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Abstract. Osteosarcoma (OS) is the most common primary 
bone tumor worldwide. OS exhibits a range of aggressive behav‑
iors, including early metastasis potential, rapid progression, 
poor clinical prognosis and insensitivity to chemoradiotherapy. 
Non‑coding RNAs are transcripts that do not encode proteins. 
A significant number of studies published on OS have been 
focused on the aberrant expression of non‑coding RNAs and 
their involvement in tumor initiation and progression. It has 
been confirmed that non‑coding RNAs exert their regulatory 
functions at both the transcriptional and post‑transcriptional 
level, which leads to tumor initiation or progression in OS. 
According to present knowledge, this review provides a 
state‑of‑the‑art overview of the functions and mechanisms of 
microRNAs, long non‑coding RNAs and circular RNAs in 
terms of their involvement with OS. The review also covers 
their potential clinical application in the diagnosis, prognosis 
and treatment of OS. It is hoped that the information presented 

in this review on the involvement of non‑coding RNAs in OS 
will lead to a more comprehensive understanding of OS and 
provide a useful perspective on the potential diagnostic and 
therapeutic applications of non‑coding RNAs for patients 
with OS.
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1. Introduction

Osteosarcoma (OS) is considered to be the most commonly 
occurring type of primary bone tumor, with an estimated 
worldwide incidence of 3‑4 new cases per million, which 
accounts for approximately 60% of the total number of cases 
of bone malignancy (1,2). OS is derived from the transforma‑
tion of primitive mesenchymal cells, and typically occurs in 
the metaphyseal region of long bones, with a peak incidence 
among young individuals (3,4). OS exhibits a range of aggres‑
sive behaviors, including early metastasis potential, rapid 
progression, poor clinical prognosis and insensitivity to 
chemoradiotherapy, which collectively lead to a poor overall 
survival rate (5,6). Prior to the 1970s, surgical resection was 
the preferred treatment for OS, although, as the 5‑year survival 
rate was <20%, it was insufficient as a means of therapy for 
numerous patients (7,8).

The current therapeutic strategy for OS includes neoad‑
juvant chemotherapy after surgical removal of the tumor and 
adjuvant chemotherapy with or without lesion metastasis, 
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which has led to a marked increase in the survival rate to 
approximately 65% over the course of the last 30 years (9). 
However, despite notable improvements achieved in terms 
of surgical techniques and neoadjuvant chemotherapy, the 
overall survival time of patients with distant metastasis or 
multi‑drug resistance cannot be effectively prolonged (10‑12). 
Therefore, it is crucial to elucidate the underlying molecular 
mechanisms that are involved in the tumorigenesis and 
progression of OS, and to identify novel biomarkers for 
developing alternative therapies or improving the efficiency 
of existing treatments.

After having mapped out the transcriptional ‘landscape’ of 
the mammalian genome, findings showed that protein‑coding 
mRNAs only account for 1.4% of the genome  (13,14). 
Furthermore, by comparing the number of protein‑coding 
genes with the genome size among different species, it was 
shown that the more complex eukaryotes carry a larger propor‑
tion of non‑coding RNA (ncRNA) (15). These phenomena led 
to the suggestion that the ncRNAs in the human genome may 
contribute towards complex physiological and pathological 
processes. Based on a cutoff at 200 bases of length, ncRNAs 
are standardly categorized as short ncRNAs (sncRNAs) and 
long ncRNAs (lncRNAs) (16). MicroRNAs (miRNAs/miRs), 
as a typical class of sncRNAs, have been extensively studied. 
It has been confirmed that miRNAs exercise a regulatory role 
on the expression of protein‑coding mRNAs, which leads to 
the initiation or progression of numerous diseases, including 
cancer (17,18). In addition, there are other types of ncRNAs, 
including small interfering RNAs (siRNAs), small nuclear 
RNAs (snRNAs) and small nucleolar RNAs (snoRNAs). The 
lncRNAs, as observed from a wide spectrum of profiling in 
mammals, are a class of transcripts >200 nucleotides (nt) 
in length (13,19,20). Increasing evidence has demonstrated 
that lncRNAs fulfill functional roles in the occurrence and 
development of tumors (21,22). Along with the development 
of high‑throughput sequencing technology and novel compu‑
tational approaches, a set of circular RNAs (circRNAs) have 
recently been identified. It was revealed that circRNAs are 
involved in diverse pathological processes, including oncogen‑
esis and tumor progression (23).

