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Abstract. Leukemia is a group of malignant diseases of clonal 
hematopoietic stem‑progenitor cells and its pathological 
mechanisms remain to be elucidated. Genetic and epigen‑
etic abnormalities, as well as microenvironmental factors, 
including cytokines, serve critical roles in leukaemogenesis. 
Macrophage migration inhibitory factor (MIF) has been 
presented as one of the key regulators in tumorigenesis, 
angiogenesis and tumor metastasis. This article focuses on the 
functional role of MIF and its pathway in cancer, particularly 
in leukemia. MIF/CD74 interaction serves prominent roles in 
tumor cell survival, such as upregulating BCL‑2 and CD84 
expression, and activating receptor‑type tyrosine phospha‑
tase ζ. Furthermore, MIF upregulation forms a pro‑tumor 
microenvironment in response to hypoxia‑induced factors and 
promotes pro‑inflammatory cytokine production. Additionally, 
polymorphisms of the MIF promoter sequence are associated 

with leukemia development. MIF signal‑targeted early clinical 
trials show positive results. Overall, these efforts provide a 
promising means for intervention in leukemia.
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1. Introduction

The term leukemia collectively describes a group of malignant 
clonal diseases of hematopoietic stem‑progenitor cells, which 
present with various diverse and biological subtypes (1). Due to 
chromosomal abnormalities and genetic alterations, these cells 
expand in an oligoclonal manner and invade the bloodstream 
and extramedullary tissues (2). Epidemiologic cross‑sectional 
research performed in 2012 revealed that the worldwide 
age‑standardized incidence of leukemia was 5.6 per 100,000 
in men and 3.9 in women, ranking it as the 11th most prevalent 
with the 10th highest mortality among all cancers, with even 
higher numbers for specific subtypes among young and elderly 
patients (3). According to the World Health Organization 
standard classification (4), four subtypes of leukemia are 
recognized, based on their progression state and the affected 
cell lineage: Acute myeloid leukemia (AML), chronic myeloid 
leukemia (CML), acute lymphoblastic leukemia (ALL) and 
chronic lymphocytic leukemia (CLL).

For decades, genetic aberrations have been considered to 
serve an essential role in the pathogenesis of leukemia (5‑7). 
These mutations can be categorized into three main func‑
tional groups regulating cellular activities: Mutation genes 
encoding transcription factors, epigenetic modifiers regulating 
gene expression and genes associated with signaling pathway 
activation. In AML, pro‑proliferative signaling pathways, such 
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as the RAS/RAF, Janus kinase/STAT, PI3K/AKT signaling 
pathways, are aberrantly activated as a result of gene muta‑
tions, including mutations of fms related receptor tyrosine 
kinase 3, KIT proto‑oncogene, receptor tyrosine kinase, 
RAS family members and serine/threonine kinases (7). In 
lymphoid leukemia, the most commonly mutated gene is 
NOTCH1, and this contributes to NOTCH1 signaling pathway 
activation (8,9). BCR activator of RhoGEF and GTPase‑ABL 
proto‑oncogene 1, non‑receptor tyrosine kinase, the key 
fusion gene of CML, leads to tyrosine kinases deregula‑
tion (6). Apart from gene mutation, epigenetic regulators 
also serve essential roles in leukaemogenesis. For example, 
DNA methyltransferase 3α, tet methylcytosine dioxygenase 2, 
isocitrate dehydrogenase [NADP(+)]1, methyltransferase 3, 
N6‑adenosine‑methyltransferase complex catalytic subunit 
and FTO α‑ketoglutarate dependent dioxygenase, have been 
reported to be involved in pathological DNA methylation and 
mRNA modification in AML (10,11). These efforts have been 
well described in other reviews. Although progress has been 
made in the treatment of leukemia, especially in terms of the use 
of tyrosine kinase inhibitors (12) and immunotherapy (13,14), 
the disease remains incurable, either due to frequent relapse or 
refractory cases, and the best‑practice treatment regiments are 
still being identified.

