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Abstract. Colorectal cancer (CRC) is the second most 
common malignancy causing cancer‑related mortality glob‑
ally. It is the third most common type of cancer detected 
worldwide. The recent concept of the human body supporting 
a diverse community of microbes has revealed the impor‑
tant role these microbes play synergistically in maintaining 
normal homeostasis. The balance between the microbiomes 
and epithelial cells of the human body is essential for normal 
physiology. Evidence from meta‑genome analysis indicates 
that an imbalance in the microbiome is prominent in the 
guts of patients with CRC. Several studies have suggested 
that the gut microbiota can secrete metabolites [short‑chain 
fatty acids (SCFAs), vitamins, polyphenols and polyamines] 
that modulate the susceptibility of the colon and rectum by 
altering inflammation and DNA damage. The state of micro‑
biome imbalance (dysbiosis) has been reported in patients 
with CRC, with an increasing population of ‘bad’ microbes 
and a decrease in ‘good’ microbes. The ‘good’ microbes, also 
known as commensal microbes, produce butyrate; however, 
‘bad’ microbes cause a pro‑inflammatory state. The complex 
association between pathological microbial communities 
leading to cancer progression is not yet fully understood. An 
altered microbial metabolite profile plays a direct role in CRC 
metabolism. Furthermore, diet plays an essential role in the 
risk of gastrointestinal cancer development. High‑fiber diets 

regulate the gut microbiome and reduce the risk of CRC 
development, and may be fruitful in the better management 
of therapeutics. In the present review, the current status of the 
microbiome in CRC development is discussed.
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1. Introduction

Globally CRC is one of most common malignancies, ranking 
as the third most frequently diagnosed type of cancer and the 
second cause of cancer‑related mortality worldwide (1). CRC 
stems from acquiring genetic and epigenetic alterations over 
the course of several years referred to as the adenoma‑carci‑
noma sequence (2). CRC is a multifaceted and heterogenous 
disease and its etiology emerges from an interaction between 
the host and the environment. The role of microbes among 
environmental factors in carcinogenesis has been recognized. 
Infectious agents have been estimated to cause >15% of all 
cancers; for example, Helicobacter  pylori causes gastric 
cancer, hepatitis B and C viruses cause hepatocellular cancer 
and papilloma virus causes cervical cancer. The scientific 
community has begun to study the role of the host‑microbe 
interaction in cancer progression. Microbiota refers to the 
diverse community of microorganisms present in a specific 
environment. This has emerged as an important environmental 
factor for gastrointestinal cancer and CRC. The gut micro‑
biome consists of a large population of bacteria (>100 billion) 
interacting with intestinal cells of the host, affecting immunity 
and the metabolome (3). Microbial composition varies along 
the gastrointestinal tract; 70% of microbes are located in the 
colorectum where interaction and crosstalk take place  (4). 
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The large intestine, particularly the colon, is more prone to 
developing cancer as compared to the small intestine, due to 
the heavy colonization of the microorganism. Cancer incidence 
is 12‑fold more in the colon as compared to the remainder of 
the gastrointestinal tract (5). 

The microbiota is important for normal physiological 
functions, such as energy harvest (6) and the immune maturity 
of the gut (7). Alterations in relative abundance can modulate 
the balance, leading to pathological conditions, such as obesity, 
metabolic disorders and autoimmune disease (8‑10). Certain 
microbes and their metabolites may create a microenvironment 
that is more favorable to cancer growth (11). Emerging evidence 
suggests that the gut microbiota plays an important role in the 
initiation and progression of CRC (12). Previous research with 
germ‑free animals have demonstrated a role for the microbiota 
in a number of models of carcinogenesis (13). The associa‑
tion between the microbiota, inflammation and CRC is well 
understood; patients with inflammatory bowel disease (IBD) 
are known to be more susceptible to CRC progression. The 
composition and diversity of microorganisms varies among 
different individuals, depending on diet, antibiotic/medicine 
consumption and chemical exposure (14). Dietary habits and 
lifestyle are well‑established risk factors known to alter the gut 
microbiota. Alterations in diet have been found to affect the 
microbiota (15). The gut microbiota releases various metabo‑
lites that may have beneficial or damaging effects on the 
host. The production of metabolites, such as short‑chain fatty 
acids (SCFAs), polyphenols, vitamins and polyamines lead 
to the pathogenesis of human disease. Recent findings have 
reported that SCFAs, specifically butyrate, play a critical role 
in immunomodulatory functions. Alterations in SCFA levels 
and other amino acid metabolites have been known to play 
an important role in cancer progression and metastasis (16). 
The biosynthesis of chemical carcinogens by microorganisms, 
such as N‑nitroso compounds and acetaldehyde are among the 
potential mechanisms through which the microbiota may play 
a role in cancer progression. Resarch on the gut microbiota has 
provided a new direction and hope for the early detection of 
CRC, specifically during the early stages, increasing the 5‑year 
survival rate, as compared to the late stages (17). The detec‑
tion of alterations in certain microorganisms has provided a 
promising strategy for the early diagnosis of CRC (17). Some 
microbes have been shown to exert a protective effect against 
CRC by metabolite production, immune tolerance and outcom‑
pete with detrimental microbes (18). The better understanding 
of the microbiota and host interaction would provide novel 
opportunities for the early detection of CRC and therapeutics 
targeting the microbiota. The present review focuses on the 
role of the microbiota associated with CRC development.