With the aim of encouraging further studies on these RNA 
species, the present review article provides a concise summary 
of ncRNAs and their biogenesis, their underlying molecular 
mechanisms and their potential clinical applications in OS. 
It is the authors' hope that associated research in the future 
may lead to a more comprehensive understanding of OS and 
present a reasonable perspective on the potential diagnostic 
and therapeutic application of ncRNAs in patients with OS.

2. miRNAs

Biogenesis and features of miRNAs. The first miRNA, 
lin‑4, was discovered in Caenorhabditis  elegans in 1993 
and its involvement in various biological processes has 
been observed  (24‑26). Since then, thousands of miRNAs 
have been identified and studied over the course of the past 
20 years. Further research has revealed that genes influenced 
by miRNAs exist in all metazoans and plants, suggesting that 
miRNA‑associated regulation operates according to a highly 
conserved mechanism (27).

The biogenesis of miRNAs is a complex process, including 
nuclear synthesis and cytoplasmic synthesis with the involve‑
ment of a specific set of enzymes. First, in the nucleus, a 
primary miRNA (pri‑miRNA) with special hairpin structures 
(AAAAA and 7MGpppG) is synthesized according to the 
transcriptional gene that encodes the miRNA by RNA poly‑
merase II. Subsequently, the hairpin domain of the pri‑miRNA 
is cleaved by an RNA‑specific nuclease termed Drosha (ribo‑
nuclease III) to produce precursor miRNAs (pre‑miRNAs) 
that possess a stem‑ring structure and are 70‑80  nt in 
length (28). Then, with the help of cytoplasmic transporter 
exportin‑5, the pre‑miRNAs are translocated from the nucleus 
to the cytoplasm. Within the cytoplasm, these pre‑miRNAs 
are further cleaved into a miRNA duplex of ~19‑23 nt by ribo‑
nuclease III (Dicerase) (29). The miRNA duplex consists of 
two strands: A mature miRNA strand and a passenger miRNA 
strand. After strand unwinding, the mature miRNA strand 
is transformed into a mature miRNA via its interaction with 
Argonaute protein, whereas the passenger miRNA is usually 
degraded (30).

Regulatory functions of miRNAs in OS. Aberrant expression 
of miRNAs has been reported as a common phenomenon 
occurring in a diversity of cancer types, including breast, lung, 
hepatocellular, colon and cervical cancer (31,32). miRNAs 
exert their regulatory role through interacting with their mRNA 
target genes. Normally, there are two mechanisms by which 
mature miRNAs are able to form RNA‑induced silencing 
complex (RISC). In the first scenario, in cases where the 
miRNA is fully complementary to the target gene, the miRNA 
degrades the target gene. In the second scenario, where the 
miRNA is not fully complementary to target gene, miRNA 
combines with the 3'‑untranslated region to inhibit translation 
of the target gene (33). In addition, it has been confirmed that 
one single miRNA may affect multiple mRNAs, or conversely, 
multiple miRNAs may affect one single mRNA (27). Through 
the mechanism described above, miRNAs are heavily involved 
in multiple instances of cancer occurrence and development, 
including proliferation, apoptosis and metastasis (34,35).

Similarly, certain miRNAs have been demonstrated to 
regulate malignancy by serving either as an oncogene or as 
an onco‑suppressor in OS. miR‑210‑5p was recently shown 
to be upregulated in human OS tissues and cell lines, closely 
correlating with the advanced tumor‑node‑metastasis (TNM) 
stage, tumor size and pulmonary metastasis. Overexpressed 
miR‑210‑5p led to an increase in the rates of tumor invasion, 
migration and autophagy by suppressing the downstream 
target, phosphoinositide‑3‑kinase regulatory subunit  5 
(PIK3R5). Of note, miR‑210‑5p‑mediated autophagy facilitates 
miR‑210‑5p‑induced tumor invasion and migration promotion 
via inhibiting the AKT/mTOR pathway (36). Another upregu‑
lated miRNA, miR‑624‑5p, has been identified in clinical 
OS specimens and cell lines. Further functional analysis 
suggested that miR‑624‑5p may promote cell proliferation, 
migration and invasion both in vitro and in vivo. Identified as 
the target gene of miR‑624‑5p, protein tyrosine phosphatase 
receptor type B (PTPRB) was found to be negatively corre‑
lated with miR‑624‑5p. Furthermore, PTPRB restored the 
effects of miR‑624‑5p on OS migration and invasion (37). 
miR‑627‑3p was shown to be downregulated in OS tissues 
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using biochip analysis, and was also shown to be expressed 
at a lower level in OS cell lines compared with human osteo‑
blastic cells. Moreover, miR‑627‑3p significantly suppressed 
the expression and activity of pleiotrophin (PTN), and PTN 
affected the proliferation and migration of OS cells via regula‑
tion of a range of different proteins, including cyclin D1 and 
matrix metalloproteinase‑2  (38). Also through microarray 
analysis, miR‑15b was found to be markedly downregulated in 
the doxorubicin‑resistance cell lines, KHOS and U‑2OS (39). 
Furthermore, patients with OS who had high expression levels 
of miR‑15b received a significantly improved clinical prog‑
nosis compared with those with low expression levels. Wee1, 
the direct target of miR‑15b, was shown to mediate both the 
cytotoxic effect of doxorubicin and the multidrug‑resistance 
capabilities in OS (39).

