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Abstract. Acute myeloid leukemia (AML) is a complex 
hematological disorder characterized by blockage of differ‑
entiation and high proliferation rates of myeloid progenitors. 
Anthracycline and cytarabine‑based therapy has remained 
the standard treatment for AML over the last four decades. 
Although this treatment strategy has increased survival rates, 
patients often develop resistance to these drugs. Despite efforts 
to understand the mechanisms underlying cytarabine resis‑
tance, there have been few advances in the field. The present 
study developed an in vitro AML cell line model resistant to 
cytarabine (HL‑60R), and identified chromosomal aberrations 
by karyotype evaluation and potential molecular mechanisms 
underlying chemoresistance. Cytarabine decreased cell 
viability, as determined by MTT assay, and induced cell death 
and cell cycle arrest in the parental HL‑60 cell line, as revealed 
by Annexin V/propidium iodide (PI) staining and PI DNA 
incorporation, respectively, whereas no change was observed 
in the HL‑60R cell line. In addition, the HL‑60R cell line 
exhibited a higher tumorigenic capacity in vivo compared with 
the parental cell line. Notably, no reduction in tumor volume 
was detected in mice treated with cytarabine and inoculated 

with HL‑60R cells. In addition, western blotting revealed 
that the protein expression levels of Bcl‑2, X‑linked inhibitor 
of apoptosis protein (XIAP) and c‑Myc were upregulated in 
HL‑60R cells compared with those in HL‑60 cells, along with 
predominant nuclear localization of the p50 and p65 subunits 
of NF‑κB in HL‑60R cells. Furthermore, the antitumor 
effect of LQB‑118 pterocarpanquinone was investigated; this 
compound induced apoptosis, a reduction in cell viability and 
a decrease in XIAP expression in cytarabine‑resistant cells. 
Taken together, these data indicated that acquired cytarabine 
resistance in AML was a multifactorial process, involving 
chromosomal aberrations, and differential expression of apop‑
tosis and cell proliferation signaling pathways. Furthermore, 
LQB‑118 could be a potential alternative therapeutic approach 
to treat cytarabine‑resistant leukemia cells.

Introduction

Acute myeloid leukemia (AML) is a complex hematological 
disorder characterized by blockage of differentiation and high 
proliferation rates of myeloid progenitors, leading to bone 
marrow (BM) failure (1,2). AML has an incidence of ~20,000 
new cases per year in the United States (3) and is associated 
with very high mortality rates (4,5). AML incidence rates in 
Brazil vary according to region, mainly due to socioeconomic 
inequalities that impact healthcare access and appropriate 
diagnosis. Although Brazilian records do not differentiate the 
incidence between leukemia types, 5,920 cases in men and 
4,890 in women are expected in 2020‑2022 for all types of 
leukemia, and AML is the most common type of leukemia in 
adults (6). The reduced overall survival (OS) rate of patients 
with AML is intrinsically related to resistance of leukemia 
cells to therapy, with the majority of patients initially 
achieving remission and later progressing to a more aggressive 
disease (7,8).
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The standard therapy for AML, which includes anthracy‑
cline and cytarabine, has remained unchanged over the last 
40 years; however, it is inefficient at prolonging OS and curing 
a large majority of patients, except for those with promyelocytic 
leukemia (9,10). Pyrimidine analogues, such as cytarabine, 
are the key drugs used to treat AML and present a chemical 
structure similar to cytosine (11,12). Despite efforts made to 
understand the mechanisms underlying cytarabine resistance 
in AML, only a few advances have been made (13,14), this may 
be because it involves multiple molecular mechanisms (15). 
Some pathways involved in apoptosis evasion, including 
increased levels of the inhibitor of apoptosis proteins (IAPs) 
and imbalanced expression of Bcl‑2 family proteins, have been 
reported to have key roles in cytarabine resistance and poor 
prognosis (16‑19).

Other pathways involved in chemotherapy resistance 
involve dysregulated expression and function of transcription 
factors, such as c‑Myc and NF‑κB (20‑22). In addition, c‑Myc 
expression has been associated with BM stromal cell‑mediated 
resistance in AML cell lines, and high c‑Myc expression has 
been associated to high cytogenetic risk and poor prognosis in 
patients with AML (23,24). 

Since most patients develop resistance to AML standard 
therapy, the search for alternative treatment options is essential. 
The LQB‑118 synthetic compound has been reported to exert 
antitumoral effects on AML cells with a multidrug resistant 
(MDR) profile. The LQB‑118 compound has also exhibited 
cytotoxic effects on chronic myeloid leukemia (CML) MDR 
cell lines and patient samples. Its antitumor activity in AML 
and CML cells has been associated with reduced expression 
of survivin and X‑linked IAP (XIAP) anti‑apoptotic proteins, 
and modulation of NF‑κB subcellular localization (25‑29). 

The present study developed an in vitro AML cell line 
model resistant to cytarabine and investigated the mechanisms 
underlying the development of chemoresistance. Moreover, the 
potential antitumor effect of LQB‑118 on a cytarabine‑resistant 
AML cell line was assessed; to the best of our knowledge, this 
has not been previously investigated. The present study aimed 
to better understand the mechanisms underlying cytarabine 
resistance in an AML‑resistant cell line and investigated 
the potential antitumor effect of LQB‑118 compound in a 
cytarabine‑resistant cell line.

