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Abstract. Extensive evidence has documented that the balance 
between cytokines from T helper type 1 (Th1) and type 2 
(Th2) cells is disrupted in the tumorigenic microenviron‑
ment compared with immunocompetent individuals. Ionizing 
radiation (IR) has been reported to markedly modulate the 
Th1/Th2 polarization in a concentration‑dependent manner. In 
the present review article, the immune modulation of Th1/Th2 
and the IR‑induced crosstalk of the Th1/Th2 shift with immu‑
nocytes and tumor cells are summarized. The involvement of 
the Th1/Th2 shift in post‑radiotherapy complications is high‑
lighted. Specifically, high‑dose IR has been shown to promote 
the Th2 shift, leading to an immunosuppressive cytokine 
network, while the impact of low‑dose IR remains contro‑
versial. The IR‑induced modulation of the Th1/Th2 shift is 
mediated by tumor cells and multiple immunocytes, including 
dendritic cells, tumor‑associated macrophages, cytotoxic T 
lymphocytes and natural killer cells. However, the excessive 
production of pro‑inflammatory factors, such as IFN‑γ and 
IL‑2, by Th1 cells, aggravates the clinical side‑effects of radio‑
therapy, including radiation‑induced lung and intestinal injury, 
radiation encephalopathy, as well as other complications. 
Therefore, further research into the underlying mechanism is 
required to confirm the potential applicability of the Th1/Th2 
shift combined with IR in the treatment of malignant tumors.

Contents

1.	 Introduction
2.	� Immunocompetence of Th1/Th2 cells in the Th1/Th2 

balance
3.	 Modulation of the Th1/Th2 imbalance by IR
4.	� Clinical side‑effects after IR administration caused by the 

Th1/Th2 shift
5.	 Conclusion

1. Introduction

Over the past few decades, there have been significant advances 
made in immunotherapy for malignant tumors, from adaptive 
immunocyte modification to novel immune target discovery (1). 
T helper (Th) cells have been the subject of intensive research 
on the tumor immune microenvironment (TIME), as they 
are involved in cellular immunity together with cytotoxic 
T lymphocytes (CTLs) (2,3). T helper type 1 (Th1) and type 2 
(Th2) cells have been found to sustain a functional balance in 
the normal immune system, while the alterations in cell polar‑
ization and cytokine imbalance, referred to as the Th1/Th2 
shift, have been associated with numerous immunity‑related 
diseases, as well as malignant tumors (4,5).

Radiotherapy is one of the cornerstones of therapeutic 
strategies for various tumors. Radiation destroys the double 
DNA strands of susceptible tumor cells during meiosis, without 
affecting surrounding tissues to the same extent. It has also 
been reported that radiation may have a distinct impact on the 
TIME during the course of prolonged clinical observation (6). 
Local irradiation markedly alters the immunogenic status of 
the tumor cells and their ability to elicit an immune response, 
enhances the initiation of CD8+ T cells and notably augments 
the secretion of antitumor cytokines (7).

Previous studies (discussed below) have shed light on the 
impact of the Th1/Th2 shift in the presence of ionizing radia‑
tion (IR). Furthermore, the potential role of the Th1/Th2 shift 
in tumorigenesis and tumor progression has been attracting 
the attention of researchers. Therefore, the aim of the present 
review was to summarize the specific implications and effects 
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of radiation on the Th1/Th2 shift in tumor tissues, from molec‑
ular mechanisms to clinical impact. The causative association 
between radiotherapy and immune response was particularly 
emphasized and highlighted. The outline of this review is 
presented in Fig. 1.

2. Immunocompetence of Th1/Th2 cells in the Th1/Th2 
balance

Th1 and Th2 cells are differentiated from native CD4+ Th0 
cells in a cytokine‑dependent manner, and represent two 
different polarization directions, as well as distinct immune 
response factors in the immunological microenvironment. The 
main cytokines, decisive transcriptional factors and surface 
markers of Th1/Th2 cells are summarized in Table  I. To 
maintain immune activation, Th1 cells secrete IFN‑γ, IL‑2 and 
TNF‑α, inducing adaptive cellular immunity and graft rejec‑
tion, while Th2 cells produce IL‑4, IL‑5, IL‑6, IL‑10 and IL‑13, 
which mainly trigger potent allergic reactions and humoral 
immunity (8,9). A Th2 shift in the Th1/Th2 balance has been 
observed during tumor initiation and development (4,10).

In general, cytokines produced by Th1 cells serve as 
suppressors against a tumor‑promoting microenvironment. 
Th1‑derived IFN‑γ induced by IL‑12 from antigen‑presenting 
cells has been reported to stimulate the transcription of 
T‑bet in Th1 cells, upregulating IL‑12Rβ signals through the 
JAK/STAT1 pathway, as a positive feedback loop of the IFN‑γ 
cascade (11). IFN‑γ has an anti‑angiogenic function in the 
tumor environment, preventing tumor cells from further infil‑
tration and metastasis (12). Low‑dose IL‑2 binds to the IL‑2 
immunoreceptor β on the surface of natural killer (NK) cells, 
thereby enhancing the phosphorylation of STAT3 and STAT5, 
followed by the overexpression of cyclin B1, leading to selec‑
tive NK cell proliferation (13). TNF‑α, as a multifunctional 
cytokine, plays crucial roles in inflammation, apoptosis and 
cell survival. The binding of TNF‑α to its receptors triggers 
cell apoptosis through the caspase cascade, NF‑кB activation 
and receptor‑interacting protein recruitment (14). In addition, 
TNF‑α targets the tumor vasculature by destroying the vascular 
lining and causing hyperpermeability (15). On the other hand, 
cytokines secreted by Th2 cells are immunosuppressive and 
promote tumor immune evasion in the TIME. For example, 
IL‑4 combines with IL‑4R to form an IL‑4/IL‑4Rα1 complex, 
and phosphorylates STAT6, thereby increasing apoptotic 
resistance and colonization of tumor cells (16). In addition to 
promoting inflammation, IL‑10 has been reported to suppress 
the expression of major histocompatibility complex (MHC) 
I and the proliferation of CD8+ T cells, markedly decreasing 
the cytotoxic effects (17). Notably, IL‑10 from tumor cells 
was observed to abrogate the oncolytic activity of CTLs via 
activating human leukocyte antigen‑G (18).