Although the participation of miRNAs in OS is a complex 
and multifactorial process, emerging evidence has strongly 
supported the involvement of numerous miRNAs in the 
processes of OS initiation and progression, including cell prolif‑
eration, apoptosis, immigration, invasion and drug resistance. 
These miRNAs and their roles are shown in Table I (36‑51).

Role of miRNAs in the diagnosis, prognosis and treatment 
of OS. MiRNAs have consistently attracted a great deal of 
attention from researchers as putative diagnostic or prog‑
nostic biomarkers for OS due to their stability in the plasma 
and serum (52). miR‑21 overexpression has been shown to be 
strongly associated with advanced Enneking stage, chemo‑
therapeutic resistance and an unfavorable prognosis, and 
therefore miR‑21 may be used as an individual marker for OS 
staging and prognosis (53). Low levels of miR‑101 have been 
observed in serum samples from patients with OS; however, 
the miR‑101 expression levels reverted to significantly higher 
levels following treatment (54). miR‑195‑5p and miR‑199a‑3p 
have been shown to have remarkable potential in terms of 
distinguishing between metastatic and non‑metastatic statuses 
in patients with OS, whereas miR‑320a and miR‑199a‑3p were 
associated with the histological subtype (55).

At present, the standard clinical treatments mainly 
comprise surgical resection and neoadjuvant therapy. The 
involvement of miRNAs in the initiation and progression 
of OS renders miRNAs suitable as possible therapeutic 
targets. The corresponding approach would involve the use 
of miRNA mimics to substitute for the loss of expression of 
a tumor‑suppressor miRNA or to block the expression of an 
oncomiR using oligonucleotides or anti‑viral constructs (56). 
A mimic of miR‑34 as a tumor suppressor for cancer treatment 
was entered into Phase I clinical trials (57). Furthermore, it 
was identified that a miR‑34 mimic significantly suppressed 
lung metastasis in OS mouse models, strongly suggesting that 
miR‑34 may serve as a potential therapeutic target (58).

3. lncRNAs

Biogenesis and features of lncRNA. lncRNAs form a large 
subgroup of ncRNAs with transcripts >200 bases in length 
that lack the ability to encode proteins. For the most part, they 
are transcribed by RNA polymerase II, the same as mRNAs, 
and they are often 5'‑capped, polyadenylated and spliced 
without a translated open reading frame (59,60). Based on 

their location with the neighboring protein‑coding genes, they 
can be divided into the following five classes: Sense, anti‑
sense, bidirectional, intronic and intergenic lncRNAs (61‑63). 
lncRNAs are also characterized by their low abundance and 
through the tissue‑ and developmental stage‑specific manner 
of their expression (64,65).

Regulatory functions of lncRNAs in OS. Similar to miRNAs, 
numerous lncRNAs have been demonstrated to have key roles 
as contributors to tumor initiation or progression. The manner 
in which a given lncRNA exerts its regulatory effect depends 
on its subcellular localization. lncRNAs in the cytoplasm that 
share miRNA response elements with mRNAs contain similar 
sequences to these target‑coding RNAs and inhibit the interac‑
tions between miRNAs and mRNAs. These lncRNAs, which 
are termed competing endogenous RNAs (ceRNAs), act as 
‘sponges’ for miRNAs and regulate the process of translation 
mediated by miRNAs on their target mRNAs (66). lncRNAs 
in the nucleus mainly act at the epigenetic and genetic levels 
by binding to the transcription preinitiation complex at the 
promoter (67).