2. Bacteria associated with CRC

It is known that an adult human houses approximately 1013 
bacteria in the colon and other parts of the large intestine, 
which are chiefly responsible for maintaining gut homeo‑
stasis (19). It is the commensal relation with the gut microbiota 
that inhibits the invasion and colonization of pathogenic 
bacterial species in the gut and helps boost immunity. The 
gut microbiota is composed of several hundreds of bacterial 
species, which are predominantly anaerobic in nature, and 

include species such as Lactobacilli, Enterobacteriaceae, 
Streptococci, Bacteroides, Bifidobacterium, Fusobacterium, 
Enterococci, Peptostreptococcus and Atopobium (20). A few 
of these bacterial populations have been identified as contribu‑
tors to CRC and tumorigenesis, exerting a pro‑carcinogenic 
effect, whereas few of these are known to inhibit tumorigen‑
esis in the colon, acting as protective species. Comparative 
analyses of the metagenomic and metataxonomic profiles of 
the gut microbiota found in the colon of patients with CRC and 
healthy individuals revealed that the gut microbiota compo‑
sition of a patient with CRC differed significantly from that 
of a healthy individual, where pro‑carcinogenic taxa such as 
Fusobacterium, Bacteroides, Escherichia and Streptococcus 
were found in abundance along with a reduction in the 
population of protective microbes, such as Bifidobacterium, 
Lactobacilli and Clostridium (21‑24). 

A pyrosequencing‑based strategy adopted to study 
microbial dysbiosis in patients with CRC explained that the 
elevation in the population of Bacteroides fragilis (B. fragilis) 
can be linked to the development of cancer in the colon (25). 
B. fragilis is known to be an enterotoxigenic strain producing 
a bacterial toxin (metalloprotease) known as the B. fragilis 
toxin (BFT) responsible for the virulent properties of the 
strain (26). In the study by Ahn et al the taxonomic analyses 
of the gut microbiota was carried out by the amplification of 
16srRNA sequences obtained from fecal bacterial DNA; it 
was observed that the increased abundance of the anaerobic 
Gram‑negative genera, Fusobacterium and Porphyromonas, 
led to an increased risk of CRC development in the indi‑
viduals (27). Fusobacterium nucleatum (F. nucleatum) was 
found in abundance in the fecal samples of patients with 
CRC and various clinical and metagenomic studies have 
highlighted a significant role of F. nucleatum in the inflam‑
matory response of IBD and CRC (27,28). Along the similar 
lines of research i.e., based on the sequencing of 16srRNA, 
the clinical study performed by Wu  et  al revealed that 
Campylobacter and Fusobacterium species were relatively 
more abundant in CRC samples along with several other 
families, such as Enterococcaceae, Staphylococcaceae and 
Eubacteriaceae, exerting pathogenic effects in the colon (28). 
Another anaerobic commensal bacterium predominant in the 
gut microbiota is Escherichia coli (E. coli) and a previous 
study on mice inoculated with colon cancer associated 
E. coli strains reported an increase in the colonization of 
tumor‑associated and mucosa‑associated E. coli strains in 
patients with CRC (29). E. coli strains obtained from CRC 
samples were found to express certain toxin‑producing genes, 
such as colibactin, which confer bacterial cells with properties 
to induce DNA damage and genomic instability, subsequently 
causing colorectal carcinogenesis (30). The statistical study 
by Zhang et al also revealed an elevation in the numbers of 
Devosia in the gut microbiota of patients with CRC (31). 

Apart from elevated levels of several pathogenic microbes in 
the mucosal and fecal samples of patients with CRC, Ahn et al 
in their study, also highlighted a decrease in the population of 
Gram‑positive strains of Clostridia, specifically Coprococcus, 
increasing the risk of inflammation in the colon followed by 
tumorigenesis (27). Some butyrate‑producing genera, such as 
Roseburia, Faecalibacterium and Eubacterium were signifi‑
cantly reduced in the microbiota obtained from CRC samples, 
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suggesting that dysbiosis in the fecal microbiota can serve as 
a marker for CRC detection (28,31). Another notable observa‑
tion for the dysbiosis of the colon microbiota was made by 
Marchesi et al where upon investigating the tumor tissues of 
patients with CRC, a significant reduction in the population 
of Enterobacteriaceae was identified, namely in species such 
as Citrobacter, Shigella, Serratia, Salmonella and Kulyvera 
spp. (32). Lactic acid bacteria (LAB), such as Bifidobacterium 
and Lactobacilli have also been found to play a negative role 
in CRC (33). An imbalance in the microbial population can 
alter the micro‑environment of the intestine, which cause an 
imbalance in crucial intrinsic and extrinsic factors, resulting in 
the initiation of cancerous growth. A summary of the bacteria 
playing a role in CRC development is provided in Table I. 

3. Bacterial metabolites and CRC development

To date, various metagenomic studies performed on clinical 
samples obtained from individuals suffering from CRC 
have pointed towards the abundance of pathogenic bacterial 
strains of F.  nucleatum, Bacteroides  fragilis and E.  coli. 
On the contrary, a significant reduction in the population of 
butyrate‑producing strains belonging to the class Clostridia, 
are also considered to be a contributing factor to CRC. Thus, 
the understanding of the metabolites produced by these species 
and their mechanisms of action is critical in order to reach to 
better diagnostic and therapeutic conclusions and to assist in 
devising novel treatment strategies.

F. nucleatum. Several studies on F.  nucleatum have 
suggested the involvement of this bacteria in triggering 
epithelial‑mesenchymal transition (EMT) in colon tissues. 
F. nucleatum is known to adhere and invade epithelial cells by 
employing several virulence factors, such as Fusobacterium 
adhesin A (Fad A), Fusobacterium autotransporter protein 2 
and Fusobacterium outer membrane protein A respon‑
sible for promoting pro‑oncogenic signaling and CRC 
development  (34‑36). In order to provide further insight 
into the metabolite alteration leading to EMT induced by 
these virulence factors in colorectal carcinogenesis, Ma et al 
carried out a detailed analysis on the interactions of these 
virulence factors with E‑cadherin/β‑catenin resulting in an 
altered molecular mechanism upon the infection of epithelial 
cells with F. nucleatum (37). Upon infection, F. nucleatum 
was found to increase the phosphorylation of p65, a crucial 
component of NF‑κB signaling and to enhance the produc‑
tion of interleukin (IL)‑6, IL‑1β and matrix metalloproteinase 
(MMP)‑13. This activation of NF‑κB signaling indicated that 