In addition to differentially secreted humoral factors 
derived from Th1/Th2 cell populations, both subtypes have 
been found to be characterized by specific surface protein 
markers throughout molecular experiments (19,20). IL‑18R, 
IL‑12Rβ2, C‑C motif chemokine receptor (CCR)5 and C‑X‑C 
motif chemokine receptor (CXCR)3, along with lymphocyte 
activation gene‑3, T‑cell immunoglobulin and mucin‑domain 
containing‑3, have been documented to be highly expressed 
on Th1 cells (20‑26). The Th2 cell population has specific 

identifiers, such as CD30, CCR3, CCR4, CXCR4, prostaglandin 
D2 receptor 2, IFN‑γRβ and IL‑1 receptor‑like 1 (19,27‑33). 
Moreover, a Th1/Th2 immune shift occurs accordingly under 
the influence of different transcriptional factors. T‑box tran‑
scription factor 21 and STAT4 induce a type 1 shift, while 
c‑Maf and GATA binding protein‑3 (GATA‑3) induce a type 
2 functional cascade  (34‑38). Due to the lack of affirma‑
tory surface identifiers, Th1/Th2 groups are still defined 
predominantly based on the representative cytokines they 
produce.

Depending on the inhibitory roles of the various cyto‑
kines, the Th2 shift in the TIME favors a tumor‑supporting 
environment, resulting in tumor immunological resistance.

3. Modulation of the Th1/Th2 imbalance by IR

In addition to the direct damage of DNA double strands and 
the induction of reactive oxygen species in tumor cells, IR also 
modulates the molecular balance from immunocytes in the 
TIME, rendering tumor cells more susceptible or tolerant to IR. 
Accumulating evidence has uncovered the role of the Th1/Th2 
shift induced by IR in the TIME, which consists of tumor cells 
and immunocytes, including NK cells, macrophages, CTLs 
and dendritic cells (DCs). The impact of IR on the Th1/Th2 
imbalance and its ability to interact with tumor‑associated 
immunocytes, achieving an improved antitumoral immune 
response to radiotherapy, are reviewed below.

Direct impact of IR on the Th1/Th2 shift. Various doses of 
IR mediate a distinct Th1/Th2 cytokine imbalance. High‑dose 
IR (HDIR, ≥2 Gy) induces a Th2 shift (Table  II)  (39‑56). 
Irradiation at 5 Gy notably promotes the secretion of Th2 cyto‑
kines, including IL‑4, IL‑5 and IL‑10, most likely through the 
upregulation of the transcription factor, GATA‑3 and c‑Maf. 
The mRNA and protein levels of Th1‑secreted molecules, 
such as IFN‑γ and IL‑12, are inhibited by the suppression 
of the STAT signaling pathway in murine splenocytes (39). 
Similar effects of the Th2 shift were previously observed 
in tumor‑bearing mice with HDIR at 10 Gy. Tumor growth 
delay was significantly extended after IL‑10 suppression in a 
manner similar to the function of nitric oxide synthase (NOS) 
inhibitors, leading to immune‑enhanced Th1 polarization (40). 
Furthermore, the exposure of the human immune system 
to natural HDIR favors a shift to a type 2 response (41,42), 
with an evidently higher Th2 cytokine production and lower 
serum antioxidant levels, confirming the IR‑induced Th2 
shift. On the other hand, potent radioprotectors have been 
found to reverse the Th2 cytokine shift by IR. Specifically, 
a combination comprising 3,3'‑diselenodipropionic acid, 
semiquinone glucoside derivative, G‑003M, Ginsan polysac‑
charide, N‑acetyl tryptophan glucoside and Fms‑like tyrosine 
kinase 3 ligand, was confirmed to prevent Th1/Th2 imbalance 
in the TIME, mainly through oxidative stress alleviation and 
reduction of inflammatory cell infiltration (43‑48). Previous 
results indicated a shift towards Th2 in the TIME mediated 
by HDIR  (39‑47,50); however, molecular experiments are 
required to elucidate the underlying mechanisms.