Materials and methods 

Cell culture, generation of a cytarabine‑resistant cell line 
and drug treatment. HL‑60 (ATCC® CCL‑240™/P53 null; 
American Type Culture Collection) and HL‑60R human cell 
lines (FAB M2) were cultured in RPMI (Gibco; Thermo Fisher 
Scientific, Inc.) supplemented with 10% heat‑inactivated fetal 
bovine serum (Gibco; Thermo Fisher Scientific, Inc.) and 2 mM 
L‑glutamine (Sigma‑Aldrich; Merck KGaA). The HL‑60R 
cell line was obtained through culturing HL‑60 parental cells 
with increasing doses of cytarabine (Accord Farmacêutica 
Ltd.). Concentrations ranged between 0.001  and  50  µM, 
doubling every three passages, for 6 months. The cell lines 
were maintained in a humidified incubator (Thermo Fisher 
Scientific, Inc.) at 37˚C and 5% CO2, and the HL‑60R cell 
line was continuously cultured with 50 µM cytarabine. The 
drug was withdrawn 24 h prior to subsequent assays. Cell 

lines were tested for Mycoplasma contamination by PCR and 
the genotypes were confirmed by short tandem repeat. The 
LQB‑118 synthetic compound was developed and produced 
by Dr Paulo Costa and Dr Chaquip Netto in the Laboratory 
of Bioorganic Chemistry at the Natural Products Research 
Institute of the Federal University of Rio de Janeiro (Rio 
de Janeiro, Brazil) (29). For experiments with the LQB‑118 
compound, HL‑60 and HL‑60R cells were incubated with 
different concentrations of the compound (1.5, 3, 6 and 9 µM 
for MTT assay; 3  µM for other assays) for 24  h at  37˚C. 
Untreated cells (cultures in drug‑free media) or cells treated 
with the vehicle dimethyl sulfoxide (DMSO) were used as 
experimental controls.

Cytotoxicity assay. HL‑60 and HL‑60R cell viability was 
evaluated using the MTT assay following treatment with 
cytarabine, idarubicin (Chemicaltech Farmacêutica), dauno‑
rubicin (Farmarin) or with the LQB‑118 compound. A total 
of 2x104 cells/well were seeded in 96‑well plates and treated 
with increasing drug concentrations. After 24, 48 and 72 h, 
cells were incubated with the MTT reagent (Sigma‑Aldrich; 
Merck  KGaA) in a humidified incubator at  37˚C and 5% 
CO2 for 4  h. Formazan crystals were then solubilized in 
DMSO and the absorbance was measured at 570 nm using a 
spectrophotometer (EZ Read 400; Biochrom Ltd.).

Cell cycle progression and cell death detection. For assessment 
of cell cycle progression and cell death following treatment 
with cytarabine or LQB‑118, cells were incubated with 50 µM 
cytarabine for 48 h or 3 µM LQB‑118 for 24 h. Subsequently, 
2x105 cells were centrifuged (750 x g at room temperature 
for 3 min), washed with PBS (pH 7.4) and incubated with 
Annexin V, Alexa Fluor™ 488 conjugate (cat. no. A13201; 
Invitrogen; Thermo Fisher Scientific, Inc.) for 15 min at room 
temperature. Subsequently, propidium iodide (PI) was added 
to the cells and cell death index was evaluated by assessing 
the Annexin V/PI‑marked cells by flow cytometry. In order to 
evaluate the total apoptosis rate induced by the compounds, 
early (Annexin V+/PI‑) and late (Annexin V+/PI+) apoptosis 
was considered. Cell cycle progression was evaluated by 
PI DNA incorporation. After treatment with cytarabine or 
LQB‑118 compound, 3x105 cells were centrifuged (750 x g at 
room temperature for 3 min), washed with PBS, and incubated 
with 100 µg/ml RNAse (100 µg/ml ribonuclease A diluted 
in 40 mM citrate buffer; Sigma‑Aldrich; Merck KGaA) and 
50 µg/ml PI (50 µg/ml diluted in 40 mM citrate buffer with 
0.3% Triton X‑100) for 15 min at room temperature. Finally, 
cells were analyzed in a flow cytometer. Cells in both assays 
were assessed using the CyAn ADP analyzer flow cytometer 
and Summit v4.3 software was used for analysis (both from 
Beckman Coulter, Inc.). Three independent experiments were 
performed.

Karyotype evaluation. For karyotyping, cells were initially 
cultured in a concentration of 1x107 cells/ml for 24 h. A total 
of 2 h before the end of this incubation, cells were treated 
with colchicine (0.05 µg/ml) and maintained in a humidified 
incubator at 37˚C and 5% CO2 for 1 h. Subsequently, cells were 
incubated with hypotonic solution (0.075 M KCl) for 15 min 
for chromosome preparation, followed by a fixation step with 
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Carnoi solution (3:1, methanol:acetic acid) for 20 min at room 
temperature. To obtain GTG banding patterns, the slides were 
incubated for 10‑14 sec at room temperature in 0.1% trypsin 
solution in Dulbecco's solution [0.137 M NaCl, 0.0027 M KCl, 
0.0015 M KH2PO4, 0.011 M NaH2PO4 (pH 6.8)], washed with 
saline solution (0.9% NaCl) and stained with 2% Giemsa 
(Merck KgaA) solution in phosphate buffer for 15 min at 
room temperature. Chromosomes were identified and classi‑
fied according to the International System of Nomenclature 
of Human Cytogenetics 2016 (30) and chromosomal analysis 
was performed under optical microscopy using at least 30 
metaphases per cell line. The images were acquired through 
the Cytovision Applied Image Karyotyping System (Leica 
Microsystems, Inc.) for at least 5 to 10 metaphases for the 
assembly of karyotypes.