F. nucleatum induced inflammation in colon tissue, which 
subsequently led to tumorigenesis (37). From previous studies 
conducted on cell adhesion, it is a well‑known fact that the 
loss of E‑cadherin and β‑catenin‑mediated cell adhesion is a 
crucial factor for inflammation and the induction of tumori‑
genesis (38,39). Surprisingly, F. nucleatum did not alter the 
expression levels of E‑cadherin and β‑catenin in epithelial 
cells and was found to interact only with E‑cadherin to induce 
inflammatory response and promote malignant phenotype of 
CRC (37). Another study by Abed et al revealed that Fap2, a 
Gal‑GalNAc binding protein, is expressed on the surface of 
F. nucleatum (36). Fap 2 functions as Gal‑GalNAc lectin in 
CRC cells, where it binds to Gal‑GalNAc overexpressed in 
CRC cells and causes the expansion of CRC by inhibiting anti‑
tumor immune activity by targeting T cell immunoglobulin 
and ITIM domain (TIGIT) (35,36). This indicates that viru‑
lence factors, such as FadA along with surface proteins of 
F. nucleatum may be a potential target for the development of 
an immunotherapy against CRC.

The role of F.  nucleatum in experimental colitis was 
recently confirmed and it was found that F. nucleatum along 
with dextran sodium sulfate (DSS) synergistically promoted 
EMT and the aggressiveness of CRC  (40). F.  nucleatum 
was found to play a pro‑tumorigenic role by activating the 
EGFR, AKT and ERK signaling pathway in azoxymethane 
(AOM)/DSS‑induced CRC. The F. nucleatum cell surface 
protein, FadA, induces DNA damage by upregulating chk2 
in CRC progression. Treatment with F. nucleatum resulted 
in DNA damage in adenomatous polyposis coli (APC) (‑/+) 
mice (41). The number, size and tumor burden were reduced 
following treatment with FadA‑/‑ F. nucleatum as compared to 
WT, demonstrating a direct role of the cell surface protein of 
F. nucleatum in tumor progression (41). Recently, Okita et al 
described a heavy to moderate load of F. nucleatum (Fn) DNA 
associated with high microsatellite instability (MSI‑H) and 
L/E [L: MSI‑L/E: Elevated level of microsatellite alterations 
at selected tetra‑nucleotide repeats (EMAST)] in two CRC 
cohorts; they further presented evidence that Fn activated 
factors that promote γ‑H2AX, a marker for DNA damage (42). 
In another study, murine and human enteroid‑derived mono‑
layers (EDMs) co‑cultured with Fn exhibited a downregulation 
of a key DNA repair protein, NEIL2 (DNA glycosylase) (43). 
NEIL‑/‑ EDMs exhibited increased DNA damage and elevated 
cytokine levels. Furthermore, NEIL2 downregulation is 
mainly observed in microsatellite stable (MSS) CRC, as 
compared to MSI CRC, indicating that Fn accumulation 
induces NEIL2 downregulation, resulting in DNA damage 
and thus leading to CRC progression. A recent study on 

Table I. Bacteria playing a key role in the development of colorectal cancer. 

Bacteria	 Effector	 Mechanisms of action

Escherichia coli	 Genotoxins (pks)	 DNA damage
Enterotoxigenic Bacteroides fragilis	 Bacteroides fragilis toxin	 Inflammation, immune surveillance, EMT
Fusobacterium nucleatum	 FadA, Fap2	 DNA damage, antitumor immune activity, 
Streptococcus gallolyticus	 SGG specific bacteriocin	 Cell proliferation
Peptostreptococcus anaerobius	 Unknown	 ROS accumulation, Cholesterol biosynthesis
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microRNA (miRNA/miR) profiles and proteomic analysis 
from Fn‑infected and non‑infected cells found that the genera‑
tion of miR1246/92b‑3p/27a‑3p‑rich and CXCL16/RhoA/IL‑8 
exosomes promoted pro‑metastasis (44). Bone‑marrow derived 
mesenchymal stem cells (BMSCs) infected with Fn have 
also exhibited increased tumor growth and an enhanced 
susceptibility to tumors an APC (‑/+) mouse transplantation 
model. Fn‑infected BMSCs also displayed accelerated cancer‑
initiating potential and invasiveness in a nude murine model 
by activating Wnt‑β‑catenin‑transforming growth‑interacting 
factor (TGIF) signaling pathways  (45). The co‑culture of 
human CRC cell lines (SW480 and HCT116) with Fn was also 
shown to result in an increased expression of mesenchymal 
markers, such as Vimentin, Snail and Zeb1. Furthermore, Fn 
infection increased the capability of intrusion, migration and 
tumor‑sphere formation along with a high expression of CD44, 
indicating that Fn plays a critical role in EMT and the cancer 
stem cell phenotype (46). These finding confirmed that the Fn 
play important role in the progression of CRC.