The lncRNA DANCR has been shown to be elevated in 
OS tissue specimens and cell lines and is closely correlated 
with poor prognosis among clinical patients. DANCR serves 
as an oncogene, regulating ROCK1‑mediated proliferation 
and metastasis through sequestering both miR‑335‑5p and 
miR‑1972 as a ceRNA (68). The lncRNA HIF1A‑AS2 has also 
been shown to be upregulated in OS, and is associated with 
poor survival. HIF1A‑AS2 regulates the tumorigenesis of OS, 
as demonstrated by its effects on cell proliferation, cell cycle 
progression and invasion, through ‘sponging’ miR‑129‑5p (69). 
In OS, the lncRNA TTN‑AS1 has been shown to facili‑
tate cell growth, apoptosis and drug resistance via the 
miR‑134‑5p/MBTD1 axis  (70). By contrast, the lncRNA 
TTN‑AS1 also acts as a ceRNA on miRNA‑376a, enhancing 
the malignancy of OS via upregulating dickkopf‑1 (71). Other 
confirmed lncRNAs are presented in Table II (68‑79).

Role of lncRNAs in the diagnosis, prognosis and treatment 
of OS. At present, the main surveillance methods of OS are 
limited to physical examination, blood biochemistry and 
radiographic examination (80). Due to the lack of an effec‑
tive and noninvasive measure to monitor patient status or 
predict overall survival, lncRNAs are considered as potential 
candidates for prognosis prediction and treatment guidance. 
The level of metastasis‑associated lung adenocarcinoma 
transcript 1 (MALAT1) has been shown to be upregulated 
in 162 OS tissues, closely correlating with advanced clinical 
stage, distant metastasis and shorter survival times. Therefore, 
MALAT1 is able to serve as an independent prognostic factor 
for OS  (81). The clinical potential of taurine‑upregulated 
gene  1  (TUG1) has also been demonstrated through its 
marked elevation in patients with OS progression and relapse. 
Furthermore, the serum levels of TUG1 were shown to be 
decreased after surgical resection of OS tissues in postopera‑
tive patients (82). The most common obstacles in the treatment 
of OS are the poor therapeutic response to traditional chemo‑ 
and radio‑therapies and the emergence of resistance during 
treatment (83). lncRNAs that mediate acquired resistance are 
potential candidates as targets for OS therapies.
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4. circRNAs

Biogenesis and features of circRNAs. CircRNAs, a novel class 
of non‑protein‑coding RNAs, were first discovered in the 
1970s, and were then considered as ‘junk’ molecules with little 
functional potential (84). They are generated from pre‑mRNAs 
through back‑splicing, and are expressed in a tissue‑ and 
developmental stage‑specific manner (85,86). In addition, they 
are evolutionarily conserved and highly abundant in the brain. 
Unlike traditional linear RNAs, circRNAs are characterized 
by a continuous covalently closed loop structure lacking either 
a 5'‑cap or a 3'‑polyadenylated tail, which gives them stronger 
resistance to ribonucleases compared with their corresponding 
linear counterparts (87,88).

Regulatory functions of circRNAs in OS. Emerging evidence 
has shown that circRNAs fulfill essential roles in both physi‑
ological and pathological processes, including oncogenesis 
and tumor progression (23). circRNAs have multiple func‑
tions, such as regulating gene expression at the transcriptional 
or post‑transcriptional level by interacting with miRNAs as 
‘sponges’, binding to RNA‑binding protein and initiating 
protein translation in a splicing‑dependent, cap‑independent 
manner (89,90). The circRNA circTADA2A has been reported 
to be highly upregulated in OS, and acts as a sponge for the 
miRNA miR‑203a‑3p, which regulates CREB3 expression 
to promote the proliferation, migration and invasion of OS 
cells in vitro (91). The circRNA hsa_circ_0001564, detected 
through circRNA microarray analysis, has been shown to 
be upregulated in OS tissues. A further study revealed that 
hsa_circ_001564 aggravates OS proliferation and apoptosis 
via sponging miR‑29c‑3p  (92). circPVT1 facilitates the 
doxorubicin and cisplatin resistance of OS via increasing 
the expression of the classical drug resistance‑associated 
gene, ABCB1 (93). In patients with OS, circNASP expression 
was found to be positively correlated with tumor size and 
lung metastasis. Upregulated circNASP acts as a sponge of 
miR‑1253, targeting the transcription factor FOXF1 to mark‑
edly promote the proliferation, cell cycle progression and 
invasion of OS cells (94). Other novel circRNAs are listed in 
Table III (91‑103).