Extrinsic signals from the bone marrow (BM) micro‑
environment promoting leukaemogenesis provide novel 
mechanisms in treating leukemia (15,16). Inflammation 
mediator‑related genes, and specifically expressed proteins, 
serve a vital role in the pathogenesis of various tumor 
diseases, including breast cancer, gastrointestinal tumors 
and genitourinary cancers (17,18). It is widely accepted 
that the activity of inflammatory factors, especially when 
causing chronic inflammation, can result in a pro‑tumor 
microenvironment, promoting tumor survival, proliferation 
and metastasis (17‑19). Among these, macrophage migra‑
tion inhibitory factor (MIF) is one of the pro‑inflammatory 
cytokines, which is upregulated in a number of autoimmune 
diseases (20), as well as in cancer (21), including leukemia (22). 
Its multiple functions are necessary for cell proliferation, 
survival and invasion (23), suggesting this protein could be a 
promising candidate therapeutic target. This review focuses 
on the function of MIF in general and its role in cancer, 
and on how these functions influence the development of 
leukemia.

2. MIF structure and physiology

MIF is a soluble symmetrical homotrimer (37.5 kDa), 
consisting of three small (115 amino acids long) 12.5 kDa 
monomers (24). The protein is evolutionary highly conserved, 
resulting in homologies >80% among protein sequences of 
different species, including bacteria, plants, protozoa and 
other non‑mammals (25). Notably, MIF executes tautomerase 
activity and catalyzes the conversion of D‑isomer of 
2‑carboxy‑2,3‑dihydroindole‑5,6‑quinone (D‑dopachrome) 
to 5,6‑dihydroxyindole‑2‑carboxylic acid (26). Its main, 
although not sole, receptor is CD74 (27). Binding depends on 
the protein‑protein interaction between the N‑terminal proline 
residue of the active site of MIF and the type II transmembrane 
CD74 receptor (27).

MIF has been characterized as a pleiotropic, multi‑
functional, pro‑inflammatory factor (28). First identified in 
the 1930s (29), MIF was recognized as a soluble immune 
cell‑derived factor in 1966 and was first cloned in 1989 (26,30). 
Notably, MIF acts as an endogenous regulator of glucocor‑
ticoids (31). Under normal conditions, MIF can be detected 
in the serum at a range of 2‑6 ng/ml, following the circadian 
rhythm of glucocorticoids (31). The main sources of MIF are 
anterior pituitary cells, where a pre‑secreted form is stored in 
the cytoplasm (31). Serum levels of MIF peak 2‑3 h before 
relative serum levels of steroids reach their peak (32). Apart 
from pituitary cells, different types of cells, including mono‑
cytes/macrophages, granulocytes, dendritic cells, endothelial 
cells and mesenchymal cells, can secret MIF in response 
to inflammatory stimuli (33‑36). The MIF protein lacks an 
N‑terminal secretion signal (37,38). Instead, its release is 
partly dependent on Golgi‑associated protein p115 (38) or 
exosomes (39).

3. MIF signaling pathways

Several signaling pathways in which MIF is involved have 
been identified in the past decades (Fig. 1). The interac‑
tion between MIF and the CD74/CD44 complex was a 
landmark discovery (40,41). CD74, which is also known as 
constant chain protein, is a molecular marker expressed on 
the cell surface (40). It belongs to the major histocompat‑
ibility complex (MHC) II invariant chain and facilitates the 
interaction of MHC II‑antigen peptides for antigen presenta‑
tion (42). Multiple studies have demonstrated that CD74 is 
upregulated in different types of cancer cells (43‑45). CD44 
is an adhesion molecule that mediates the activation of SRC 
proto‑oncogene, non‑receptor tyrosine kinase (Src) family 
proteins (46). Notably, half of the exons of the gene encoding 
CD44 can be spliced into different subtypes, to generate 
different protein ectodomains (46). As a result, MIF‑activated 
CD44 is expressed in cells with dynamic proliferation, such 
as epithelial and tumor cells (46). CD44 can be recruited by 
CD74 to form a CD74/CD44 complex, which is involved in the 
activation of downstream signaling pathways (47).