Bacteroides fragilis. Enterotoxigenic Bacteroides fragilis 
(ETBF) is an enterotoxin producing bacterium found in an 
abundance in fecal samples obtained from patients with CRC 
is known to cause virulence with the aid of a metalloprotease 
holotoxin, BFT, also known as fragylisin (47). BFT is associ‑
ated with acute diarrhea, IBD and CRC. This BFT binds to 
the colonic epithelial cell (CEC) surface protein receptor, 
initiating E‑cadherin cleavage (47). E‑cadherin in its intracel‑
lular domain is bound to β‑catenin, which is a very crucial 
component of the Wnt signaling pathway. The degradation 
of E‑cadherin releases β‑catenin and facilitates EMT, and 
increases cell permeability by decreasing cell adhesion (48). 
The degradation of E‑cadherin also facilitates the production 
of chemokines, such as IL‑6, IL‑8 and IL‑1β, which activate 
NF‑κB and MAPK signaling in CEC, generating inflamma‑
tory response in cells followed by carcinogenesis (49). The 
binding of BFT to CEC receptor also leads to the activa‑
tion of key cellular pathways, such as signal transducer and 
activator of transcription (STAT)3 along with the formation 
of reactive oxygen species and nitrogen species which are 
known to cause DNA damage in epithelial cells and this 
genomic instability caused due to damaged DNA enhances 
expression of several oncogenes such as c‑Myc by multi‑folds, 
leading to the development of adenomas and carcinomas 
in the colon and rectum (50). Zamani et al investigated the 
mucosal colonization of ETBF to find the potential associa‑
tion of ETBF in benign and malignant lesions. B. fragilis was 
abundantly associated with patient samples as compared 
to healthy control  (51). ETBF was increasingly associated 
with serrated lesions and with low‑grade dysplasia adenoma. 
Liu et al found that ETBF increased the stemness of CRC by 
upregulating Nanog and Sox2 expression. They found that 
mechanistically, ETBF significantly elevated JMJD2B by acti‑
vating TLR4 pathway (52). In a colitis CRC model, with ETBF 
colonization in wild‑type BALB/c mice, the administration of 
AOM/DSS increased the rapid development of large number 
of polyps mainly in the colon and rectum (53). Roberti et al 
studied the contribution of gut microbes to the elicitation of 
the follicular helper T (TFH) response (54). Ileal microbiota 
(Bacteroides fragilis and Erysipelotrichaceae) was involved 

in the protective immune response against colon cancer. The 
ileal microbiome plays an important role in immune surveil‑
lance and in the prognosis of proximal colon cancer and 
chemotherapy‑mediated ileal crypt apoptosis (54). Bacteroides 
fragilis‑associated long non‑coding RNA (lncRNA1: BFAL1) 
mediates ETBF cancer progression in CRC; BFAL1 expres‑
sion is increased in CRC compared with adjacent normal 
tissues. ETBF promotes CRC tumor growth through BFAL1 
by activating RHEB (Ras homolog)/mTOR signaling. BFAL1 
and ETBF are highly expressed in tumor tissues and predict 
poor outcomes in CRC (55). 

E.  coli. E.  coli is a Gram‑negative commensal bacterium 
of the human microbiota and represents the most common 
cultivable and aero‑anaerobic bacteria. A number of studies 
have demonstrated a clear link with CRC (56‑60). According 
to the acquisition of factors of virulence, there are four E. coli 
phylogenic groups (A, B1, B2 and D). Groups A and B1 are 
generally not pathogenic; however, groups B2 and D are 
involved in intestinal and extra‑intestinal pathogenesis. Crohn's 
disease, a chronic IBD known to be a risk factor for CRC, is 
caused by some strains of phylogroup B2 that are associated 
with it  (60,61). Swidsinski et al  (58) and Martin et al  (59) 
demonstrated that mucosa‑associated E.  coli resided in 
higher numbers in patients with CRC than in the controls, 
supporting the central role of these bacteria in CRC develop‑
ment. Pathogenic E. coli strains synthesize various virulence 
factors (62). These factors consist of several toxins known as 
cyclomodulins, such as cytolethal distending toxins (CDT), 
cytotoxic necrotizing factor (CNF), cycle inhibiting factor and 
colibactin. Cyclomodulins are genotoxic and known to alter 
cell cycle progression, proliferation, cell differentiation and 
apoptosis (63‑68). Cuevas‑Ramos et al stated that a specific 
type of bacterial strain belonging to the B2 phylogenetic 
group possessed a unique gene island termed ‘pks’, which 
translates into the genotoxic compound, colibactin, possessing 
genotoxic properties causing DNA double‑strand breaks and 
chromosomal instability (CSI) in human cells (68). As regards 
cyclomodulin‑producing E. coli, a previous study revealed an 
increased prevalence of cyclomodulin‑producing B2 E. coli 
in colon tumor biopsies, suggesting a possible role of such 
pathogenic E. coli in colon carcinogenesis (30).

This genotoxic compound generates double‑strand 
breaks in DNA causing damage to several portions of DNA, 
rendering it unstable and this instability of the genome paves 
the way for the upregulation of expression of oncogenes, such 
as c‑Myc, which results in the formation of adenomas and the 
development of CRC (56,67).

Peptostreptococcus ssp. Recent studies have found that 
patients with an enrichment of Peptostreptococcus stomatis 
(P. stomatis) and Peptostreptococcus anaerobius (P. anaero-
bius) have a higher risk of CRC development (69‑71). Patient 
stool and tissue are enriched with P. anaerobius in CRC. 
Tsoi et al indicated the pro‑tumorigenic role of P. anaerobius 
modulating TLR2 and 4 leading to reactive oxygen species 
(ROS) accumulation, resulting in cholesterol biosynthesis 
and proliferation (70). Purcell et al found the enrichment of 
P. stomatis in consensus molecular subtype 1 (CMS1) of CRC 
tumor tissue (71). P. stomatis supports bacteria colonization 
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by promoting acidic and hypoxia around tumor microenvi‑
ronment (71). Long et al found that P. anaerobius promoted 
CRC in APC (‑/+) mice and altered tumor immunity by 
the PCWBR2‑integrin α2/β1 ‑PI3K‑AKT‑NFkB signaling 
pathways, identifying the PCWBR2‑integrin α2/β1 axis as a 
potential therapeutic target in CRC (72).