Role of circRNAs in the diagnosis, prognosis and treatment of 
OS. CircRNAs can be secreted in body fluids where they are 
circulated, and the structures of circRNAs are geared towards 
a high level of resistance to cleavage by RNA exonucleases 
or ribonuclease R. These features, along with high specificity 
and sensitivity, demonstrate that circRNAs may serve as good 
candidates for OS (104,105). For example, the high expression 
level of serum circPVT1 enabled patients with OS to be distin‑
guished from healthy individuals, suggesting that circPVT1 
may be more reliable as a diagnostic biomarker compared 
to the traditional biomarker alkaline phosphatase  (93). In 
another study, evaluated expression levels of circUBAP2 were 
found via Kaplan‑Meier survival analysis to be correlated 
with reduced survival and poor prognosis, and they were also 
significantly correlated with the tumor stages (106).

CircRNAs, as ceRNAs, are natural miRNA inhibitors that 
bind to their corresponding miRNA to regulate the malignant 
behavior of OS. This property ensures that circRNAs have 

great potential in terms of therapeutic strategies. Recently, 
a newly designed artificial miRNA sponge has been devel‑
oped. This artificial circRNA can sponge multiple miR‑21 
molecules, and has been reported to upregulate the expression 
of the tumor suppressor gene DAXX to inhibit the proliferation 
of gastric cancer cells (107).

5. Conclusions and perspectives

The identification of ncRNAs and their role in cancer initia‑
tion and progression has provided revolutionary insights into 
how the research efforts for OS may be directed. MiRNAs 
exert their regulatory functions via RISC, whereas lncRNAs 
and circRNAs function according to mechanisms involving 
ceRNAs (Fig.  1). However, since the majority of these 
studies have focused on miRNAs, lncRNAs and circRNAs, 
rather than other types of ncRNA (such as snoRNAs), the 
data remain incomplete. Of the numerous human ncRNAs, 
only a few have been thoroughly studied, and only a limited 
number of these have an important biological impact. 
The RNA world is much more complicated than was once 
considered to be the case, and the clinical environment for 
OS progression should be greatly improved if more research 
is devoted to the study of ncRNAs and their involvement in 
this type of cancer.

Although the significant clinical potential of ncRNAs as 
biomarkers in OS has been acknowledged, there exist several 
limitations. In most of the studies that have been performed 
to date, the cohort of patients with OS was relatively small; 
thus, long‑term, controlled and large‑sample experiments are 
required. In addition, the detected ncRNA biomarkers do not 
perform entirely consistently even for a particular cancer type, 
which is an important obstacle in terms of their usefulness as 
biomarkers. Therefore, it is necessary to identify combinations 
of several ncRNAs with a high degree of specificity and sensi‑
tivity, and to develop a standardized approach in methodology 
to normalize the expression of ncRNAs.

NcRNAs possess a unique advantage in terms of their 
clinical application in OS treatment. A single ncRNA simulta‑
neously targets multiple downstream factors and is involved in 
multiple signaling pathways, which brings important benefits 
for refractory cancers with genomic heterogeneity. However, 
there are certain disadvantages or challenges associated with 
ncRNA‑targeted treatment strategy. First, they may break the 
balance of gene expression profiles in cells due to unrelated 
genes being targeted by the same ncRNAs. It has been observed 
that miRNAs may exert different effects, which means that 
miRNA antagonists or mimics must be carefully selected 
according to different conditions. Furthermore, the existence 
of off‑target effects for ncRNA antagonists cannot be ignored. 
Therefore, extensive toxicity studies and preclinical safety 
requirements should be assessed before an ncRNA‑based thera‑
peutic approach may be considered as being appropriate for 
patients with OS (108). At present, researchers have also made 
efforts to develop effective drug delivery systems for chemo‑
therapy. The reduction‑responsive polypeptide micelles were 
developed as multifunctional nanoparticle‑based drug delivery 
systems based on methoxy poly‑block‑poly copolymers. These 
micelles can selectively accumulate in OS tumors, which 
induces antitumor effects with less systematic toxicity (109). As 
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for nucleic acid therapeutics, approaches of delivery systems for 
targeting ncRNAs have been developing at a rapid pace. There 
are some general problems of nucleic acid delivery strategies 
including short half‑life, off‑target effects and low transfection 
efficiency in RNA delivery, which makes nucleic acid drugs 
remain at a low bioavailability in vivo (110,111). To overcome 
the aforementioned obstacles, a variety of ncRNA carriers or 
systems have been investigated, including nanoparticles, ncRNA 
modification, and oncolytic adenovirus strategy (112). Several 
of the delivery strategies have been applied in the research of 
hepatic carcinoma (113,114). Despite the lack of nucleic acid 
drug delivery strategies and associated research in OS, nucleic 
acid therapy may prove beneficial for OS treatment through 
further study.