The Th1/Th2 shift is induced by IR in a dose‑dependent 
manner (Table II) (39‑56). Low‑dose IR (LDIR, 0.075‑0.2 Gy) 
exerts controversial effects on the cytokine expression profile 
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of unfractionated splenocytes in vivo. For example, LDIR at a 
dose rate of 12.5 mGy/min was previously reported to increase 
STAT4 phosphorylation and promote the secretion of the Th1 
cytokines, IFN‑γ and IL‑2, whereas it decreased IL‑4 IL‑10, 
IL‑21 and TGF‑β levels by downregulating GATA‑3 (49,50). 
Similarly, a clinical investigation enrolling laboratory workers 
and normal radiology staff receiving less than a legal 50 mSv 
reported a Th1 shift following LDIR, with higher lymphocyte 
proliferation and IFN‑γ production (51). However, LDIR at 
50 mGy was reported to promote antitumor immune response 
by elevating the mRNA levels of both Th1 (IFN‑γ) and Th2 
(IL‑4 and IL‑5) cytokines in CD4+ T cells, diminishing TGF‑β 
and regulating mitochondrial ATP synthase  (52). Another 
experimental study revealed that the expression of both Th1 
and Th2 cytokines decreased in the presence of LDIR at 0.01, 
0.05, 0.1 and 0.5 Gy (53). However, further evidence revealed 
that LDIR actually affected Th1/Th2 shift in a dose‑ and 
time‑dependent manner (54‑56). For example, in another study, 
LDIR at 0.8 Gy caused a more prominent Th1 polarization than 
0.4 Gy in mice with transplanted Ehrlich ascites carcinoma, 
while both doses mediated a comparatively significant cancer 
regression (54). In a similar manner, low‑dose gamma‑rays 
were observed to stimulate Th1‑type immune responses on 
day 0, which was terminated by the overexpression tendency 
of IL‑10, resulting in a classical Th2 immunosuppressive 
status on day 7 (55).

Taken together, these findings indicate that HDIR leads 
to an immunosuppressive Th2 shift response, while LDIR 
affects the Th1/Th2 balance with no certain defined effect 
in a dose‑ and time‑dependent manner. Optimizing the dose 

and duration of radiotherapy may inhibit immunosuppres‑
sive Th2 response and promote a Th1 shift. Identification of 
potential translational radioprotectors may effectively reverse 
the Th2 shift of HDIR in the clinical setting. Overcoming 
these obstacles will help to overcome the limitations of 
radiotherapy.

Interaction of Th1/Th2 cytokines with other cells in the 
presence of IR. In the presence of IR, tumor cells as well as 
multiple immunocytes, including DCs, macrophages, CTLs 
and NK cells, were reported to partially contribute to the 
modification of Th1/Th2 shift (Fig. 2).

DCs. As the most efficacious antigen‑presenting cells, mature 
DCs specifically activate CD8+ T cells in antitumor cellular 
immune response, linking innate with acquired immunity (57). 
Similar to the Th1/Th2 differentiation, DCs may differentiate 
into categories based on different factors in the environment. 
Type 1 DCs (DC1) induce Th1 shift via secreting IL‑12 to 
activate CD40L, while type 2 DCs (DC2) promote IL‑4 
production by CD4+ Th0 cells, thus causing a Th2 shift (58,59). 
Indeed, IR may affect the association between DCs and 
Th1/Th2 cells in a dose‑dependent manner. HDIR (2‑30 Gy) 
suppressed IL‑12 production while it maintained IL‑10 release 
by mature DCs (60). Of note, it has been reported that this 
shift of IL‑12/IL‑10 secretion by activated DCs after IR may 
promote Th2 shift in the TIME and compromise the curative 
effects of antitumor therapy (61,62). In a similar manner, IR 
(6 Gy γ‑irradiation) has been reported to mediate a visible 
reduction in the number of CD8+ DCs in mice, indicating 

Figure 1. Role of Th1/Th2 shift in the presence of IR after radiotherapy. Th1, T helper type 1 cell; Th2, T helper type 2 cells; IR, ionizing radiation; 
DC, dendritic cell; NK cell, natural killer cell; CTL, cytotoxic T lymphocyte; RLI, radiation‑induced lung injury; RIII, radiation‑induced intestinal injury; 
RE, radiation encephalopathy.
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the involvement of DCs in Th2 shift (45), since CD8+ DCs 
mainly induce Th1 immunity (63,64). On the contrary, LDIR 
(≤0.2 Gy) was shown to trigger the secretion of IL‑2 and 
IFN‑γ by DCs through the Ataxia Telangiectasia Mutated 
(ATM)/NF‑κB signaling pathway (65,66). In summary, clinical 
radiotherapy may benefit from DC‑modulated Th1/Th2 shift 
at the optimal IR dose.

Macrophages. Macrophage plasticity has been attracting 
increasing attention due to the polarized activation 
and differentiation in divergent environments  (67). 
Classically activated  M1‑like macrophages (IL‑12high, 
IL‑10low) primed by Th1‑secreted factors (IFN‑γ, granulo‑
cyte/macrophage‑colony‑stimulating factor) exert antitumor 
effects and  suppress tumor progression (68). On the other 
hand, tumor‑associated macrophages (TAMs) are character‑
ized by an M2 phenotype (IL‑10high, IL‑12low) promoted by 
Th2‑secreted cytokines (IL‑4 and IL‑13) and have been found 
to be associated with a poor prognosis in cancer (69,70). LDIR 
facilitates the polarization of TAMs towards the M1 phenotype, 
potentially suppressing angiogenic responses in endothelial 
NOS‑positive endothelial cells, due to the presence of Th1 cyto‑
kines and downregulation of hypoxia‑inducible factor‑1 (71). 
Furthermore, very low‑dose IR has been shown to upregulate 
the expression of a whole set of biological functional genes 
associated with macrophage activation and Th1 immunity in 
patients with follicular lymphoma (72). However, HDIR has 
been reported to deteriorate avascular hypoxia, substantially 
favoring polarization towards the M2 phenotype  (73,74), 
reducing radiosensitivity through heparin‑binding epidermal 
growth factor and accelerated neovasculogenesis, thereby 
leading to tumor relapse (75). Notably, HDIR has been shown 

to induce IL‑10 oversecretion by M2 macrophages, which 
is reversed into Th1 immune polarization by NOS inhibitor 
administration, indicating the participation of M2 macro‑
phages in the Th2 shift (40). A similar activated Th1‑type 
cytokine shift has been observed following irradiation with 
20 Gy via inhibition of the NK‑1 receptors expressed on the 
surface of macrophages (47). Hence, promoting IR‑induced 
M1 polarization likely improves the efficacy of radiotherapy 
and restores the Th1/Th2 balance.