Streptococcus gallolyticus. S.  gallolyticus has long been 
associated with CRC. Kumar et al reported significant role 
of few selected strains of Streptococcus gallolyticus subsp. 
gallolyticus (SGG) in CRC and upon a detailed analysis 
of its metabolite profile and mechanisms of pathogenesis, 
S. gallolyticus was found to enhance the proliferation of CRC 
cells by targeting Wnt/β‑catenin signaling and upregulating 
β‑catenin in cells, thereby elevating the expression of target 
oncogenes c‑Myc and cyclin‑D, resulting in the adenocarci‑
noma of CRC tissue (73). Kwong et al found that CRC diagnosis 
was associated with S. gallolyticus by perturbing barrier func‑
tion (69). Another study found that tumorigenic conditions 
promoted the S. gallolyticus colonization of gut by activation 
of SGG‑specific bacteriocin and replacing commensal entero‑
cocci (74). Some strains of S. gallolyticus have been found to 
induce cell proliferation designated as proliferation‑promoting 
Sg: PP‑Sg and others were not found to stimulate cell prolifera‑
tion and therefore classified as non‑proliferation‑promoting: 
NP‑Sg. PP‑Sg found to higher colonization in mice as 
compared to NP‑Sg, owing to the better interaction of PP‑Sg 
with host epithelial cells. Furthermore, PP‑Sg promoted CRC 
development in an AOM mouse model (73) (Table I).

Apart from these bacterial species mentioned above, there 
are several other microbes predominantly found in the fecal 
and mucosal samples of patients with CRC, and play a key 
role in pathogenesis and carcinogenesis. Microbiota analysis 
of healthy individuals indicated that several species of LAB 
namely, Lactobacillus acidophilus, L. casei, L. rhamnosus 
exert anti‑inflammatory effects in maintaining gut homeo‑
stasis (75,76). L. rahmnosus was found to reduce the levels 
of β‑catenin and NF‑κB p65 proteins, and to induce the 
expression of tumor suppressor gene p53 and anti‑apoptotic 
factor BAX in colon epithelial cell, thus preventing CRC (76). 
Bifidobacterium, another LAB, exerts a negative effect on CRC 
proliferation due to its property to reduce β‑glucuronidase 
activity in the gut which enhances the chemotherapeutic 
efficacy of CPT‑11, hence providing a beneficiary role in the 
treatment of CRC (77). The detailed role of these commensal 
LABs in the prevention of CRC has yet to be identified and can 
be explored in the near future in order to gain better insight 
into potential treatment strategies for CRC. The abundance 
of Parvimonas micra has been found in the stool of patients 
with CRC. P. micra was found to inhibit the NOD2 signaling, 
giving rise to an inflammatory and pro‑tumorigenic micro‑
environment (78). Xu et al found that P. micra abundance 
was elevated in patients with CRC and was low in healthy 
individuals and patients with colorectal adenoma (79). The 
overabundance of Porphyromonas gingivalis has been found 
in patients with CRC (80). Yang et al reported an association 
between Prevotella  intermedia with a higher risk of CRC 
development  (81). Another study identified P.  intermedia 
in a multinational cohort of fecal samples of CRC  (82). 
Gemella  morbillorum has been found to regulate IL‑12 

production and thereby, immunoregulation in CRC. Other 
species of Gemella regulate the protective function of the 
adaptive immune response at the mucosal surface by cleaving 
IgA1 (83,84). Still, however, no direct role of this bacteria has 
been reported in CRC development. A schematic diagram of 
the mechanisms of action of major species of bacteria involved 
in the development of CRC in humans is presented in Fig. 1.

4. Host‑microbe interaction

CRC can be caused due to the cumulative effects of several 
genetic, epigenetic and environmental factors, which modu‑
late microbial composition in the gut, altering the metabolite 
profile and the immune response of the body accordingly. 
CRC is not a single‑step process, but rather a culmination of 
several steps which involve a number of changes in the genetic 
and epigenetic machinery of the host. The development of 
CRC begins with the transition of a normal epithelium into the 
hyperproliferative epithelium, which eventually leads to the 
loss of its structure and function, leading to a condition known 
as hyperplasia followed by dysplasia, leading to the formation 
of adenomas. These adenomas are non‑malignant in nature 
and are known as polyps (85). In this section, the host‑microbe 
interaction in the context of epigenomic modifications and 
immune system alterations is discussed.

Microbiota‑genome/epigenome interactions. Allen and Sears 
highlighted the impact of the dysbiosis of the gut microbiome 
on genome and epigenomics of the colon epithelial cells which 
increased cell proliferation and tumor formation, growth and 
metastasis (86). DNA methylation patterns and histone marks 
on several promoters and enhancers were found to be dysregu‑
lated, leading to the downregulation of tumor suppressor genes 
(TSGs) and the upregulation of oncogenes. Several of the 
miRNAs (oncomiRs and anti‑oncomiRs) and long non‑coding 
RNAs have also been found to be dysregulated and associ‑
ated with CRC (86). B.  fragilis has been found to induce 
the hypermethylation of several TSGs, such as Hoxa5, Polg, 
Runx1, Runx3, CD37, Stx11, Tceb2, Lgr6, Cdx1 and Fut4, 
causing carcinoma development in the colon and rectum (86). 
Xia et al identified F. nucleatum and Hungatella hathewayi 
to be highly associated with the upregulation of DNA meth‑
yltransferases which cause the hypermethylation of promoter 
of TSG CDX2 and MLH1 (87). In a previous study, the APC 
gene and DNA mismatch repair (MMR) system were the 
prime genetic factors identified, which if altered or silenced, 
led to the development of CRC (88). In an extensive clinical 
analysis performed by Gagnière et al the MMR pathway was 
shown to be most affected by entero‑pathogenic E. coli. They 
reported that pks+ E. coli strains downregulated the expression 
of MLH1 genes and inhibited the formation of MLH1 MMR 
protein in T‑84 cells, which led to MSI and tumorigenesis (89). 
In addition, methylation in APC and INK4a TSG also 
promoted tumor development in the case of colitis‑associated 
CRC (90‑92). Streptococcus species have also been identified 
to be associated with APC gene hypermethylation (87). 