First, the interaction of MIF‑CD74/CD44 results in 
phosphorylation of Src family proteins (41). Subsequently, 
the phosphorylated Src proteins activate the ERK1/2 MAPK 
signaling pathway by phosphorylation (41), accompanied by 
the activation of cytosolic phospholipase A2 (cPLA2) and the 
inhibition of p53, which is associated with anti‑apoptosis and 
proliferation effects (48,49). MIF acts as a negative regulator of 
p53, probably via binding to p53 and MDM2 proto‑oncogene 
(an E3 ubiquitin ligase), to form a ternary compound (50,51). 
As a result, cell cycle arrest is repressed, increasing the risk 
of malignant transformation (52). MIF also affects the reti‑
noblastoma protein‑adenoviral early region 2 binding factor 
complex by antagonizing Rb‑mediated suppression of DNA 
replication by upregulating expression of cyclin D1 (53,54), 
which progresses the cell cycle from the G1 phase into the 
S phase, thus promoting cell proliferation (54). In addition, 
the PI3K/AKT and NF‑κB signaling pathways are involved 
in the downstream signaling, promoting cell survival and 
proliferation (55). Secondly, MIF can also initiate downstream 
signals in a non‑covalent manner following binding to C‑X‑C 
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chemokine receptor type 2 (CXCR2)/CXCR4 (56), which is 
associated with cell migration and inflammation (57) (blue 
arrow; Fig. 1). Thirdly, MIF can promote the cleavage of the 
intermembrane part of CD74 via sPPLA2 protease, resulting 
in a 42 amino acid peptide (CD74‑ICD) (58). Subsequently, 
CD74‑ICD migrates into the cytosol and binds to p65 (an 
NF‑κB family member), regulating the transcription of NF‑κB 
in the nucleus (grey arrows; Fig. 1) (59). It has been identi‑
fied that the cleavage of CD74‑ICD and NF‑κB activation 
occurs in B cell maturation via upregulation of TAp63 (59). 
In addition, the tyrosine kinase receptor c‑Met is involved, as 
it contributes to B cell proliferation and survival (60). Lastly, 
research suggests that a soluble form of CD74 is involved in 
the regulation of MIF activation (61); however, its mechanism 
needs to be further elucidated.

4. MIF and hematopoiesis

Hematopoietic homeostasis is maintained by the hema‑
topoietic stem cells (HSCs) and the hematopoietic 
microenvironment (62). HSCs stay in the BM niche, a special 
structure within the BM that can be considered as a complex 
ecological system (62). The niche is composed of different 
types of cells that interact with HSCs, providing signals by 
secretion of supporting factors to regulate blood cell produc‑
tion (63). For example, stem cell factor, TGF‑β1, platelet factor 
4 [also referred to as chemokine (C‑X‑C motif) ligand 4] and 
angiopoietin 1 are all factors that maintain HSC quiescent 
status (63), whereas stromal‑derived factor 1 (also referred 
to as C‑X‑C motif chemokine ligand 12) and its receptor 
CXCR4 (64,65), or adhesion molecules, such as vascular cell 

Figure 1. MIF signaling pathways. MIF induces Src family phosphorylation by binding to the CD74/CD44 complex or CXCR2/4 (blue arrow), and further 
activates downstream ERK1/2 MAPK or PI3K/AKT signaling pathways. The interaction of MIF and CD74 can also promote the cleavage of CD74 to produce 
CD74‑ICD (grey arrow), which is considered to provide a further activation signal. When MIF interaction activates NF‑κB and inhibits p53 by stabilizing 
the MIF‑MDM2‑p53 ternary complex, it leads to the upregulation of the expression of proteins of the BCL‑2 family, such as BCL‑2, BCL‑X and MCL‑1, 
which promotes cell survival and proliferation. In addition, MIF can regulate the cell cycle by facilitating Rb phosphorylation. CXCR, C‑X‑C chemokine 
receptor; MDM2, MDM2 proto‑oncogene; MIF, macrophage migration inhibitory factor; SPPL2A, signal peptide peptidase like 2A; Src, SRC proto‑oncogene, 
non‑receptor tyrosine kinase; CD74‑ICD, CD74 intracellular domain; p, phosphorylated; cPLA2, cytosolic phospholipase A2; Rb, retinoblastoma protein; 
E2F, adenoviral early region 2 binding factor; MCL‑1, MCL1 apoptosis regulator, BCL2 family member.
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adhesion protein 1 (66), are necessary for cell migration and 
homing. In addition, IL‑7 (67) and erythropoietin (68) facilitate 
HSC proliferation and differentiation.