CTLs. CTLs eliminate tumor cells through both secre‑
tory (perforin, lymphotoxin, granzyme and TNF‑related 
protein) and non‑secretory (Fas ligand and tumor necrosis 
factor‑related apoptosis‑inducing ligand) mechanisms (76,77). 
In a previous study, the curative effects of IR on tumor‑bearing 
mice were eliminated by anti‑CD8 monoclonal antibody treat‑
ment, confirming the dominant antitumor role of CTLs (78). 
In another study, in a B16‑F0 tumor model, IR (15 or 5x3 Gy) 
was reported to boost the numbers of tumor‑specific CTLs that 
secrete IFN‑γ at the tumor site (79). Of note, the combination 
of local irradiation and Th1 cell therapy (CpG or recombinant 
IL‑12 or anti‑IL‑4 antibody), which promote the Th1‑type 
microenvironment, induced the proliferation of tumor‑specific 
CTLs and tumor regression  (80‑83). Therefore, further 
investigation of the molecular interactions between CTLs 
and Th1 cells during radiotherapy will expand the current 
knowledge on antitumor cellular immunity and promote the 
application of this combination therapy in the clinical setting.

NK cells. NK cells recognize and kill tumor cells through the 
activating and inhibitory receptors on their surface (84,85). It was 
previously reported that the numbers of DX5+IFN‑γ+ NK cells 

Table I. Key molecules in Th1/Th2 cells.

		  Decisive
		  transcriptional		  Surface
Cell type	 Cytokines	 factor	 (Refs.)	 marker	 (Refs.)	 Ligands

				    IL‑12Rβ2	 (22)	 IL‑12
				    IL‑18R	 (26)	 IL‑18
Th1 cells	 IFN‑γ	 T‑bet 	 (34)	 CXCR3	 (24)	 CXCL9, CXCL10, CXCL11 
	 IL‑2	 STAT4	 (34)	 CCR5	 (23)	 CCL3, CCL4, CCL5, CCL3L1
	 TNF‑α	 		  LAG‑3	 (21)	 FGL1, MHC‑II
				    TIM‑3	 (25)	 Galectin‑9
				    CD30	 (32)	 CD30L
	 IL‑1β	 		  CCR3	 (33)	 CCL5, CCL7, CCL8, CCL11, CCL13, 
	 IL‑4	 GATA‑3 	 (36)			   CCL15, CCL24, CCL26, CCL28
Th2 cells	 IL‑5	 STAT6	 (37)	 CCR4	 (27)	 CCL2, CCL4, CCL5, CCL17, CCL22 
	 IL‑6	 c‑Maf	 (38)	 CXCR4	 (30)	 CXCL12
	 IL‑10			   CRTh2	 (28)	 PGF2α, PGE2, PGI2, thromboxane A2
	 IL‑13			   ST2L	 (31)	 IL‑33
				    IFN‑γ Rβ	 (29)	 IFN‑γ

IL‑12Rβ2, interleukin 12 receptor subunit β2; STAT4, signal transducer and activator of transcription 4; LAG‑3, lymphocyte activating 3; 
FGL1, fibrinogen like 1; MHC‑II, class II major histocompatibility complex transactivator; TIM‑3, T cell immunoglobulin mucin 3; GATA‑3, 
GATA binding protein 3; STAT6, signal transducer and activator of transcription 6; CRTh2, chemoattractant receptor homologous molecule 
expressed on Th2 cells; PGF2α, prostaglandin F2α; PGE2, prostaglandin E2; PGI2, prostaglandin I2; ST2L, interleukin 1 receptor like 1.



INTERNATIONAL JOURNAL OF ONCOLOGY  59:  50,  2021 5

Ta
bl

e 
II

. D
ire

ct
 im

pa
ct

 o
f I

R
 o

n 
th

e 
Th

1/
Th

2 
sh

ift
.

D
os

e 
ty

pe
	

R
ad

ia
tio

n 
do

se
	

Ir
ra

di
at

io
n 

sp
ee

d	
 C

an
ce

r c
el

l t
yp

e 
	

A
ni

m
al

 m
od

el
/c

el
l t

yp
e	

R
es

po
ns

e	
R

em
ar

ks
	

(R
ef

s.)

H
D

IR
	

5 
G

y 
ga

m
m

a‑
ra

ys
	

1.
39

4 
G

y/
m

in
	

Sp
le

no
cy

te
s	

 B
al

b/
c 

m
ic

e	
Th

2 
sh

ift
 	

/	
(3

9)
	

10
 G

y 
X

 ra
ys

	
2.

53
 G

y/
m

in
	

Sq
ua

m
ou

s c
el

l 	
 C

3H
/H

en
	

Th
2 

sh
ift

 	
/	

(4
0)

			



ca

rc
in

om
a				





	

13
‑f

ol
d 

hi
gh

er
 th

an
 	

N
at

ur
al

 e
xp

os
ur

e	
Pe

rip
he

ra
l b

lo
od

 	
H

um
an

	
Th

2 
sh

ift
 	

R
ad

iu
m

 2
2.