Apart from methylation, dysregulation in the expression of 
miRNAs serves as a major epigenetic marker responsible for 
CRC. F. nucleatum is often found to increase RASA1 expres‑
sion by inhibiting miR‑21 expression, thus leading to chronic 
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inflammation in the intestine, initiating carcinogenesis (93). 
F. nucleatum has also been found to downregulate the expres‑
sion of miR‑4802 and miR‑18a, which lead to resistance against 
chemotherapeutic drugs administered to patients suffering 
from CRC (94). Several other oncomiRs and anti‑oncomiRs 
were analyzed from fecal samples and gut mucosa, which 
revealed differential miRNA profiles in the presence of 
different gut microbiome, and this variation in miRNA profiles 
can also serve as a fingerprint for the detection and diagnosis 
of CRC (95,96).

Microbiota‑immune system interaction. The gut microbiota is 
known to contribute immensely towards the maintenance of 
the immune system. Fluctuations in the dynamic equilibrium 
of this microbiota composition leads to defects in the immune 
system, resulting in inflammation and in tumor initiation. 
Genotoxins from B. fragilis and pks+ E. coli are known to 
induce inflammation in colon epithelial cells and this inflam‑
matory response by the host induces genetic and epigenetic 
alterations, which contribute to CRC development  (97). 
Mutations in the tumor suppressor p53 gene are commonly 
associated with cancer initiation, as well as progression, 
and they have been found to prolong the effects of NF‑κB 
signaling, which generates the inflammatory response in 
cells (98). Inflammation triggers oxidative stress, increasing 
DNA damage and causing mutations in genes, such as APC, 
directing the Wnt signaling pathway and KRAS, which 
initiates adenoma formation and is followed by the loss of 

chromosome 18q and mutations in TP53, resulting in CSI 
and in the formation of carcinomas (99,100). Inflammation in 
cells often regulates the production of chemokines and cyto‑
kine‑driven signaling pathways, such as the NF‑κB, PI3K, Akt 
and ERK pathways. These signaling pathways are responsible 
for the initiation of tumorigenesis by either upregulating Wnt 
signaling, which promotes cell proliferation or by inhibiting 
apoptosis (101). F. nucleatum has also been found to enhance 
pro‑inflammatory markers and the infiltration of CD11b+ 
myeloid immune cells and few macrophages, activating Th17 
cells and TGFβ signaling, which promotes tumor initiation 
and angiogenesis (102). 

This interaction of F. nucleatum with the host immune 
system suggests its prime role in CRC. F. nucleatum induces 
cancer development by altering the host immune response in 
the tumor microenvironment. F. nucleatum expresses various 
cell surface proteins (FadA, Fap2 and RadD) which can 
activate inflammatory factors and favor an environment for 
tumor growth by recruiting inflammatory cells. F. nucleatum 
can promote the immune suppression of the intestinal mucosa 
by inhibiting the function of T cells, natural killer (NK) 
cells and macrophages, resulting in CRC progression (103). 
Cancer‑targeting NK cells are also inhibited by F. nucleatum, 
due to the binding of Fap2 protein on T‑cells (35). It is the 
combination of CSI and MSI mechanisms that govern the 
development of adenoma‑carcinoma in colorectal tissues. 
CSI is under the influence of immune factors, which is in a 
synergy with the MSI pathway characterized by changes in the 

Figure 1. Mechanisms of action followed by major species of bacteria involved in the development of CRC in humans: F. nucleatum: Virulence factors, 
such as Fad A disrupts E‑cadherin and promotes the Wnt signaling pathway, resulting in the inflammatory response by colon epithelial cells and adenoma 
and carcinoma formation. B. fragilis: BFT acting as a virulence factor found to be actively associated with cleavage of E‑cadherin complex and subsequent 
activation of NF‑κB signaling to generate CRC. Simultaneously, BFT induces oxidative stress, causing DNA damage, and the upregulation of c‑Myc oncogene 
expression to initiate carcinogenesis in the colon. Peptostreptococcus spp.: Triggers adenocarcinoma formation by activating α2/β1 integrin, which further 
activates a cascade involving the ERK1/2 and PIK3/AKT pathways; E. coli: Specific E. coli strains producing genotoxic compound colibactin bind to DNA 
and cause damage in DNA sequence, leading to genomic instability and the development of adenocarcinoma in colorectal tissue; S. gallolyticus: Actively 
involved in upregulation of β‑catenin and Wnt signaling pathway‑overexpressing c‑Myc and cyclin D, resulting in CRC. CRC, colorectal cancer; F. nucleatum, 
Fusobacterium nucleatum; B. fragilis, Bacteroides fragilis; BFT, Bacteroides fragilis toxin; S. gallolyticus, Streptococcus gallolyticus.
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epigenetics of colon epithelial cells (100); the three commonly 
found pro‑carcinogenic microbial strains, F.  nucleatum, 
B. fragilis and E. coli, have been observed to exert an equal 
influence on both the pathways driving towards CRC. By 
contrast, several protective microbial species known to 
produce butyrate and propionate exert an inhibitory effect on 
CRC by producing SCFAs and activating cancer‑preventing 
phytochemicals  (100). A schematic illustration of the 
crosstalk between several factors which play a key role in the 
development of CRC is presented in Fig. 2.