CD74 is an important regulator involved in the maturation 
and differentiation of B cells, and MIF participates in regulation 
of B cell differentiation and survival. Gore et al (55) reported 
that the CD74/CD44 complex was found in the membrane of 
murine B cells, activating downstream signaling in the clas‑
sical MIF‑CD74 interaction described in the previous section. 
Furthermore, dendritic cells in the BM facilitate B cell survival 
in a MIF‑dependent manner (69). However, to the best of our 
knowledge, whether MIF is involved in the differentiation and 
proliferation of HSCs has not yet been established and this 
requires further study.

5. MIF and leukaemogenesis

Hypoxia‑induced factors (HIFs) include a heterodimeric 
transcription factor whose classical activation is oxygen 
concentration‑dependent (70). BM is distinguished by high 
cellularity and low oxygen concentrations, albeit being 
supplied by a complex vascular network (71). Extrinsic factors, 
such as stem cell factors, further promote increased levels of 
HIF proteins (72). In the leukemic BM, increased cellularity 
and high metabolic activity of proliferating cells further reduce 
oxygen concentrations and are associated with increased 
expression levels of HIF factors, mainly HIF‑1α (73‑75), which 
are involved in a number of pro‑tumor processes, such as cell 
proliferation and differentiation, metabolism, and angiogen‑
esis (76‑79). Hypoxia is an important factor in the upregulation 
of MIF (80), and HIF‑1α can induce MIF expression (81) in a 
p53‑dependent manner (82), while the secretion of MIF can in 
turn promote the activation of HIF‑related signaling pathways, 
forming a positive feedback loop (83).

In addition, the leukemic BM niche allows clonal prolif‑
eration of pre‑leukemia HSCs and leukaemic stem cells, 
while reducing the capacity of supporting normal hematopoi‑
esis (15). This partly results from BM structure changes, such 
as endostral stroma remodeling and fibrosis (84). Additionally, 
the increased inflammatory signaling also contributes to 
leukaemogenesis (85), again resulting in MIF signaling. The 
functions of MIF in the different subtypes of leukemia are 
reviewed in the next section.

6. Functions of MIF in leukemia

CLL. CLL comprises a group of chronic lymphoproliferative 
disorders. Its prevalence is higher in Caucasians compared 
with Asian, Caribbean or African populations (9). It is 
characterized by malignant mature B cell proliferation and 
accumulation (9).

It has been demonstrated that MIF can be upregulated in 
solid tumors (86‑89). As early as in 1979, increased levels of 
MIF were described in sera from patients with CLL, especially 
in patients with advanced stages (22). CD74, the main receptor 
of MIF, is also upregulated in response to its upregulated ligand 
secreted by CLL cells (90). Binsky et al (90) reported that MIF 
acts as a pro‑survival factor in CLL. MIF/CD74 interaction acti‑
vates downstream IL‑8 secretion in an autocrine manner, as has 
been demonstrated in vitro, and this upregulates BCL‑2 levels 

