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Role of the microbiome in systemic therapy for
pancreatic ductal adenocarcinoma (Review)
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Abstract. A large body of evidence has revealed that the
microbiome serves a role in all aspects of cancer, particularly
cancer treatment. To date, studies investigating the relation-
ship between the microbiome and systemic therapy for
pancreatic ductal adenocarcinoma (PDAC) are lacking. PDAC
is a high-mortality malignancy (5-year survival rate; <9% for
all stages). Systemic therapy is one of the most important treat-
ment choices for all patients; however, resistance or toxicity
can affect its efficacy. Studies have supported the hypothesis
that the microbiome is closely associated with the response
to systemic therapy in PDAC, including the induction of
drug resistance, or toxicity and therapy-related changes in
microbiota composition. The present review comprehensively
summarized the role of the microbiome in systemic therapy
for PDAC and the associated molecular mechanisms in an
attempt to provide a novel direction for the improvement of
treatment response and proposed potential directions for
in-depth research.
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1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is a high-mortality
malignancy with a 5-year survival rate of 9% for all stages
and ~90% of patients are at advanced stages exhibiting a 5-year
survival rate of 3% when diagnosed (1). PDAC is expected to
become the second leading cause of cancer-related mortality
worldwide within the nextdecade,due toits gradually increasing
mortality rates (2). For patients who are not screened early
enough, late-stage PDAC remains difficult to treat. Systemic
chemotherapy, which includes neoadjuvant therapy, adjuvant
therapy and first-line or subsequent therapy, is imperative for
metastatic and locally advanced PDAC, as well as for other
stages of PDAC. Gemcitabine has been established as the main
first-line drug for PDAC chemotherapy. Other drugs, including
albumin-bound paclitaxel, 5-fluorouracil (5-FU), capecitabine,
cisplatin, irinotecan, oxaliplatin and erlotinib, are used in
various combinations or as monotherapy, according to disease
stage and patient status (3). However, due to acquired resis-
tance or side effects during treatment, the efficacy for patients
with PDAC is not satisfactory and the 5-year survival rate has
not been significantly improved.

In recent years, an association between microbiomes and
the occurrence and development of PDAC have been identified.
Systems biology provides a more comprehensive and multipa-
rametric understanding of drug metabolism. The microbiome,
which is the comprehensive genomic information encoded by
the microbiota and its ecosystem, products and host environ-
ment, has therefore been explored as a direction for therapy (4).
Although the terms ‘microbiota’ and ‘microbiome’ are used
interchangeably, the microbiota should be studied more
comprehensively from the perspective of omics, while the
functional microbiome is indispensable (5,6). Therefore, the
‘microbiome’ has been fully summarized and its function has
been described. The composition of the microbiota is primarily
determined by host genes and affected by extrinsic factors,
including diet (7), antibiotics (8), surgery (9) and some drugs
[e.g., proton pump inhibitors (10)]. In addition, pancreatic acini
secrete peptides that can modulate the gut microbiota, relying
on the Ca** channel calcium release-activated calcium channel
protein 1 (11,12). The specific relationship between the micro-
biome and cancer, including gastrointestinal (13), breast (14),
liver (15), esophageal cancer (16) and PDAC (17), has attracted
the attention of researchers. Specifically, a large number of
clinical studies have shown that the microbiome mediates the
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response to systemic therapy and that there are therapy-related
changes in microbiota composition (18,19).