The composition of microbes in the host are a continuous 
influence on the environment and in order to protect them‑
selves, microbes belonging to specific species tend to form 
mucosal biofilms. These microbial biofilms exert a protective 
function for the microbiota from immune factors present in the 
host (104). The study by Dejea et al demonstrated that biofilms 
were characteristically found in almost all the patients with 
right‑sided CRC (105). The microbial composition of these 
biofilms was then further studied and it was predominantly 
found that microbes belonged to Bacteroides, Fusobacteria, 
Clostridia, Bifidobacterium and E.  coli  (104,105). These 
biofilms in the colon have been found to exert pro‑carcino‑
genic effects by disrupting E‑cadherin, and enhancing IL‑6, 
Ki63 and pSTAT3 expression in the colon epithelium (105), 
more specifically on the right side. The presence of these 
biofilms often results in a poor prognosis (100). Thus, it can be 
conveniently concluded that biofilms can serve as a signature 
biomarker for CRC.

5. Microbiome‑associated early diagnosis

The present review thus far discussed several microbial 
species which act as a driving force behind the occurrence of 
CRC. This dysbiosis in the microbiota is frequently studied 
by obtaining fecal samples. The metabolomic study of fecal 
dysbiosis has pointed towards the utility of microbial dysbiosis 
as a signature biomarker for the early prognosis and diagnosis 
of CRC (106). The most pathogenic bacterial strains identified 
as driving microbes for CRC, F. nucleatum and B. fragilis, 

can serve as fecal biomarkers for the early diagnosis of 
CRC (107,108), since elevated levels of these bacterial species 
have been found to be associated with an elevation in the levels 
of major inflammatory mediators (109). F. nucleatum has been 
found to increase the levels of β‑catenin and TGF‑β, whereas 
B. fragilis upregulates the expression of NF‑κB, COX‑2 and 
MMP‑9, which can be indicative of early signs of CRC. 
Faecalibacterium prausnitzii (F. prausnitzii) was found in low 
levels in the fecal microbiota of patients with CRC and was 
responsible for low levels of β‑catenin. Hence, the detection of 
F. nucleatum, B. fragilis and F. prausnitzii in fecal samples of 
individuals can help detect signs of CRC at an early stage. In 
addition, the analysis of these inflammatory mediators along 
with immunohistochemical markers, such as enhanced KRAS 
expression and decreased MLH1 expression can serve as 
effective diagnostic markers for early prognosis of CRC (109). 
Wu et al carried out a 16srRNA based meta‑analysis on fecal 
biomarkers for CRC and adenoma and identified 24 biomarkers 
sorted into three clusters, out of which first and third cluster were 
found to have heterogenous population of bacteria and second 
cluster had relatively homogenous population comprising 
mainly of members of Clostridiales order (110). These clus‑
ters were claimed to be distinguishing biomarkers between 
adenoma and cancer in the colon and rectum (110). Microbes 
belonging to genera Porphyromonas, Parvimonas, Hungatella 
and Bacteroides were CRC‑associated biomarkers, whereas 
Streptococcus thermophilus TH1435, Roseburia intestinalis, 
Blautia  faecis and Eubacterium ruminantium were found 
to be adenoma‑associated biomarkers  (110). miRNAs are 
often found to mediate the crosstalk between microbes and 
the immune system. Hence, detecting fecal miRNAs and 
their analysis can prove to be beneficial in the prognosis of 
CRC and may also provide insight into the early diagnosis, 
as these fecal miRNAs play a significant role in the fecal 
dysbiosis of the microbial population (111‑113). These fecal 
miRNAs interact with the microbiota and have been found 
to help F. nucleatum and E. coli invade host intestinal cells, 
disrupting the intestinal homeostasis  (114). A preliminary 
investigation in this context was performed by Li et al to find 

Figure 2. Crosstalk between several factors playing key roles in the development of CRC. Environmental factors, such as smoking/pollution/chemical expo‑
sure and food habits (high alcohol intake, high‑fat diet, processed foods and red meat consumption), along with metabolic disorders (diabetes and obesity) 
lead to dysbiosis in the gut microbiota. Dysbiosis becomes the major early event leading to genetic and epigenetic alterations of tumor suppressor genes, 
proto‑oncogenes and DNA repair genes, driving the transformation of the normal colonic epithelium and alteration in immune response leading to CRC devel‑
opment. Hypermethylation and mutations lead to the dysregulation of signaling pathways (TGFβ/KRAS/Wnt) and dysbiosis mediated differential expression 
of miRNAs, further enhancing the development of CRC and metastasis. CRC, colorectal cancer.
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a conclusive association between the differential expression of 
several oncomiRs and anti‑oncomiRs, and distinctive micro‑
biome profiles in CRC specimens (115). Fecal miRNAs can be 
upregulated, as well as downregulated under the influence of 
bacterial metabolites and virulence factors, exerting a carcino‑
genic effect (116). Among several dysregulated miRNAs, the 
ones which are upregulated were miR‑17‑92 cluster, miR‑20a, 
miR‑135, miR‑144, miR‑221 and miR‑92a, and those found to 
be downregulated were miR‑29a, miR‑224, miR‑143, miR‑145 
and miR‑4478, significantly contributing to CRC and serving 
as non‑invasive fecal biomarkers for the early diagnostics and 
therapeutic implication in CRC.