6 
an

d 
ra

do
n 

ga
s	

(4
1)

	
no

rm
al

		


m
on

on
uc

le
ar

 c
el

ls
				





	

4.
5 

G
y 

ga
m

m
a‑

ra
ys

	
97

.1
 c

G
y/

m
in

	
Sp

le
no

cy
te

s	
B

al
b/

c 
an

d 
C

57
B

L/
6	

Th
2 

sh
ift

 	
/	

(4
3)

				





m
ic

e			



	

5 
G

y 
ga

m
m

a‑
ra

ys
	

0.
52

 G
y/

m
in

	
Sp

le
no

cy
te

s	
Sw

is
s a

lb
in

o 
m

ic
e	

Th
2 

sh
ift

	
/	

(4
4)

	
6 

G
y 

ga
m

m
a‑

ra
ys

	
N

ot
 p

ro
vi

de
d	

Sp
le

no
cy

te
s	

 C
57

B
L/

6 
m

ic
e	

Th
2 

sh
ift

	
/	

(4
5)

	
7‑

12
 G

y 
ga

m
m

a‑
ra

ys
	

1.
2 

G
y/

m
in

	
Sp

le
no

cy
te

s	
 C

57
B

L/
6 

m
ic

e	
Th

2 
sh

ift
	

/	
(4

6)
	

20
 G

y 
ga

m
m

a‑
ra

ys
	

1.
12

 k
G

y/
h	

M
ac

ro
ph

ag
e 

J7
74

A
	

M
ac

ro
ph

ag
e 

J7
74

A
	

Th
2 

sh
ift

	
/	

(4
7)

	
9 

G
y 

ga
m

m
a‑

ra
ys

	
1.

03
8 

G
y/

m
in

	
M

ac
ro

ph
ag

e	
C

57
/B

l6
 m

ic
e	

Th
1 

sh
ift

	
/	

(4
8)

	
2.

0 
G

y 
X

‑r
ay

s	
34

3 
m

G
y/

m
in

	
Sp

le
no

cy
te

s	
 IC

R
 m

ic
e	

Th
2 

sh
ift

	
/	

(5
0)

	
2 

G
y 

ga
m

m
a‑

ra
ys

	
0.

03
45

 G
y/

m
in

	
Sp

le
no

cy
te

s	
C

57
B

L/
6 

m
ic

e	
Th

1/
Th

2 
bo

th
	

/	
(5

3)
					







el
ev

at
ed

		


LD
IR

	
0.

07
5 

G
y 

X
‑r

ay
s	

0.
01

25
 G

y/
m

in
	

Sp
le

no
cy

te
s	

K
un

m
in

g 
m

ic
e	

Th
1 

sh
ift

	
/	

(4
9)

 
	

0.
07

5 
G

y 
of

 X
‑r

ay
s	

12
.5

 m
G

y/
m

in
	

Sp
le

no
cy

te
s	

 IC
R

 m
ic

e	
Th

1 
sh

ift
	

/	
(5

0)
	

le
ss

 th
an

 5
0	

O
cc

up
at

io
na

l	
Pe

rip
he

ra
l b

lo
od

 	
H

um
an

	
Th

1 
sh

ift
	

/	
(5

1)
	

m
ill

is
ie

ve
rt 

pe
r y

ea
r	

ex
po

su
re

	
m

on
on

uc
le

ar
 c

el
ls

	
(r

ad
io

lo
gy

 st
af

f)
			




	
10

 o
r 5

0 
m

G
y	

10
 m

G
y/

h~
	

Sp
le

no
cy

te
s	

C
57

B
L/

6N
	

Th
1/

Th
2 

bo
th

	
/	

(5
2)

	
ga

m
m

a‑
ra

ys
	

20
4 

m
G

y/
m

in
	

(C
D

4þ
 c

el
ls

)		


el
ev

at
ed

		


	
0.

01
‑0

.5
 G

y	
0.

03
45

 G
y/

m
in

	
Sp

le
no

cy
te

s	
C

57
B

L/
6 

m
ic

e	
Th

1/
Th

2 
bo

th
	

/	
(5

3)
	

ga
m

m
a‑

ra
ys

				





su
pp

re
ss

ed
		


	

0.
4‑

0.
8 

G
y	

0.
71

3 
ra

d/
se

c	
Eh

rli
ch

 A
sc

ite
s 	

B
A

LB
/C

 m
ic

e 
	

Th
1 

sh
ift

 	
W

ith
 0

.8
 G

y 
IR

 in
du

ce
d 

be
tte

r	
(5

4)
	

ga
m

m
a‑

ra
ys

		


ca
rc

in
om

a			



 T

h1
 p

ol
ar

iz
at

io
n	

	
0.

2‑
1G

y 
ga

m
m

a‑
ra

ys
	

3.
93

 c
G

y/
m

in
	

Sp
le

no
cy

te
s a

nd
	

B
al

b/
c 

m
ic

e	
r

es
ul

ts
 v

ar
y 

w
ith

	
Sp

le
en

: D
ow

nr
eg

ul
at

io
n 

of
 T

h1
	

(5
6)

			



th

ym
oc

yt
es

		


ra
di

at
io

n 
tim

e 
an

d	
on

 d
ay

 2
, u

pr
eg

ul
at

io
n 

of
 T

h1
/T

h2
	

					






or

ga
n	

on
 d

ay
 7

, n
o 

ch
an

ge
s o

n 
da

y 
14

	
LD

IR
	

0.
2,

 5
, 1

0,
 a

nd
	

N
ot

 p
ro

vi
de

d	
Sp

le
no

cy
te

s	
C

57
B

I/6
j	

r
es

ul
ts

 v
ar

y 
w

ith
 IR

	
0.