Initial evidence indicates that the microbiome is associ-
ated with PDAC (Table I). The microbiota can reach the
pancreas via the circulatory system or the biliary/pancreatic
duct, which potentially induces carcinogenesis. The human
oral microbiome is a well-established independent risk
factor associated with the development of PDAC (20-26),
particularly Porphyromonas gingivalis, Neisseria elongate,
Streptococcus mitis and Fusobacterium (17). Of note,
Fusobacteriumhasbeenfound tobe alow-risk factorin the oral
microbiota but is associated with increased cancer-specific
mortality rates when present in PDAC tissue (20,27).
Compared with benign pancreatic neoplasms and healthy
cohorts, certain gut bacteria show a differential increase
in abundance in patients with PDAC (28,29) and promote
tumor growth in subcutaneous and liver metastasis models
of PDAC by modulating immune response (30). In addition,
the fecal microbiome differences between patients with
PDAC and healthy subjects, or patients with pre-cancerous
pancreatic lesions means that early, microbiome-based
detection of PDAC is possible (31). The microbial diversity
of intrapancreatic tumors in long-term survivors of PDAC
is higher compared with that in short-term survivors (32); it
also differed among PDAC cases with different stages of the
disease (33). Mechanistically, a range of microbe-associated
molecular patterns such as lipopolysaccharide (LPS), which
are released by the microbiota and translocated into the
pancreas, bind with selective Toll-like receptor (TLRs) and
then activate signaling pathways, such as the NF-kB and
MAPK pathways, to exacerbate carcinogenesis through
innate and adaptive immune suppression in PDAC (33,34),
which may also synergize with K-ras (35). Furthermore,
the mycobiome, particularly Malassezia, may also infiltrate
PDAC tissues by driving the complement cascade through
mannan-binding lectin activation (36). Antibiotics targeting
unique microbiota constituents administered by orogastric
gavage clearly inhibits PDAC progression and enhances
adaptive immunity in a model of tumor protection (33).
The receptor T2R38, which could be stimulated by a
bacterial-derived signaling molecule, is expressed in tumor
cells in patients with PDAC, as well as in tumor-derived
cell lines and could link the microbiota to cancer (37).
Gut microbiota metabolism may closely regulate PDAC
progression through metabolite-sensing receptors (35,38).
Admittedly, the underlying mechanism and link are complex,
but functional research of the microbiome should improve
our understanding of PDAC.

The majority of studies examining the microbiome
in PDAC have focused on carcinogenicity, as the data on
therapeutic action are preliminary. However, although the
complex and important role of the microbiome in PDAC
therapy requires in-depth study, related research is limited and
the mechanisms involved remain to be fully elucidated. The
aim of the present review was to outline recent microbiome
research-related developments and interesting discoveries in
systemic therapy drugs for PDAC and illustrate the underlying
mechanisms. Promising research directions with regards to
the involvement of the microbiome in PDAC treatment were
also discussed and proposed.

2. The microbiome and PDAC systemic therapy resistance
or toxicity

The majority of patients with PDAC require systemic therapy,
whether that consists of surgery followed by adjuvant therapy,
neoadjuvant therapy or palliative adjuvant therapy. However,
since the majority of patients with PDAC develop resistance
or toxicity to drugs, the treatment needs to be delivered at a
lower dose or suspended before the scheduled end date, which
leads to it being ineffective. Therefore, clarifying the complex
mechanisms to improve treatment response is important.
Functional research on the microbiota has suggested that it has
the potential to induce PDAC treatment resistance or toxicity.
In this section, the findings of previous studies with regards
to the relationship between the microbiome and several
drugs for the treatment of PDAC, including gemcitabine,
5-FU, capecitabine, oxaliplatin, irinotecan, cisplatin and erlo-
tinib (Tables IT and IIT), were described in detail (3).

Gemcitabine and paclitaxel. Gemcitabine has been widely
used as a first-line drug for PDAC for decades (39). Several
trials examining the efficacy of various drugs used either
alone or in combination with gemcitabine achieved modest
success, particularly nab-paclitaxel, a nanoparticle form of
paclitaxel (40). Therefore, the majority of studies exploring
the chemoresistance mechanisms in PDAC, including those
focusing on the microbiome, focus on gemcitabine (41).
Mycoplasma, which contains a number of nucleoside-metab-
olizing enzymes (42), could be a limiting factor for the
anticancer efficiency of gemcitabine (dFdC-based chemo-
therapy) via cytidine deaminase (CDD), causing rapid drug
catabolism in the tumor microenvironment (TME) (43).
Furthermore, the deamination of gemcitabine has been
shown to be indirectly potentiated by mycoplasma-derived
pyrimidine nucleoside phosphorylase (PyNP) activity (43).
Therefore, a CDD inhibitor can restore the activity of
gemcitabine by co-administration, particularly with a thymi-
dine phosphorylase (TP)/PyNP inhibitor (43). Geller et al (44)
report that certain microbes, including Gammaproteobacteria
and Mycoplasma, expressed the enzyme CDD, whose long
form (CDDL) metabolizes gemcitabine into its inactive form
(2',2'-difluorodeoxyuridine). In vitro, AsPC1 PDAC cells
cultured with bacterial-conditioned medium are completely
resistant to gemcitabine. Then, 113 human PDAC tissue
samples were tested, 86 (76%) of which were positive for these
bacteria, particularly Gammaproteobacteria. (44) Another
study demonstrates that microbes present in the gut or intra-
tumor regions influence the response to gemcitabine (45).
These studies mainly indicate that the microbiome could
directly degrade gemcitabine by metabolism, which is associ-
ated with the characteristics of the drug. Despite the lack of
mouse models of PDAC, these results showed that bacterial
species within PDAC tissues and the TME serve an important
role in gemcitabine chemoresistance.