Analysis of FLT3 internal tandem duplications (ITDs), and 
CEBPA, DNMT3A, IDH1, IDH2 and NPM1 gene mutations. 
DNA was extracted from 1x107 HL‑60 and HL‑60R cells 
using the automated Maxwell® system (Promega Corporation). 
Genomic regions of interest were amplified by PCR using 
specific primers for CEBPA, DNMT3A exon 23, IDH1 exon 4 
and IDH2 exon 4. For amplification of targeted regions in 
CEBPA, PCR was performed using 1 unit Platinum™ Taq 
DNA Polymerase High Fidelity, 1X PCR buffer, 2 mM MgSO4, 
400 µM dNTPs (all from Thermo Fisher Scientific, Inc.), 1 M 
betaine, 400 nM each primer (Integrated DNA Technologies, 
Inc.) and 0.1 µg DNA. The thermal profile for amplification 
was: 94˚C for 5 min; 34 cycles [94˚C for 30 sec; 65˚C for 
30 sec; 68˚C for 1 min]; 68˚C for 10 min. For amplification of 
targeted regions in DNMT3A and IDH1/2, the PCR reactions 
were performed using Taq polymerase (1 unit for DNMT3A or 
2.5 units for IDH1/2), 1X PCR buffer, 1.5 mM MgCl2, 250 µM 
dNTPs (all from Thermo Fisher Scientific, Inc.), 400 nM each 
primer (Integrated DNA Technologies, Inc.) and 0.1 µg DNA. 
The thermal profile for amplification was: 94˚C for 3 min; 
35 cycles (94˚C for 30 sec; 60˚C for 30 sec; 72˚C for 1 min); 
72˚C for 10 min. Primer sequences are provided in Table SI. 
After purification with PureLink PCR purification kit 
(Invitrogen; Thermo Fisher Scientific, Inc.), amplicons were 
submitted to direct sequencing with BigDye Terminator v3.1 
Cycle Sequencing kit (Thermo Fisher Scientific, Inc.) on an 
ABI 3130xl Genetic Analyzer (Applied Biosystems; Thermo 
Fisher Scientific, Inc.). Sequence data files were analyzed 
using Mutation Surveyor software V4.0.9 (SoftGenetics, LLC).

For FLT3 and NPM1 gene expression analysis, RNA was 
isolated from 5x106 cells using TRIzol® reagent (Invitrogen; 
Thermo Fisher Scientific, Inc.). For cDNA synthesis, reverse 
transcription (RT) was performed using 200 units ImProm II 
Reverse transcriptase, 1X RT buffer, 3 mM MgCl2 (all from 
Promega Corporation), 0.2  µg random primers, 500  µM 
dNTPs, 40  units RNaseOUT (all from Thermo Fisher 
Scientific, Inc.) and 2 µg RNA. RNA was initially incubated 
at 65˚C, for 5 min, and RT was performed at 42˚C for 40 min 
and stopped at 65˚C for 5 min. FLT3 ITDs or NPM1 muta‑
tions were screened by PCR using specific fluorescent primers. 
For amplification of targeted regions in FLT3 and NMP1, the 
PCR reactions were performed using 1.5 units Taq Platinum 
polymerase, 1X PCR buffer, 2.0 mM MgCl2, 200 µM dNTPs 
(all from Thermo Fisher Scientific, Inc.), 400 nM each primer 

(Integrated DNA Technologies, Inc.) and 2 µl cDNA. The 
thermal profile for amplification was: 94˚C for 5 min; 30 cycles 
(94˚C for 30 sec; 56˚C for 45 sec; 72˚C for 30 sec); 72˚C for 
20 min, followed by fragment analysis on ABI 3130xl Genetic 
Analyzer (Applied Biosystems; Thermo Fisher Scientific, 
Inc.). Sequences were analyzed using Chimer Marker software 
V3.0.2 (SoftGenetics, LLC). 

RT‑quantitative PCR (RT‑qPCR). HL‑60 and HL‑60R 
total RNA was extracted with TRIzol reagent according to 
the manufacturer's instructions. For RT‑qPCR, RNA was 
reverse transcribed into cDNA using SuperScript II Reverse 
Transcriptase (Invitrogen; Thermo Fisher Scientific, Inc.) 
according to the manufacturer's protocol. Subsequently, qPCR 
(TaqMan® Gene Expression Assay; Applied Biosystems; 
Thermo Fisher Scientific, Inc.) was performed using the 
following Taqman probes (Applied Biosystems; Thermo 
Fisher Scientific, Inc.): MYC (Hs00153408_m1) and β‑actin 
(NM_001101.2). Thermocycling conditions were as follows: 
Incubation at 50˚C for 2 min and 95˚C for 10 min, followed by 
40 denaturation cycles at 95˚C for 15 sec, and annealing and 
extension at 60˚C for 1 min in the StepOne™ System (Applied 
Biosystems; Thermo Fisher Scientific, Inc.). β‑actin was used 
as an endogenous reference gene. The 2‑ΔΔCq method was used 
to calculate relative expression (31).

Western blotting and cell fractionation. Whole cell lysates 
were obtained using protein Cell Extraction Buffer (Invitrogen; 
Thermo Fisher Scientific, Inc.) and nuclear/cytoplasm 
fractionation was performed with the NE‑PER™ Nuclear 
and Cytoplasmic Extraction Reagents kit (Thermo Fischer 
Scientific, Inc.), according to the manufacturers' instruc‑
tions. Protein content was measured using the DC™ Protein 
Assay (Bio‑Rad Laboratories, Inc.) according to manufac‑
turer's instructions. Total proteins (20‑30 µg) were separated 
by SDS‑PAGE on 10 or 12% gels and were transferred to 
Hybond‑P membranes (GE Healthcare). Prior to antibody 
incubation, membranes were blocked with 5% nonfat milk 
for 1 h at room temperature. All primary antibodies were 
incubated overnight (16‑24 h) at 4˚C and secondary antibodies 
were incubated for 1 h at room temperature. After all antibody 
incubations, membranes were washed with Tris‑buffered 
saline with 0.05% Tween 20 (Sigma‑Aldrich; Merck KGaA). 
Anti‑Bcl‑2 (1:200 dilution, clone 124; cat.  no.  IS61430‑2; 
Dako; Agilent Technologies, Inc.), anti‑BAK (1:1,000 dilu‑
tion, polyclonal; cat. no. 3814; Cell Signaling Technology, 
Inc.), anti‑Bax (1:1,000 dilution, SPM 336; cat. no. sc‑65532; 
Santa Cruz Biotechnology, Inc.), anti‑XIAP (1:1,000 dilu‑
tion, 3B6; cat. no. 2045; Cell Signaling Technology, Inc.), 
anti‑c‑Myc (1:1,000 dilution, 9E10; cat. no. sc‑40; Santa Cruz 
Biotechnology,), anti‑NF‑κB1 p105/p50 (1:1,000 dilution, 
polyclonal; cat. no. 3035; Cell Signaling Technology, Inc.), 
anti‑NF‑κB p65 (1:1,000 dilution, C22B4; cat.  no.  4764; 
Cell Signaling Technology, Inc.), anti‑cleaved caspase‑3 
(1:500 dilution, Asp175; 5A1E; cat. no. 9664; Cell Signaling 
Technology, Inc.), anti‑pro‑caspase 3 (1:500 dilution, 
CPP32; cat.  no.  610322; BD Biosciences) anti‑β‑actin 
(1:1,000 dilution, AC‑15; cat.no.  A5441; Sigma‑Aldrich; 
Merck KGaA), anti‑lamin B (1:1,000 dilution, cat. no. NA12; 
Calbiochem; Merck KGaA) and anti‑Hsc70 (1:1,000 dilution, 
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B‑6; cat. no. sc‑7298; Santa Cruz Biotechnology, Inc.) were 
used as primary antibodies for western blotting. Anti‑mouse 
IgG (1:10,000 dilution; cat. no. A9169; Sigma Aldrich; Merck 
KGaA) and anti‑rabbit IgG‑HRP conjugated (1:10,000 dilu‑
tion; cat.  no. A9044; Sigma Aldrich; Merck KGaA) were 
used as secondary antibodies. The Clarity Max kit (Bio‑Rad 
Laboratories, Inc.) was used to visualize protein expression and 
blots were detected using the C‑digit digital system (LI‑COR 
Biosciences). Analyses were performed using ImageJ software 
version 1.53E (National Institutes of Health).