via the PI3K/AKT signaling pathway (90). This can be reversed 
by (S,R)‑3‑(4‑hydroxyphenyl)‑4,5‑dihydro‑5‑isoxazole acetic 
acid methyl ester, a nontoxic inhibitor of MIF, and by anti‑IL‑8 
antibodies, suggesting that the MIF/CD74 signaling pathway 
promotes anti‑apoptosis (90). In addition, the MIF/CD74 
signaling pathway can promote CLL survival by upregulating 
the expression of midkine, which is a pro‑tumor protein (90). 
Midkine binds to its receptor receptor‑type tyrosine phos‑
phatase ζ, mediating anti‑apoptotic activity (91). Another 
target participating in MIF signaling is CD84, a member 
of the signaling lymphocyte activation molecule immu‑
noglobulin superfamily, which modulates the function of 
immune cells (92). Upon upstream stimulation, CD84 recruits 
its ligand SH2 domain containing 1B to activate the AKT 
signaling pathway and promote the activation of anti‑apoptotic 
molecules (92).

Reinart et al (93) crossed MIF‑/‑ mice with Eµ‑TCL1 mice, 
creating an animal model to verify the function of MIF in 
CLL. Compared with wild‑type animals, the MIF knockout 
mice exhibited a delayed onset of disease and longer survival 
of CLL (93). Notably, the authors identified a reduced infiltra‑
tion of tumor‑associated macrophages (TAMs) in the spleen 
of the mice, indicating that recruitment of TAMs is associ‑
ated with MIF expression (93). A recent study revealed that 
knockout of CD74 in Eµ‑TCL1 mice has no significant effect 
on CLL development, possibly as a result of yet unknown 
compensatory mechanisms, which need to be further inves‑
tigated (94). MIF is also able to increase the viability of CLL 
by stimulating the production of very late antigen‑4 integrin 
(VLA‑4), a homing factor, via TAp63 (95). The upregulated 
VLA‑4 allows CLL to remain and survive in BM (95).

AML. AML is a heterogeneous group of diseases characterized 
by myeloid progenitor cells with abnormal proliferation and 
differentiation (96). Similar to CLL, the serum levels of MIF 
are increased in AML compared with healthy bodies (97). This 
indicates that the presence of MIF in the microenvironment may 
serve an important role in the pathogenesis of AML. In 2014, by 
studying BM samples from 85 patients with AML or myelodys‑
plastic syndromes, Falantes et al (80) demonstrated that MIF was 
highly expressed in BM, which was consistent with the levels in 
peripheral blood. Higher MIF expression was associated with a 
poorer prognosis and less sensitivity to azacitidine (80), a first‑line 
therapeutic drug of AML. A mechanistic explanation was 
provided by Abdul‑Aziz et al (45), whose in vitro work deepened 
the understanding of the role of MIF in AML. They described 
that MIF is secreted by AML blasts, after which it interacts 
with CD74 via protein kinase C β, but not CXCR2, and thus, 
this induces IL‑8 expression in BM mesenchymal stromal cells, 
which may then promote AML survival (45). Subsequently, they 
demonstrated that HIF modulates MIF expression in response 
to a hypoxic BM microenvironment. Indeed, knockdown of 
HIF1α or MIF prolongs the life of xenograft mice, suggesting 
that HIF1α promotes MIF expression and enhances AML blast 
survival (98). This process is shown in Fig. 2.

Somatic mutations have been identified in different AML 
phenotypes, and are associated with response to therapy 
and subsequent relapse (99). MIF promotes the survival of 
AML‑blasts carrying the lysine methyltransferase 2A‑MLLT3 
super elongation complex subunit mutation (99). Future 



INTERNATIONAL JOURNAL OF ONCOLOGY  59:  62,  2021 5

studies are required to identify the association between other 
mutations or subtypes of AML and MIF expression, as their 
identification would have potential in precision medical care.

ALL. ALL is characterized by proliferation of malignant 
lymphoid precursor cells, mainly caused by genetic altera‑
tions (8). Two types are recognized, T‑cell acute lymphoblastic 
leukaemia (T‑ALL) and B‑cell acute lymphoblastic leukemia, 
depending on the lymphoid precursor cells involved (8). During 
treatment of ALL, the administration of glucocorticoids is 
important in all phases (8). However, glucocorticoid resistance 
weakens the effects of treatment (100). MIF counteracts the 
function of steroids by suppressing NF‑κB inhibitor IκB and 
reversing cPLA2 activity (48,101). In vitro data suggest that 
MIF expression in a CEM cell line was not affected by treat‑
ment with glucocorticoids (102). A polymorphism near the 
MIF promoter (details provided in the next section) is associ‑
ated with ALL prognosis, and its mechanism remains to be 
elucidated.