2,
 5

,1
0 

G
y:

 T
h1

 b
ia

s;
 2

0 
G

y	
(5

5)
D

os
e 

gr
ad

ie
nt

	
20

 G
y 

ga
m

m
a‑

ra
ys

				





ag
en

ts
 a

nd
 IR

 d
os

e	
Th

2 
bi

as
	

IR
, i

on
iz

in
g 

ra
di

at
io

n;
 H

D
IR

, h
ig

h 
do

se
 io

ni
zi

ng
 ra

di
at

io
n;

 L
D

IR
, l

ow
 d

os
e 

io
ni

zi
ng

 ra
di

at
io

n.



LI et al:  IR‑MODULATED Th1/Th2 SHIFT IN TUMORS6

significantly decreased, while the numbers of DX5+IL‑10+ 
and DX5+IL‑4+ NK cells markedly increased during tumor 
progression, partly confirming the Th2 shift in the TIME (86). 
NK cells respond with various functional alterations after being 
exposed to IR at various doses. LDIR (75‑150 mGy) has been 
shown to increase the proliferation and the levels of cytotoxic 
effectors of NK cells, including IFN‑γ and TNF‑α, possibly 
through the p38/MAPK signaling pathway (87). LDIR stimu‑
lates the cytolytic function of NK cells in vivo, leading to the 
suppression of tumor metastases in animal models (53,88). In 
a similar manner, the LDIR‑induced activation of NK cells has 
been found to be involved in the antitumor effect of total body 
irradiation (TBI) (89). On the other hand, the depletion of NK 
cells following HDIR (5 Gy) with TBI has been shown to lead 
to a decrease in the levels of Th1‑type cytokines in mice, while 
the injection of NK cells in TBI mice was shown to normalize 
the IFN‑γ levels (90), indicating the contribution of NK cells 
to the Th1 shift. In addition, NK cells display morphological 
changes and functional impairment following HDIR (30 Gy), 
although they retained their ability to bind to targets on tumor 

cells. However, IL‑2 pre‑treatment has been shown to maintain 
the cytotoxic function of NK cells (53,91,92), which is likely 
associated with NF‑кB activation triggered by IL‑2/IL‑2 
receptor binding (93). Collectively, the impact of IR on NK 
cells varies widely according to the radiation dose, promoting 
cytolytic function at low doses and abating IFN‑γ secretion 
at high doses. Therefore, the combination of optimal clinical 
irradiation dose together with IL‑2, which preserves NK 
cell activity, may promote Th1 immunity and maintain the 
antitumor function of NK cells.

Tumor cells. IR destroys tumor cells via both directly breaking 
DNA strands and activating tumor‑suppressor genes, as well 
as programming the TIME  (94,95). It has been reported 
that tumor‑derived TNF‑α in the presence of IR induces the 
restoration of p53 targets and a rapid re‑activation of p65/p50 
NF‑кB complexes in an autocrine manner (72,96), thus trig‑
gering tumor cell death. Furthermore, human breast cancer 
cells exposed to IR have been shown to produce CXC ligand 
16 to recruit CD8+CXCR6+ T cells to the tumor site  (97). 

Figure 2. Indirect impact of IR on Th1/Th2 polarization through crosstalk with other immunocytes and tumor cells in the local tumor microenvironment. 
IR affects immunocytes heterogeneously at different doses, contributing to the Th1/Th2 shift in the TIME. LDIR promotes the differentiation of classically 
activated macrophages (M1). M1‑derived IL‑12 boosts IFN‑γ production by Th1 cells. On the contrary, HDIR activates M2 macrophages to increase the produc‑
tion of the M2‑derived IL‑10, promoting Th2 shift in the tumor microenvironment. LDIR promotes DC proliferation and induces MHC ΙΙ, IL‑2 and IFN‑γ 
through the ATM/NF‑кB pathway, while HDIR downregulates IL‑12. In addition, LDIR enhances NK cell toxicity via upregulating the secretion of IFN‑γ and 
TNF‑α, leading to Th1 polarization. Th2 cytokines, including Il‑4, IL‑6 and IL‑10, favor the creation of an immunosuppressive microenvironment. However, IR 
partly reverses the Th2 shift in the tumor microenvironment. IR activates NF‑кB in tumor cells, mediating TNF‑α autocrine signaling to delay tumor growth. 
Similarly, tumor‑derived chemokine CXCL16, induced by IR, recruits CTLs to the TIME. KPNA2 produced by tumor cells induces Th1 differentiation through 
cytokines in the presence of radiation, mediating antitumoral immunity. TIME, tumor immune microenvironment; Th1, T helper type 1 cell; Th2, T helper 
type 2 cells; IR, ionizing radiation; HDIR, high‑dose IR; LDIR, low‑dose IR; DC, dendritic cell; KPNA2, karyopherin α2; CTL, cytotoxic T lymphocyte; NK 
cell, natural killer cell; CXCL16, C‑X‑C motif chemokine ligand 16; MHC, major histocompatibility complex; ATM, Ataxia Telangiectasia Mutated.
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Similarly, IR‑enhanced karyopherin α2 release by colorectal 
cancer cells increased the expression of TNF‑α and IL‑12 
in DCs, promoting Th1/Th17 differentiation (98,99). On the 
other hand, tumor cells modify the TIME to create favor‑
able, tumor‑promoting conditions. For example, glioma cells 
secrete Th2 cytokines, including IL‑6 and IL‑10, to abrogate 
cytotoxic antitumor immune responses (100). Similarly, IL‑4 
receptor expression has been shown to increase to accommo‑
date enhanced IL‑4 in the TIME of glioblastomas (101). In 
addition, IR has been shown to upregulate indoleamine 2,3 
dioxygenase 1 in colorectal cancer, which blocks the Th1 shift 
in the TIME and leads to radioresistance (102). Combined 
with TIME modification agents, IR enables the optimiza‑
tion of immune‑mediated tumor destruction and minimizes 
radiotolerance through promoting a Th1 shift.