Protein phosphorylation profiling. The protein phosphory‑
lation profiles of the HL‑60 and HL‑60R cell lines were 
compared using the Human Phospho‑Kinase Antibody 
Array (cat. no. ARY003B; R&D Systems, Inc.), according to 
manufacturer's instruction.

AML xenograft model. BALB/c‑nude mice were purchased 
from Jackson Laboratory and maintained in specific 
pathogen‑free conditions in the animal facility of the Brazilian 
National Cancer Institute (INCA) all animal experiments 
were approved by the Animal Ethics Committees of INCA. 
For in vivo experiments, 34 male BALB/c nude mice (age, 
8‑12 weeks; n=16 mice/HL‑60 group; n=18 mice/HL‑60R 
group) were used. Weight was measured before randomiza‑
tion, and mean weight was 28.33±0.66  kg (presented as 
mean ± SEM). Mice were housed in microisolator cages, with 
a maximum of five mice per cage, with sterilized food and 
water given ad libitum, in an air‑filtered specific pathogen‑free 
(SPF) area. Mice were kept under a 12‑h light/dark cycle, 
and the SPF area was maintained at 18‑23˚C with 40‑60% 
humidity. The in vivo growth capacity of the AML cell lines 
was tested using a subcutaneous xenograft model. To establish 
this model, 5x106 HL‑60 or HL‑60R cells were resuspended 
in 100 µl PBS and injected subcutaneously into the right 
flank of male BALB/c nude mice (age, 8‑12 weeks; n=16 
mice/HL‑60 group; n=18 mice/HL‑60R group). The animals 
were monitored daily for tumor signal over a 58‑day period. 
After appearance, tumor dimensions were measured every 
day using a digital caliper, and the tumor volume (mm3) was 
calculated using the following formula: 0.52x(d2xD), where 
d and D refer to the smallest and largest tumor diameters, 
respectively. The tumorigenesis ratio (%) was evaluated using 
the following formula: N+/Nx100, where N+ is the number of 
mice with tumor presence and N is the number of injected 
mice (32‑35). 

To evaluate the response of HL‑60R cells to cytarabine 
in vivo, mice were randomized into two experimental groups 
(vehicle or cytarabine; n=4 mice/group) with the same mean 
tumor volume (50 mm3) on day 14 post‑injection. Cytarabine 
(100  mg/kg) and vehicle (water) were then administered 
every day for 5  days by intraperitoneal injection with a 
22G needle (33). The welfare and weight of the mice were 
monitored daily to assess cytarabine toxicity. On day  15 
post‑randomization, when the first mouse reached the largest 
tumor diameter of 20 mm, all mice were anesthetized with 2% 
isoflurane and images were captured. All mice that presented 
with a maximum tumor diameter of 20 mm on this day were 
euthanized by CO2 asphyxiation (20%/min). Mice that did 
not reach the maximum tumor diameter (20 mm) on day 15 

post‑randomization were followed up until they reached the 
maximum tumor diameter and were then euthanized. 

Statistical analyses. Statistical analyses were conducted using 
GraphPad Prism software (PRISM 5.0; GraphPad Software 
Inc.). For data analysis, one‑way ANOVA followed by 
Bonferroni post‑hoc test was applied to the results of the MTT 
assay, cell death and DNA fragmentation assays evaluating 
the effects of the LQB‑118 compound. Unpaired Student's 
t‑test was performed to analyze cell death, DNA fragmenta‑
tion and MTT assays comparing HL‑60 and HL‑60R cells. 
In addition, Kaplan‑Meier and log‑rank test was performed to 
assess in vivo survival. P<0.05 was considered to indicate a 
statistically significant difference.

Results

HL‑60R cells demonstrate resistance to cytarabine but not 
to anthracyclines used in AML treatment. First, the cytara‑
bine‑resistant HL‑60R cell line was generated by continuously 
exposing the HL‑60 parental cell line to increasing concen‑
trations of this drug. Once the cell line treatment reached 
50 µM and the cells continued to proliferate in culture, model 
validation was performed. 