In the present review, we have made detailed predictions 
on the future research directions:

i) One single ncRNA is able to affect multiple downstream 
target molecules associated with cancer development, and one 
single downstream target can be regulated by multiple upstream 
molecules. For instance, the lncRNA DANCR promotes cell 
proliferation and metastasis via sponging miR‑335‑5p and 
miR‑1972 in OS (68). Therefore, understanding the compli‑
cated connections between the ncRNA regulatory networks, 
as well as determining some important core ncRNAs in OS, 
requires further investigation.

ii) Typically, researchers obtain tissue samples for early diag‑
nosis and prognosis via surgery resections, which is a difficult 
and inconvenient procedure. Findings have shown that the 
serum expression of the lncRNA UCA1 was significantly 

higher in patients with OS compared with healthy controls. 
In addition, the upregulation of UCA1 was correlated with 
clinical stage and metastasis (115). Although the data reported 
are only preliminary, it is possible to predict that liquid biopsy, 
such as human peripheral blood, is a promising non‑invasive 
technique for OS diagnosis and prognosis in clinical practice. 
Furthermore, clinical specimens can vary from puncture fluid 
to sputum if patients have lung metastasis.

iii) At present, a limited number of proteins or peptides encoded 
by ncRNAs have been verified, and these have important 
biological and/or pathological functions in the occurrence and 
development of different tumors. A conserved 53‑amino‑acid 
peptide encoded by the lncRNA HOXB‑AS3 was shown 
to suppress the proliferation, migration, invasion of colon 
cancer cells and tumor growth both in vitro and in vivo (116). 
FBXW7‑185aa is encoded by the circRNA FBXW7, and 
inhibits glioma growth  (117). Therefore, it is important to 
distinguish whether ncRNAs exert functions by acting directly 
as RNA molecules, or through encoding peptides or proteins.

iv) Avoiding immune surveillance is an important hallmark of 
tumor initiation and progression (118). Recent findings have 
shown that ncRNAs are able to facilitate tumor immune escape 
to enhance malignant behaviors. The PD‑1/PD‑L1 pathway 
provides a key immunosuppressive mechanism for cancer 
cells, and miR‑140 is associated with anti‑tumor immunity via 
its effects on the PD‑L1/PD‑1 immune checkpoint signaling 
pathway in OS (119). At present, however, there are only limited 
numbers of studies on ncRNAs and their association with the 
tumor immune response in OS. Thus, further investigation to 

Figure 1. Regulation processes of miRNAs, lncRNAs and circRNAs. The mature miRNA is attached to the RISC and binds with partial complementarity 
to the 3'‑UTR of target mRNAs to mediate translational repression. Alternatively, mature miRNAs may bind with perfect complementarity to the 3'‑UTR of 
target mRNAs, which undergo cleavage, consequently leading to their degradation. ceRNAs, similar to lncRNAs and circRNAs, are able to combine with 
miRNAs through MREs to affect gene regulation mediated by miRNAs. miRNAs, microRNAs; lncRNA, long non‑coding RNA; circRNA, circular RNA; 
UTR, untranslated region; RISC, RNA‑induced silencing complex; ceRNA, competing endogenous RNA; MREs, miRNA‑response elements.
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develop promising immunotherapies for patients with OS is 
necessary.

v) From a technical perspective, the research technology of 
circular RNA (circRNA) is similar to the classic RNA research 
technology, such as RT‑PCR, qPCR, FISH (RNA positioning) 
and NB (northern blot) (RNA expression). However, with 
the emergence of new technologies, the research methods of 
circular RNA (circRNA) have become more abundant, such 
as using CRISPR/Cas13 system to efficiently knock down the 
expression of circular RNA without affecting the expression of 
its parental linear mRNA (120).

In conclusion, the investigation of emerging functional 
ncRNAs has led to a deeper understanding of the pathologies 
that control initiation and progression in OS. Moreover, the 
potential applications of ncRNAs in the diagnosis, prognosis 
and therapy of OS have been revealed in recent years. Further 
efforts, however, are required to elucidate the ncRNA‑associ‑
ated regulatory mechanisms and to establish ncRNA‑targeted 
therapeutic options.
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