulations, MCs represent the bulk of the tumor. CSCs and MCs cooperate to form metastases. MCs migrate and 
invade within the tumor stroma, allowing CSCs to escape to the circulation and grow in the metastatic niche, where they are able to grow and generate the 
full heterogeneity of the original tumor. After AD therapy with GnRH analogs, androgen‑responsive MCs are in remission, but androgen‑insensitive CSCs 
accumulate and the tumor returns. Resensibilization of CSCs to GnRH analogs using pharmacoperones or lentiviral transduction could lead to long‑term 
remission of metastatic CRPC. AD, androgen deprivation; AR, androgen receptor; CRPC, castration‑resistant PCa; CSC, cancer stem cell; MC, mesenchymal 
cell; GnRH, gonadotropin‑releasing hormone; GnRH‑R, GnRH receptor; PCa, prostate cancer.
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with the varied cell abilities enabling cooperation to promote 
cancer progression and metastasis. Differential cell distribu-
tion within the tumor, and spatial and temporal patterns during 
EMT‑stemness processes may influence cell frequencies and 
the results of the proposed cell cooperation (118). This may 
contribute to why different patients with PCa at the same stage 
may have different outcomes. 

Personalized medicine should take into consideration this 
evidence to develop novel and innovative therapeutic strategies. 
In this context, resensibilization of PCa cells (including CSCs) 
to GnRH analogs using pharmacoperones or lentiviral trans-
duction may provide an effective treatment against metastatic 
castration‑resistant PCa. It is necessary to validate this hypoth-
esis using CSCs and MCs derived from the tumors of various 
patients. Metastasis is, by definition, a process that occurs in 
a living organism. Therefore, there are no in vitro models for 
investigating this complex pathological process. In previous 
years, several in vivo models have been developed (119‑124). 
The majority of these use immunocompromised mice, and 
several mouse strains have been obtained, a number of them 
via transgenic manipulation (124‑126). One of the most used 
models, at present, is the NOD/SCID mouse (127).

6. Orthotopic model for the study of human PCa metastasis

The NOD/SCID mouse has been widely used to investigate the 
metastasis of several types of human cancer (128). A critical 
issue is the type of injection used to introduce human cancer 
cells. Numerous researchers use subcutaneous, intravenous 
or intracardiac administration, with varying results (114,129). 
Additionally, orthotopic models have been developed (injec-
tion in the same mouse organ or tissue from which human cells 
were derived). This model mimics the metastatic process more 
precisely (129). Reports of orthotopic models for human PCa 
have been published (130‑132). A modification of the ortho-
topic model for PCa using a cell injection in one of the anterior 
lobes of the NOD/SCID mouse prostate has been developed 
by our laboratory (133,134). This orthotopic injection results 
in consistent and reproducible metastatic progression. First, a 
fraction of tumor cells injected in the mouse prostate survives 
and generates a tumor derived from surviving injected cells 
(transduced with luciferase and red fluorescent protein genes). 
The fluorescence allows the tracking of metastatic progression 
in vivo using in vivo imaging equipment. In a chronological 
sequence, metastatic foci begin to appear in the liver, lungs and 
the kidneys. Injection of cells into the anterior lobe, instead 
of the ventral prostate, has the advantage that it is possible to 
surgically remove the prostate tumor to evaluate the progres-
sion of metastasis, with or without the primary prostate tumor. 
In this orthotopic model, the utility of prostatectomy during 
metastasis progression has been demonstrated (134), as has the 
effect of knocking down the stemness gene Sox2 on metastasis 
(unpublished data). In current studies, progression towards a 
castration‑resistant PCa mouse model using surgical castration 
as an AD strategy is being established. 

7. Conclusions

In conclusion, it is proposed that there is cooperation between 
CSCs and MCs during metastatic progression. Further 

development of preclinical orthotopic models of PCa may 
provide additional evidence supporting this hypothesis. In 
addition, the role of stem genes, as well as AR, GnRH‑R and 
differentiation genes, in metastasis progression and hormone 
resistance may have critical relevance. Further investigation 
of these aspects will contribute to the understanding of the 
cellular and molecular mechanisms of metastasis, recurrence 
and hormone resistance in PCa, which remain major chal-
lenges for the treatment of this disease. It is predicted that 
evidence obtained using preclinical models, will be beneficial 
for clinical purposes in the near future, identifying novel 
prognostic factors and therapeutic targets.
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