The present study assessed whether cytarabine treatment 
could induce cell death and inhibit viability of the HL‑60 and 
HL‑60R cell lines. The results demonstrated that cytarabine 
impaired cell viability in the HL‑60 cell line in a time‑dependent 
manner, whereas no change was observed in the HL‑60R cell 
line (Fig. 1A‑C). Cell viability was significantly reduced in the 
HL‑60 cell line in response to treatment with 2.5 µM cytarabine 
for 24 h when compared to HL‑60R cells in the same condition 
(P<0.001; Fig. 1A). Furthermore HL‑60R cells remained viable 
even when exposed to 200 µM cytarabine for 72 h (Fig. S1). 
Moreover, treatment with 50 µM cytarabine for 48 h enhanced 
the percentage of Annexin V+ cells (P=0.0180; Fig. 2A and B) 
and DNA fragmentation (P=0.0004; Figs. 2C and S2B) in the 
HL‑60 cell line, but not in the HL‑60R cell line in the same 
conditions. In HL‑60 cells, cell cycle profile analysis indicated 
cell cycle arrest after cytarabine treatment (Fig. S2a) and high 
levels of DNA fragmentation were detected at 48 h. After 24 h 
of cytarabine treatment, more cells in the G2/M phase were 
detected in the HL‑60 group (data not shown). Anthracyclines 
are chemotherapeutic agents used alongside cytarabine in AML 
treatment (36,37). Thus, the present study investigated whether 
the HL‑60R cell line exhibited cross resistance to anthracy‑
clines. Although HL‑60 cells were shown to be more sensitive 
to idarubicin and daunorubicin treatment at earlier time‑points, 
HL‑60R cell viability was similarly decreased in a time and 
dose‑dependent manner (Fig. S3A‑F). These data indicated 
that HL‑60R cells exhibited resistance to cytarabine but sensi‑
tivity to anthracyclines used in AML treatment. Therefore, the 
HL‑60R cell line may be a useful model to understand specific 
pathways involved in acquisition of cytarabine resistance.

HL‑60R cells present a complex karyotype and do not harbor 
mutations involved in AML development and chemoresistance. 
Karyotype complexity and mutation profile are predictive and 
prognostic factors for AML, being related to complete response 
to induction therapy and OS (36). Therefore, the present study 
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investigated the karyotype and mutational profile in HL‑60 
parental and resistant cell lines. The results demonstrated 
that both cell lines presented complex karyotypes, based 
on the presence of three or more chromosomal alterations 
(Fig. S4). The HL‑60 cell line comprised two subpopulations 
coexisting in the same cell culture, both of which presented 
45 chromosomes, with only one X chromosome. One of the 
subpopulations presented the karyotype: Ins (4q), ‑5, add (9)
(p13), del(10)(p12), add(17)(p13), ‑18, +2mar, whereas the other 
possessed the karyotype: Ins (4q), ‑5, add(9)(p13), del (10)
(p12), add (17)(p13), ‑18, +3mar (Fig. S4). The HL‑60R cell 
line presented only one population, demonstrating a karyotype 
with 48 chromosomes and the presence of two X chromosomes, 
‑8, ‑9, + 14, + 15, + 18, + 20, del (9q) (Fig. S4). Subsequently, 
possible mutations in CEBPA, DNMT3A, IDH1, IDH2 and 
NPM1, as well as FLT3 ITDs were investigated. Notably, no 
mutations in the genes analyzed were detected in either cell 
line (Fig. S5) further suggesting that these gene alterations 
may not have a role in the HL‑60R resistance model.

HL‑60R cells induce increased tumorigenicity in vivo and 
preserve cytarabine resistance in subcutaneous xenograft 

models. The present study compared the ability of HL‑60 
and HL‑60R AML cell lines to generate tumors in xenograft 
models. HL‑60 and HL‑60R cell lines were inoculated into 
16 and 18 mice, respectively. The results demonstrated that 
the HL‑60R cell line presented a higher tumorigenic capacity 
in  vivo compared with the HL‑60 cell line, HL‑60R and 
HL‑60 cells induced tumorigenesis in 44.44 and 18.75% mice, 
respectively (Table I). 

The present study evaluated the response of the HL‑60R 
cell line to cytarabine treatment in vivo. Due to the low number 
of animals with tumors in the HL‑60 group, only the HL‑60R 
group was used in this experiment. After 14 days of HL‑60R 
inoculation, mice with tumor growth were randomized into 
two experimental groups: Vehicle and cytarabine (100 mg/kg 
as a single dose, intraperitoneal, for 5 days). Notably, no reduc‑
tion in tumor volume was observed in the cytarabine‑treated 
group when compared with the vehicle group (Fig. 3A and B). 
An increase in tumor volume of the animals treated with 
cytarabine (day 15: 1,506±468.6 mm3) was detected in rela‑
tion to the vehicle group (day 15: 893.2±576 mm3), but this 
increase was not statistically significant. Notably, the treat‑
ment protocol exhibited no apparent toxicity, and body weight 
and welfare were maintained (Fig. S6A). The survival curves 
showed no difference between the two groups (Fig. S6B), rein‑
forcing the ability of the HL‑60R cell line to retain resistance 
to cytarabine in vivo.

Cytarabine resistance is associated with increasing levels of 
transcription factors, and anti‑apoptotic and proliferation‑​
inducing proteins. In order to understand the pathways involved 
in cytarabine resistance in the HL‑60R cell line, the expression 
levels of proteins involved in apoptosis signaling, which could 
be differentially expressed, were evaluated. Although similar 
expression levels of Bax and BAK pro‑apoptotic proteins 
were detected, the HL‑60R cell line exhibited upregulation of 
Bcl‑2 and XIAP anti‑apoptotic proteins compared with in the 
HL‑60 cell line (Fig. 4A). Furthermore, the expression levels 
of c‑Myc, which is highly associated with proliferation in 
numerous types of cancer (38), was investigated. HL‑60R cells 
presented higher protein expression levels of c‑Myc compared 
with the parental cell line (Fig. 4A). Notably, there was no 
difference in c‑Myc mRNA expression levels between HL‑60 
and HL‑60R cells (Fig. S7), suggesting that degradation of the 
c‑Myc protein may be reduced in HL‑60R cells. 