4. Clinical side‑effects after IR administration caused by 
the Th1/Th2 shift

A considerable number of studies have revealed that the 
Th1/Th2 shift is involved in the clinical and biological 
damage of different organs and tissues in patients following 
radiotherapy, including radiation‑induced lung injury 
(RLI), radiation‑induced intestinal injury (RIII), radiation 
encephalopathy (RE), as well as other severe complications.

RLI. Numerous studies have highlighted the differential 
roles of Th1‑ and Th2‑type cytokines in RLI, which include 
radiation pneumonitis (RP) and radiation fibrosis (RF), occur‑
ring within and beyond 3 months following radiotherapy, 
respectively (103,104). The balance of Th1/Th2 is confirmed 
to determine the direction and outcome of lung inflammation 
following lung irradiation (105‑116). RP is closely associated 
with Th1 shift, while RF is more likely associated with 
Th2 shift.

A number of pro‑inflammatory Th2 cytokines, including 
IL‑4, IL‑6 and TGF‑β, have been reported to be positively 
associated with RP (105‑107). For example, TGF‑β, a known 
key factor involved in inflammation and fibrosis, was found 
to be markedly upregulated in mice with RP (15 Gy, single 
dose) via the TGF‑β‑Smad2/3 pathway  (106). In addition, 
IL‑4 was substantially increased in the lungs of irradiated rats 
within 3 weeks following the administration of a single dose of 
20 Gy, at both the transcriptional and translational levels (108). 
Furthermore, Th2 cytokines, including IL‑4, IL‑6 and IL‑10, 
have been found to be independent predictive factors for the 
incidence of RP (all P<0.05) by prospective clinical studies 
in patients with lung cancer  (107,109,110). As regards RF, 
which is a long‑term radiation‑induced complication, IL‑4 has 
been reported to play a key role through enhancing collagen 
synthesis by fibroblasts and inducing the production of TGF‑β, 
leading to irreversible lung injury (111). Furthermore, IL‑4 
enhances and maintains macrophage activation to promote 
RF (112). In a similar manner, thoracic HDIR at 12 Gy has 
been shown to promote the secretion of IL‑13 and Arginase‑1 
through GATA‑3 upregulation in vivo, supporting the caus‑
ative role of Th2 cytokines in pulmonary fibrosis (113). On the 
other hand, Th1 factors exert a protective function against RF. 
For example, obvious RF has been observed in IFN‑γ‑/‑ mice 
following whole‑thorax irradiation with 18 Gy compared with 

C57BL/6J (IFN‑γ+/+) mice (114). Additionally, the upregulated 
IFN‑γ and downregulated IL‑4 levels have been shown to 
contribute to a deceleration of the fibrotic process when the 
Th2 shift was partially reversed by TGF‑β3 in RF (115). As 
regards RP, increased IFN‑γ levels at 2‑3 months following 
thoracic irradiation have been observed in RP rats of different 
strains, indicating the role of Th1 cytokines (116). Further 
investigations of the TGF/Smad pathway identified preclinical 
RLI protectors, such as CpG‑oligodeoxynucleotides and grape 
seed pro‑anthocyanidins (117‑119), successfully modifying the 
Th1‑dominant microenvironment to alleviate RLI. In addition, 
the Th17 cell subpopulation was found to accelerate post‑irra‑
diation inflammation and fibrosis in the lung (120,121). Both 
RF and overt neutrophil infiltration have been shown to be 
averted following the downregulation of the IL6/TGF‑β/IL‑17 
pathway in irradiated IL17‑/‑ mice (114,122).

Thus, IFN‑γ has been confirmed to suppress radia‑
tion‑induced fibrosis while enhancing the inflammatory 
response, and Th2 cytokines act as both pro‑inflammatory 
and pro‑fibrosis factors during irradiation. Further studies are 
required to elucidate the interaction between the novel Th17 
subpopulation and the Th1/Th2 shift in RLI. A promising 
preventive strategy for RLI may be reversing the Th2 shift 
with potential transformable radiation protectors.