7. Genetics of MIF in leukemia

In rheumatic diseases, regulation of the MIF gene has 
been widely discussed (103,104). It has been identified that 

there are two polymorphic sequences located on the MIF 
promoter (103,104). One is caused by a microsatellite (CATT) 
present in 5‑8 copies at location ‑794 (‑794CATT5‑8) (104) and 
the other by a G/C polymorphism at location ‑173 (‑173G/C) 
(Fig. 3) (105). To the best of our knowledge, the function of the 
‑173G/C polymorphism is still unknown. Aberrant expression 
levels of genes, such as carnitine palmitoyltransferase 1A, are 
associated with poor prognosis (106). Sharaf‑Eldein et al (107) 
identified a negative association between MIF serum levels 
and ALL prognosis and also reported a higher incidence of 
the C genotype over the G genotype in children with ALL 
compared with healthy children (108). These results were 
corroborated in a Chinese study (109). Apart from ALL cases, 
the ‑173G/C polymorphism may also be involved in patients 
with AML (110). The ‑173C allele is associated with higher 
MIF serum levels and poses a risk factor for deteriorative 
prognosis (106). However, MIF can be upregulated in other 
diseases (56,111‑113) except leukemia, resulting in a low speci‑
ficity for leukemia. MIF could be recognized as a prognostic 
biomarker instead of as a diagnostic marker in leukemia.

For the promoter polymorphism at ‑794CATT5‑8, it has 
been demonstrated that higher numbers of the CATT repeat 
result in higher MIF secretion (104). The number of repeats is 
also associated with the severity of a number of autoimmune 
diseases and the efficacy of using corticosteroids (114,115); 
however, to the best of our knowledge, its role in leukemia 
has not yet been reported. The frequency of ‑173C has been 
identified to be associated with presence of 7 CATT repeats 
at ‑794 (103). Notably, ubiquitin like with PHD and ring 
finger domains 1 (UHRF1), also known as inverted CCAAT 
box‑binding protein of 90 kDa, is highly expressed in a 
variety of tumor cells, including in lung cancer and hepatocel‑
lular carcinoma (116‑118) and promotes tumorigenesis (119). 
Therefore, UHRF1 can be considered to be a proto‑oncogene. 
Our previous study demonstrated that the UHRF1 acts as a 
transcription factor that binds to the CATT5‑8 motif (120). 
UHRF1 regulates MIF transcriptional activity in a CATT5‑8 
length‑dependent manner (120). Our recent study revealed that 
UHRF1 acts as a positive regulator mediating MIF expression 
in T‑ALL by interacting with CATT repeats, leading to T‑ALL 
survival (121). This provides one more piece of evidence 
regarding how MIF transcription and activity can be involved 
in the onset or progression of leukemia.

8. Potential therapeutic targets

In the past few decades, the treatment of leukemia has 
greatly improved and developments are still ongoing (122). 
Taking CLL as an example, a clinical trial (CALGB 9712) 
demonstrated that the combination of rituximab and fluda‑
rabine improved the rate of complete response, due to 
cytotoxic synergism (123). Although various types of drugs, 
such as anti‑CD20 monoclonal antibody (mAb) (124,125), 
B cell receptor signaling kinase inhibitors (126) and BCL‑2 
antagonists (127), have been applied in clinical practice, other 
possible targets remain to be identified in order to improve 
treatment response and efficacy.