NF‑κB expression and localization has been associated 
with resistance to chemotherapy in certain types of cancer, 
including AML (20‑22). Therefore, the present study investi‑
gated the localization and expression of p50 and p65 subunits 
of NF‑κB in the HL‑60R cell line. The results demonstrated 
that the p50 and p65 subunits exhibited enhanced nuclear 
localization in the HL‑60R cell line compared with in the 
parental cell line (Fig. 4B).

Due to the multifactorial profile associated with cyta‑
rabine resistance, a phospho‑kinase array was performed to 
compare the phosphorylation profile of HL‑60R cells and the 
parental cell line, HL‑60. Notably, the results demonstrated 
that HL‑60 and HL‑60R cells exhibited a different phos‑
phorylation profile, suggesting the involvement of several 
signaling pathways in cytarabine resistance (Fig. 4C‑E). The 
expression of phosphorylated proteins was increased in both 

Figure 1. Cytarabine has no effect on cytarabine‑resistant cell line viability. 
HL‑60 and HL‑60R cells were treated with 2.5‑50 µM cytarabine and cell 
viability was evaluated by MTT assay after (A) 24 h, (B) 48 h and (C) 72 h. 
Optical density was normalized to the control group, which was set at 100. Data 
are presented as the mean ± SD of three independent experiments. Statistical 
significance was determined by Student's t‑test. *P≤0.05, **P≤0.01, ***P≤0.001.
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cytarabine‑resistant and ‑sensitive cells. Notably, the array 
revealed that AKT oncogenic kinase, which is widely related 
to proliferation and survival in several tumor types, including 
AML (39), exhibited reduced phosphorylation in the HL‑60R 
cell line. This result was further validated by western blotting, 
where the differential expression of phosphorylated‑AKT was 
confirmed in cytarabine‑sensitive and cytarabine‑resistant 
cells (Fig. 4F). Taken together, these findings clearly indicated 
that the acquisition of cytarabine resistance in AML was a 
complex process, involving the modulation of numerous onco‑
genic signaling pathways.

LQB‑118 exhibits cytotoxicity against cytarabine‑resistant 
cells. Our previous studies demonstrated the cytotoxic 
activity of the synthetic LQB‑118 compound in several 
types of cancer, including AML (25‑29,40‑43). Therefore, 
the present study aimed to investigate the antitumor effect 
of the LQB‑118 compound particularly in cells resistant to 
cytarabine. Notably, HL‑60 and HL‑60R cells treated with 
different concentrations of LQB‑118 exhibited a very similar 
response after 24, 48 and 72 h, as determined by MTT assay 
(Fig. 5A and B). 

In order to investigate the potential of LQB‑118 to induce 
cell death in cytarabine‑resistant cells, the HL‑60R cell line 
was treated with 3 µM LQB‑118 for 24 h and apoptosis was 
evaluated by DNA fragmentation analysis, Annexin V staining, 
and analysis of pro‑caspase 3 and cleaved caspase 3 protein 
expression levels. After treatment, an increase in Annexin V+ 

cell percentage was detected (P≤0.01; Fig. 6A and B), and 
pro‑caspase‑3 expression was reduced and caspase‑3 cleavage 
was increased (Fig. 6C) in HL‑60R cells compared with the 
vehicle group. Furthermore, PI incorporation analysis revealed 
that 3  µM LQB‑118 treatment for 24  h in HL‑60R cells 
increased DNA fragmentation compared with in the vehicle 
group (P<0.001; Fig. 7A and C), whereas there was no altera‑
tion in cell cycle profile (Fig. 7B and D). Taken together, these 
data demonstrated that LQB‑118 treatment induced apoptosis 
of HL‑60R cells, with little effect on cell cycle progression. 

The present study investigated the expression levels of Bcl‑2 
and XIAP anti‑apoptotic proteins after LQB‑118 treatment, as 
these proteins were differentially expressed in HL‑60R cells 
compared with in HL‑60 cells. The results demonstrated that 
treatment of HL‑60R cells with 3 µM LQB‑118 for 24 h did 
not alter Bcl‑2 protein expression levels (Fig. 8A), but it did 
decrease XIAP protein expression levels (Fig. 8B), suggesting 
that XIAP may be involved in the mechanism underlying the 
effects of LQB‑118 on the induction of apoptosis of HL‑60R 
cells. 

Discussion

The major obstacle for successful treatment of AML, the 
most common type of acute leukemia in adults, is intrinsic 
or acquired resistance following the induction of remis‑
sion treatment (8,44‑47). Although some mechanisms have 
been implicated in cytarabine resistance, there is no clear 

Figure 2. Cytarabine‑resistant cells are not affected by cytarabine treatment. HL‑60 and HL‑60R cells were treated with 50 µM cytarabine for 48 h. After 
treatment, cell death was evaluated by (A and B) Annexin V+ detection by flow cytometry and (C) DNA fragmentation analysis. Data are presented as the 
mean ± SD of three independent experiments. Statistical significance was determined by Student's t‑test. *P≤0.05, ***P≤0.001.
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comprehension of this multifactorial phenomenon. The 
HL‑60R cell line was developed from the HL‑60 parental 
cell line, first described as a promyelocytic/FAB M3 subtype 
and later as a FAB M2 subtype due to the lack of promyelo‑
cytic characteristics, such as t(15;17) (48,49). The HL‑60 cell 
line has been widely used as an in vitro model to understand 
leukemogenesis and treatment response (50). Although some 
groups have attempted to generate cytarabine‑resistant AML 
cell lines  (51,52), the mechanisms underlying cytarabine 
resistance remain unclear. The development of therapeutic 
resistance from this in  vitro model is an important tool 
to understand the pathways underlying AML resistance 
acquisition. 