6. Exploiting the microbiome for CRC therapeutics

CRC is not a single‑step process occurring due to one 
particular pathway or one individual bacterial strain, but 
rather an amalgamation of several epigenetic and immuno‑
modulated cascades, which are initiated due to an increased 
abundance and synergistic effect of characteristic ‘Driver 
and Passenger’ bacteria i.e., F.  nucleatum, B.  fragilis, 
E. coli, E. faecalis and Streptococcus spp. Therefore, there 
are several treatment strategies devised and several of these 
are on their way from ‘bench to bedside’ in order to combat 
CRC. These therapeutic strategies can be broadly classi‑
fied into chemotherapy and immunotherapy, following two 
different approaches but reaching to a similar conclusion 
i.e., a cure for CRC. Chemotherapy involves the administra‑
tion of potent anticancer drugs (5‑fluorouracil, oxaliplatin, 
irinotecan, etc.) in combination, to eliminate or inhibit tumor 
cells. Targeted therapeutics have been approved by the FDA 
for the treatment of CRC, such as cetuximab, a monoclonal 
antibody against EGFR, bevacizumab, inhibitor of angio‑
genesis and capecitabine, inhibitor of DNA synthesis (94). 
The efficacy of these chemotherapies are often found to be 
affected by gut microbiota‑induced toxicity and chemore‑
sistance (117‑119); for instance, F. nucleatum renders CRC 
resistant to the chemotherapeutic drugs, oxaliplatin and 
5‑FU. This chemoresistance by F. nucleatum was observed 
on colorectal cell lines in vivo and the induction of autophagy 
by F.  nucleatum has been found to be the prime reason 
behind it (119). A previous study found that F. nucleatum was 
also involved in the risk of recurrence following neoadjuvant 
chemoradiotherapy in locally advanced rectal cancer (120). 
Within the tumor microenvironment, the intestinal micro‑
biota was found to regulate the functions of myeloid derived 
cells, thereby affecting the response to chemotherapy against 
cancer (85). Since the gut microbiota was often observed to 
interfere and affect the efficacy of anticancer drugs through 

its interaction with immune cells (121‑123), there is an urgent 
need to identify alternatives to chemotherapy.

Immunotherapy is a biological method of motivating the 
immune system to fight by stimulating or suppressing body's 
own immune cells as per requirement in order to elicit an 
immune response. Now that microbes have been found to play 
a key role in development, as well as in the diagnosis of CRC, 
it was hypothesized by several groups that protective bacte‑
rial species if restored/maintained in the intestine, can serve 
as bio‑therapeutic in triggering the host immune response 
against virulence factors generated by drivers of CRC. Several 
clinical trials have highlighted the antitumor potential of 
L. acidophilus and Bifidobacterium, and suggested their utility 
as a probiotic in the treatment of CRC, where it can be admin‑
istered orally to patients. This will help restore the balance 
of commensal microbial genera in the gut and preventing 
intestinal toxicity (79). The study by Sivan et al detailed the 
potency of Bifidobacterium as a probiotic and its efficacy as 
a biotherapeutic agent (121). Bifidobacterium in the gut, on 
its oral administration to patients with CRC, reduced tumor 
growth to an extent similar to that obtained by treatment with 
anti‑PD‑L1 therapy, and when the probiotic in combination with 
therapy was used for treatment, Bifidobacterium enhanced the 
response of anti‑PD‑L1 antibody therapy and abolished tumor 
growth (121). Another immune checkpoint therapy involves 
targeting anti‑CTLA4 in the intestine to induce the maturation 
and activation of dendritic cells and exert antitumor effects; 
several gut microbiota species are known to have a positive 
impact on this immunotherapy (122). A positive impact of 
the gut microbiota in several other immune therapies have 
been deduced which target induction of CD8+ T‑lymphocytes, 
macrophages and the activation of dendritic cell, and major 
histocompatibility complex (MHC) driven pathways in order to 
exert antitumor effects (123). The restoration of the commensal 
gut microbiota population beneficial for intestinal epithelia, 
can trigger several immunoregulatory pathways and minimize 
adverse effects of immunotherapy. Thus, it may prove to be 
crucial in treatment of CRC and can pave the way for the 
development of novel therapeutic approaches (22). Another 
therapeutic approach involves the bioengineering of bacteria 
to trigger the immune response in the host. Cancer‑invading 
bacterial cells were engineered, such that they produce a short 
hairpin segment of RNA which can effectively interact with 
β‑catenin to suppress Wnt signaling and inhibit tumor forma‑
tion in colorectal tissue (124). Thus, the human gut microbiota 
plays a crucial role in determining the efficacy and toxicity 
potential of a treatment, and also provides a great future pros‑
pect for developing novel biotherapeutics using gut microbiota 
and its metabolites for the treatment of CRC. A summary of 

Table II. Novel therapeutic strategies for the treatment of colorectal cancer and their possible mechanisms of action.

Therapeutic strategy	 Mechanisms of action

L. acidophilus and Bifidobacterium as Probiotics	 Reduces tumor growth by enhancing anti‑PD‑L1 antibody response.
Probiotics in combination with immunotherapy	 Targeting anti‑CTLA4 response and activation of dendritic cells
Bioengineering of bacteria as novel therapeutics	 Produces shRNA which downregulates Wnt signaling on interaction
	 with β‑catenin
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novel therapeutic strategies for the treatment of CRC and their 
possible mechanisms of action is presented in Table II.

7. Conclusion

Several studies have revealed that the microbiota composition 
has been altered in benign lesions and in malignant tumors of the 
colon and rectum. Moreover, in patients with CRC, a dysbiosis 
in the gut microbiota has been found as compared to healthy 
controls. An enrichment in pro‑inflammatory microbiota and 
the depletion in butyrate‑producing bacteria has been noted. The 
dysbiosis of the gut microbiota in CRC results in the impair‑
ment of the intestinal epithelial barrier function, the activation 
of pro‑inflammatory responses, genotoxin synthesis and toxic 
metabolite generation. The gut microbiota should be considered 
as a prime factor that can contribute to both CRC initiation and 
development. Dysbiosis can be avoided by the intake of dietary 
components that can alter the cancer‑associated microbiome 
and suppress intestinal inflammation. This strategy can improve 
the cancer therapeutic response and prevent the progression of 
CRC. Furthermore, once the microbiome composition of a given 
patient is characterized, using a personalized medical approach, 
a desired bacterial equilibrium could be restored using pre and 
probiotics and a tailored phage therapeutics. Identifying the 
mechanistic pathways through which the gut microbiota influ‑
ences CRC would help in devising more effective strategies 
for the treatment of CRC. Therefore, targeting metabolome by 
drugs or diet modulation and developing immunogenic peptides 
against cell surface proteins would improve the therapeutic 
efficacy for CRC and overall survival.
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