Three main types of drugs target the MIF/CD74 
signaling pathway: MIF inhibitors, mAb targeting MIF and 
CD74 (128). In hematopoietic tumors, anti‑CD74 mAbs 

Figure 2. MIF function in modulating pro‑tumor microenvironment in AML. 
In the bone marrow of AML, the local hypoxic microenvironment promotes 
HIF expression, activating HIF1α associated with downstream signal path‑
ways, which in turn facilitates MIF expression in a positive loop (grey arrow). 
As a result, AML‑derived MIF upregulates IL‑8 expression in BM‑MSCs via 
the MIF/CD74/PKCβ signaling pathway. In turn, IL‑8 promotes AML cell 
survival and proliferation (black arrow). MIF, macrophage migration inhibi‑
tory factor; HIF, hypoxia‑induced factor; AML, acute myeloid leukemia; 
BM‑MSC, bone marrow mesenchymal stromal cells; PKCβ, protein 
kinase C β; p, phosphorylated.
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exhibited promising therapeutic potential. Milatuzumab, an 
anti‑CD74 humanized murine mAb, is generated by grafting 
of antigen‑recognizing variable regions of LL1 onto human 
IgG1 (129). Hertlein et al (130) demonstrated that milatuzumab 
mediates cytotoxicity on CLL directly via CD74 expression. 
Furthermore, clinical data described promising results for 
treatment of refractory patients with CLL (131). The data from 
a phase I trial conducted by Martin et al (132) revealed an 
improvement of WBC count (usually elevated in leukemia) 
from an average of 91x109 cells/l to a nadir of 32x109 cells/l, 
despite short clinical benefits. A phase I‑II study from Israel 
revealed that milatuzumab improved the treatment response 
in 62.5% (5/8) of patients, with a decreased spleen size and 
a decreased requirement of packed red cell transfusion (133). 
Researchers have also identified that the amounts of lympho‑
cytes and platelets are increased, while circulating levels of 
BCL‑2 are decreased, as a result of treatment with milatu‑
zumab (133). For safety, neutropenia, thrombocytopenia and 
rash are the most common treatment‑related adverse events 
in a dose‑dependent manner (132). The Israel study indicated 
that infection was the most common adverse event but was 
not associated with milatuzumab (133). It may have resulted 
from the generation situation of enrolled individuals (133). The 
efficacy of the drug has also been demonstrated in multiple 
myeloma (134). More evidence is required based on larger, 
randomized clinical trials, as well as trials in other subtypes 
of leukemia.

Although treatment options have greatly improved over 
time, AML treatment remains a great challenge, due to the 
complicated genetic alterations and immunophenotypes 
responsible for this disease (135). Recent studies have provided 
novel insights on combination treatments with immune check‑
point inhibitors and hypomethylating agents (136), targeting 
tumor‑associated metabolic and energetic signaling path‑
ways (137), although more clinical data are required to support 
such a treatment strategy.

Notably, in hematopoietic tumors, UHRF1 expression is 
associated with tumor aggression (138). Alhosin et al (139) 
reported that thymoquinone could induce apoptosis in ALL 
cells, at least in vitro, in a p73‑dependent manner. Other 
research suggests that UHRF1 facilitates the degradation of 
promyelocytic leukemia (PML) protein (140). Knockdown of 
UHRF1 could restore PML protein expression and inhibit cell 
migration and capillary formation in vitro (140). Furthermore, 
UHRF1 stabilizes receptor tyrosine kinase‑like orphan 

receptor 1 in pre‑B cells of ALL, which decreases the sensi‑
tivity to chemotherapy (141). Our previous study also suggested 
that UHRF1 acts as pro‑tumor factor by promoting T‑ALL cell 
survival (121). Further investigations could focus on whether 
UHRF1 can be used as a potential therapeutic target.

9. Conclusions

The various functions of MIF go far beyond its initial 
description as a pro‑inflammatory chemical kinase‑like 
protein in the early 1930s. This improved understanding of 
its complex and multiple functions is enabled and supported 
by in vitro experiments and investigations using transgenic 
animal models, often in combination with MIF inhibitors. 
An improved understanding of the relevant MIF signaling 
mechanisms in leukemia can be obtained by studying the 
complex MIF interactions with various receptors and their 
downstream signaling pathways, which may eventually 
provide a novel platform for therapeutic strategies in the 
future.
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