Following the induction of cytarabine resistance, the 
present study verified that cytarabine treatment did not affect 

the HL‑60R cell line in vitro and in vivo. Conversely, the 
parental cell line was demonstrated to be very sensitive to 
cytarabine treatment in vitro. The exposure of HL‑60 cells to 
low doses of cytarabine was sufficient to decrease cell viability, 
increase Annexin V+ cells and DNA fragmentation, and induce 
S phase arrest (data not shown). These effects are in agreement 
with previous studies describing the cytotoxic mechanisms 
underlying cytarabine treatment  (53‑55). Chen  et  al  (56) 
demonstrated that mice injected subcutaneously with HL‑60 
cells exhibited a reduction in tumor size following cytarabine 
treatment. Since the HL‑60 cell line demonstrated decreased 
capacity to generate tumors in xenograft models in comparison 
to the HL‑60R cell line, the HL‑60R cytarabine resistance 
phenotype was validated in vitro and in vivo. Taken together, 
the present results indicated that the HL‑60R cell line may be 

Figure 3. HL‑60R cells induce higher tumorigenicity compared with HL‑60 cells and do not respond to cytarabine in vivo. Mice were randomized and treated 
intraperitoneally with vehicle or cytarabine (100 mg/kg) for 5 days. The experiment lasted 15 days after onset of treatment. Mice were euthanized when tumor 
volume reached the limit. (A) Randomized mice in the vehicle and cytarabine (100 mg/kg) experimental groups 15 days after treatment. (B) Tumor volume of 
experimental groups over 15 days. Data are presented as the mean ± SEM. Statistical significance was determined by Student's t‑test. 

Table I. HL‑60R cells exhibit increased formation of subcutaneous tumors in vivo.

Cell type	 Follow‑up, days	 Number of injected mice	 Number of mice with tumor presence	 Tumorigenesis ratio, %

HL‑60	 58	 16	 3	 18.75
HL‑60R	 58	 18	 8	 44.44

Tumorigenesis ratio was determined according to the following formula: N+/Nx100, where N refers to number of injected mice and N+ refers 
to number of mice with tumor presence.
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considered an interesting model to study the specific pathways 
involved in acquisition of cytarabine resistance.

AML response to cytarabine depends on several factors, 
such as patient mutational profile, age, white‑blood cell count 
and karyotype (1,3). Complex karyotypes in AML are associ‑
ated with poor prognosis and treatment response (57‑59). The 
HL‑60 cell line presents two sub‑populations with complex 
karyotypes co‑existing in the same cell culture, whereas 
HL‑60R presents a single sub‑population, also with a complex 
aberrant karyotype. Notably, these cell lines do not harbor 
mutations highly associated with leukemia development, 

poor prognosis and low treatment response in AML, such as 
CEBPα, ITD‑FLT3, NPM1, c‑KIT and others (60‑62). Thus, it 
may be hypothesized that chromosomal alterations could be a 
predominant genetic force underlying the lack of response to 
cytarabine treatment in HL‑60R cells (58‑63). 

Resistance induction in HL‑60R cells led to several molec‑
ular alterations that are intrinsically linked to the absence 
of response to cytarabine‑induced apoptosis. Apoptosis 
evasion is a significant obstacle in chemotherapy response in 
several types of cancer, including AML (64,65). The results 
of the present study demonstrated that acquired cytarabine 

Figure 4. Induction of cytarabine resistance affects the protein phosphorylation pattern, and enhances the expression levels of anti‑apoptotic proteins, c‑Myc 
and nuclear NF‑κB p50. (A) Protein expression of apoptotic and proliferative‑related proteins in HL‑60R and HL‑60 cell lines. (B) p50 and p65 NF‑κB protein 
expression and localization in HL‑60 and HL‑60R cell lines. (C and D) Quantification of protein phosphorylation levels detected in HL‑60 and HL‑60R cells 
by phospho‑kinase array. (E) Representative images of the phospho‑kinase array. (F) Protein expression levels of AKT 1/2/3 in HL‑60 and HL‑60R cells, 
to validate the phospho‑kinase array. Representative images of three independent experiments are shown. XIAP, X‑linked inhibitor of apoptosis protein; 
C, cytoplasmic fraction; N, nuclear fraction; p‑AKT, phosphorylated‑AKT.
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resistance in HL‑60R cells promoted the upregulation of 
the anti‑apoptotic protein Bcl‑2; however, no alterations were 
observed in the expression levels of the pro‑apoptotic proteins 
BAK and Bax. Corroborating these data, high Bcl‑2/Bax ratios 
were previously revealed to be associated with decreased rates 
of OS and complete remission in AML (18,65), which might 
be closely linked to the acquisition of cytarabine resistance.

IAP family members serve a significant role in conferring 
poor prognosis to patients with AML (66). Previous studies 
revealed that XIAP upregulation could be associated with 
AML poor prognosis  (65‑67), as well as with doxorubicin 
resistance in vitro and poor response to chemotherapy in the 
first 30 days of patient treatment (67,68). Consistently, XIAP 
inhibition has been reported to sensitize AML cells to TRAIL 
and chemotherapy (65‑69). In addition, high co‑expression of 
XIAP and survivin proteins has been correlated with poor 
OS in childhood de novo AML (66,67). Survivin expression 
had no association with acquired cytarabine resistance (data 

not shown), whereas XIAP upregulation could potentially 
have an important role, which remains to be explored. NF‑κB 
constitutive expression and activation has been shown to be 
closely related to chemotherapy resistance and poor prognosis 
in patients with AML (70,71). The present study demonstrated 
that acquired cytarabine resistance in the HL‑60R cell line 
resulted in high nuclear localization of p50 and p65 subunits. 
When activated, NF‑κB binds to DNA, and leads to the tran‑
scription of its target genes, some of which are associated with 
apoptosis evasion, such as Bcl‑2. A previous study demon‑
strated that NF‑κB activation induced higher levels of Bcl‑2 in 
prostate cancer, which was related to poor response to hormone 
therapy (72). Furthermore, high expression and activity of 
NF‑κB and elevated levels of Bcl‑2 have been reported to be 
associated with poor outcome and chemotherapy response in 
several tumor types (73‑76).

High levels of c‑Myc transcription factor in patients with 
AML have been shown to be correlated to low OS rate (77). 