RIII. RIII often arises as a complication of radiotherapy in 
patients with pelvic, abdominal, or retroperitoneal tumors and 
is attributed to the injury of radiation‑sensitive stem cells in 
the intestinal epithelium (123). It is currently considered that 
each individual cytokine, rather than a class of cytokines, 
plays a specific role in RIII. Th1/Th2 factors may be basi‑
cally divided into two categories, namely the pro‑RIII type 
cytokines, including TNF‑α, IFN‑γ, IL‑1β and IL‑6, and the 
anti‑RIII cytokine, IL‑10. For example, a TBI trial performed 
on rhesus macaque monkeys demonstrated that the TNF‑α 
cascade and the upregulation of matrix‑dissociated genes were 
associated with severe intestinal inflammation and mucosal 
barrier disruption  (124,125). These pathological changes 
may be normalized by granulocyte colony‑stimulating 
factor  (126,127). Furthermore, the findings from a novel 
brachytherapy mouse model revealed a marked increase in 
IL‑1β and IL‑6 levels, as high as 100‑ to 300‑fold, following 
irradiation with 5.5‑8 Gy (128), and both cytokines were of 
notable predictive value for radiation‑induced proctitis based 
on receiver operating characteristic curve analysis (128). The 
suppression of NF‑κB with specific radioprotectors, targeting 
either the peroxisome proliferator activated receptor‑γ/NF‑κB 
or the Toll‑like receptor 4/MYD88 innate immune signal trans‑
duction adaptor/NF‑κB axes, has been shown to contribute to a 
decrease in the levels of the pro‑inflammatory cytokines, IL‑6 
and TNF‑α, in RIII (129‑131), which has also been shown to 
be attenuated through the PI3K/AKT/mTOR pathway (132). In 
the clinical setting, mesenchymal stem cell (MSC) transplan‑
tation has been reported to alleviate RIII by increasing IL‑10 
and reducing TNF‑α and IFN‑γ levels in serum (133‑136). 
However, another study stated that the predominant Th17 rather 
than the Th1/Th2 population was inhibited by adipose‑derived 
MSCs in RIII (137). Therefore, Th1 (TNF‑α and IFN‑γ) and 
Th2 (IL‑1β, IL‑6, IL‑10) cytokines play key roles in RIII and 
may serve as reliable RIII predictors. Further research on 
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Th17 cells may shed more light on the mechanism underlying 
the development of RIII.

Radiation encephalopathy (RE). RE is a complication of 
radiotherapy for craniofacial tumors, and often presents as a 
series of pathological and morphological alterations of brain 
structure. Microglial activation has been considered as a 
potential contributor to inflammatory responses in RE (138). 
Previous studies have revealed that the induction of the NF‑κB 
and MEK/ERK1/2 signaling pathways may trigger microglial 
activation after cranial radiation therapy, leading to an increase 
in the levels of inflammatory factors, such as IL‑1β, TNF‑α and 
IL‑6 in microglia (139‑141). In addition, the abnormal eleva‑
tion of TNF‑α has been found to coincide with the occurrence 
of neurological abnormalities at 2‑3 and 6 months following 
irradiation in vivo (142). On the contrary, the inhibition of 
TNF‑α and IFN‑γ has been shown to prevent severe neuro‑
logical damage in rats by suppressing hippocampal neuronal 
apoptosis (143). The observation that patients suffering from 
less prominent cognitive function impairment after cranial 
radiotherapy exhibit higher levels of anti‑inflammatory IL‑10 
in serum (144) has suggested the potential use of cytokines 
against RE. Thus, further preclinical studies are required to 
investigate the alleviation of microglial activity as well as the 
promotion of Th2 polarization in vivo.

Other radiation‑induced clinical symptoms. Cutaneous radiation 
syndrome (CRS), which is characterized by extensive inflamma‑
tory response, fibrosis or, ultimately, necrosis of the skin, mostly 
occurs as a consequence of HDIR. The TGF‑β/Smad3 pathway 
mediates inflammation in CRS (145,146). IFN‑γ therapy has 
been observed to ameliorate cutaneous fibrosis, most likely 
through TGF‑β inhibition (147). A clinical randomized trial 
confirmed that low‑dose IFN‑γ administration induced a signifi‑
cant reduction in fibrosis in patients with IR overexposure (148). 
Furthermore, blood‑based single‑nucleotide polymorphism 
(SNP) analysis revealed a possible association between SNPs 
in the IFN‑γ gene (rs2069705) and acute radiation‑induced skin 
reactions in patients with breast cancer undergoing adjuvant 
radiotherapy (149).

TNF‑α has been found to be implicated as a potential 
contributor and underlying target in radiation‑induced 
salivary dysfunction and oral mucositis, as it increased 
nitric oxide levels in salivary gland epithelial cells and 
disrupted salivary gland function  (150‑152). In addition, 
in radiation‑induced esophagitis, manganese superoxide 
dismutase (SOD2)‑plasmid/liposome treatment 24 h prior 
to irradiation markedly decreased the mRNA levels of 
cytokines (IL‑1, TNF‑α and IFN‑γ) in C3H/HeNsd mice 
and inhibited apoptosis and micro‑ulceration (153). Of note, 
IL‑1 and TNF‑α pre‑treatment protected hematopoietic cells 
against lethal cytotoxicity from HDIR, mostly through the 
production of a specific antioxidant enzyme, SOD2 (154). 
Exogenous IFN‑γ and TNF‑α were reported to mimic the 
effects of bone marrow transplantation on the suppression of 
radiation lymphedema (155). Taken together, the aforemen‑
tioned findings indicate that Th1 cytokines, such as IFN‑γ 
and TNF‑α, markedly promote radiation‑related inflamma‑
tion, but reduce fibrosis, myelosuppression and radiation 
lymphedema.

5. Conclusion

The modulation of the Th1/Th2 balance in the tumor micro‑
environment has prominent immunoregulatory properties 
and interferes with tumor progression. An increasing number 
of molecular‑centric studies indicate that IR may modify 
the Th1/Th2 shift based on different irradiation doses. The 
combination of clinically transformable Th1/Th2 modula‑
tors and IR at the proper dose and fraction may help design 
practical and effective antitumor therapies. Hopefully, such 
treatment will benefit patients with unsatisfactory prognosis 
and radiation‑induced complications via modulating the cross‑
talk of immunocytes and Th1/Th2 cytokines in the presence 
of irradiation. Further investigations on the regulatory roles of 
Th cells in the TIME will improve the comprehensive under‑
standing of the possible applicability of immunoradiotherapy 
in the treatment of malignant tumors.
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