Figure 5. LQB‑118 reduces the viability of cytarabine‑resistant cells and parental cells. (A) HL‑60 and (B) HL‑60R cells were treated with 1.5‑9 µM LQB‑118 
and cell viability was evaluated by MTT assay after 24, 48 and 72 h. Optical density was normalized to the control group, which was set at 100. Data are 
presented as the mean ± SD of three independent experiments. Statistical significance was determined by one‑way ANOVA and Bonferroni post‑hoc test. 
**P≤0.01, ***P≤0.001 vs. vehicle group.
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Thus, the present study investigated the role of c‑Myc in 
cytarabine‑resistant AML cells; the results revealed that 
HL‑60R cells presented high levels of c‑Myc protein, but 
not c‑Myc mRNA levels when compared with the parental 
cell line. In the model used in the present study, it is likely 
that elevated expression of c‑Myc is not directly related to an 
increase of its transcription, and it might reflect an increase 
in c‑Myc protein stability or regulation by post‑translational 
modifications. It has already been demonstrated that the 
NF‑κB p50 subunit can inhibit c‑Myc degradation through 
FBW7 suppression (78). Since HL‑60R cells present high 
levels of nuclear p50 and c‑Myc protein expression, this 
could be a mechanism by which c‑Myc degradation is 
inhibited, leading to the acquisition of cytarabine resistance. 
Furthermore, co‑expression of c‑Myc and Bcl‑2 in aggres‑
sive B‑cell lymphoma treated with cytarabine was revealed 
to be correlated to low OS and response to treatment induc‑
tion (79). The present study also evaluated protein kinases, 
such as AKT, and demonstrated that several of these proteins 
were differentially phosphorylated in cytarabine‑resistant 
cells compared with in cytarabine‑sensitive cells. However, 
these findings require further investigation to improve 
understanding on the role of these kinases in cytarabine 
resistance.

Since cytarabine resistance remains an obstacle to AML 
treatment, the search for alternative treatment options to 

bypass acquired and intrinsic resistance is important. The 
LQB‑118 compound is a pterocarpanquinone with antitumor 
effects toward diverse types of hematological and solid tumors 
in vitro and in vivo (25‑29,40‑43). However, to the best of our 
knowledge, no studies have assessed its antitumor activity in 
cytarabine‑resistant established cells. Initially, the present 
study demonstrated that LQB‑118 treatment decreased cell 
viability and induced apoptosis of HL‑60R cells, but did not 
interfere with cell cycle progression. These data corroborated 
a previous study from our group, in which it was demonstrated 
that LQB‑118 exerted an antitumor effect on the Kasumi‑1 
AML cell line and on patient samples with different molecular 
backgrounds  (25). The Kasumi‑1 cell line is an AML M2 
sub‑type with t(8;21), which is intrinsically resistant to cyta‑
rabine (80) and similarly responsive to LQB‑118 treatment 
as HL‑60R cells in vitro, suggesting that LQB‑118 activity in 
resistant cell lines is independent of whether the resistance 
phenotype is acquired or intrinsic. 

Previous studies have already demonstrated the signifi‑
cance of XIAP in AML cytarabine resistance  (19,66‑68). 
The present study revealed that the expression levels of the 
anti‑apoptotic proteins XIAP and Bcl‑2 were increased in 
the HL‑60R cell line after cytarabine exposure, suggesting 
that these proteins may be involved in the acquisition of 
cytarabine resistance. Moreover, it was demonstrated that the 
protein expression levels of XIAP were reduced in response 

Figure 6. LQB‑118 induces apoptosis of cytarabine‑resistant cells. HL‑60R cells were treated with LQB‑118 (3 µM) for 24 h. (A and B) Treatment with 
LQB‑118 enhanced the percentage of Annexin V+ cells, as determined by flow cytometry, and (C) decreased pro‑caspase‑3 expression and induced caspase‑3 
cleavage. Representative image of three independent experiments are shown. Data are presented as the mean ± SD of three independent experiments. Statistical 
significance was determined by one‑way ANOVA and Bonferroni post‑hoc test. **P≤0.01.
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to LQB‑118 treatment in HL‑60R cells in  vitro, which is 
consistent with our previous findings in Kasumi‑1 cells (25). In 

addition, it is well known that a feedback loop exists between 
XIAP and NF‑κB activation (81,82), which might partially 
explain the reason why both proteins were upregulated in 
HL‑60R cells. De Faria et al (41) observed that treatment with 
LQB‑118 in CML cell lines induced modulation of NF‑κB 
subcellular localization. Furthermore the same effect was 
also observed in the Kasumi‑1 AML cell line treated with 
LQB‑118 (25). Considering the present data and the results of 
previous studies, it may be hypothesized that LQB‑118 induces 
apoptosis of cytarabine‑resistant cells possibly through NF‑κB 
modulation, which in turn may result in decreased XIAP 
expression.

In summary, the present data indicated that acquired 
cytarabine resistance in AML may be a multifactorial 
process, involving chromosomal aberrations and differential 
expression of signaling pathways associated with apoptosis 
and cell proliferation. Moreover, the present study suggested 
that LQB‑118 might be a promising alternative therapeutic 

Figure 8. LQB‑118 inhibits XIAP expression but does not affect Bcl‑2 expres‑
sion in cytarabine‑resistant cells. Protein expression levels of (A) XIAP and 
(B) Bcl‑2 were evaluated after HL‑60R cells were treated with LQB‑118 
(3 µM) for 24 h. Representative image of three independent experiments are 
shown. XIAP, X‑linked inhibitor of apoptosis protein.

Figure 7. LQB‑118 induces DNA fragmentation in HL‑60R cells, but does not affect cell cycle profile. HL‑60R cells were treated with 3 µM LQB‑118 for 24 h. 
After treatment, (A and C) DNA fragmentation and (B and D) cell cycle progression were assessed by flow cytometry. Data are presented as the mean ± SD of 
three independent experiments. Statistical significance was determined by one‑way ANOVA and Bonferroni post‑hoc test. **P≤0.01 vs. vehicle group.
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approach for the treatment of patients with AML that are 
non‑responsive to standard treatment. 
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