The combination of gemcitabine and albumin-bound
paclitaxel has been upgraded as a category 1 recommenda-
tion (3). Kesh et al (46) found that microbial dysbiosis
increases resistance to this combination. In a pancreatic
tumor-bearing mouse model of type II diabetes, Enterobacter
cloacae and carbohydrate- and lipid-metabolizing bacteria are
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enriched. This enrichment of microbial metabolites prevents
tumor cells from chemotherapy-induced accumulation of
reactive oxygen species, leading to resistance (46); however,
in that study, the treatment regimen was a combination of
gemcitabine and paclitaxel and no study has yet focused on
microbiome-induced paclitaxel monotherapy resistance.
Although lactic acid bacteria, bifidobacteria and other bacteria
of intestinal origin are not susceptible to paclitaxel (47),
the bacterial populations are altered in paclitaxel-treated
mice: butyrate-producing bacteria, including Roseburia,
Eubacterium and Erysipelotrichaceae, are depleted (48)
and paclitaxel treatment decreases the abundance of
Akkermansia muciniphila and alters that of other bacterial
taxa, which are drivers of chemotherapy-induced peripheral
neuropathy (CIPN) (49). In addition, paclitaxel-containing
chemotherapeutic combinations are more likely to result in
Clostridioides difficile infection (50). Therefore, the anti-
tumor effect of paclitaxel could be improved by reversing
paclitaxel-induced gut microbiota dysbiosis (51).

Fluoropyrimidine. Fluoropyrimidine is also a first-line chemo-
therapeutic drug for patients with PDAC, including 5-FU,
capecitabine and TAS-1. 5-FU is frequently administered
alongside FOLFIRINOX/modified FOLFIRINOX and with or
without leucovorin (3). Capecitabine, a precursor of 5-FU, can
be administered alone or co-administered with gemcitabine to
patients with PDAC (3). The majority of studies on 5-FU focus
on its effects on the abundance of microbiota constituents and
induction of mucositis (52-54). The main mechanisms of toxicity
have been demonstrated. First, 5-FU alters microbiota diversity
by decreasing Lactobacillus and Streptococcus abundance
and increasing Clostridium and Staphylococcus abundance,
leading to a decrease in the secretion of mucin, a principal
factor in the physiological defense of the gastrointestinal
mucosa (52,55). Therefore, supplementation with the genera
Lactobacillus and Bifidobacterium could protect the human
gastrointestinal tract from chemotherapy (56). Secondly, the
lack of a detoxification enzyme of 5-FU (hepatic dihydropyri-
dine dehydrogenase) may lead to an increase in the systemic
concentrations of 5-FU in the blood and enhanced toxicity.
The gut microbiota serves a critical role in that process.
Specific bacteria, including Bacteroides species (B. vulgatus,
B. thetaiotaomicron, B. fragilis, B. uniformis and B. eggerthii)
can hydrolyze sorivudine to (E)-5-(2-bromovinyl) uracil,
which inactivates the detoxification enzyme (57).

At present, the understanding of whether the gut micro-
biota influences the antitumor efficacy of 5-FU treatment is
limited. A previous study proposes that 5-FU together with
ABX, an antibiotic cocktail, markedly reduces the antitumor
effect of 5-FU and the gut bacterial diversity and communi-
ties show significant changes compared with those after 5-FU
alone or 5-FU plus probiotic treatments (58). This means that
the gut flora dysbiosis contributes to the induction of 5-FU
resistance. Mycoplasma hyorhinis, which was mentioned
in the gemcitabine and paclitaxel section, also degrades
fluoropyrimidines, including 5-FU, by TP to their inactive
bases. By contrast, capecitabine, which must be metabolized
to 5-fluoro-5'-deoxyuridine (5'DFUR), can benefit from TP
activity (59). Fusobacterium nucleatum, an anaerobic bacte-
rium that is parasitic in the oral cavity and highly abundant

in the gut microbiota, may promote 5-FU and oxaliplatin
resistance by targeting TLR4 and myeloid differentiation
primary response 88 (MYDS88) innate immune signaling and
then downregulating the expression of microRNA (miR)-18a"
and miR-4802, which activate the autophagy pathway by
increasing Unc-51 like autophagy activating kinase 1 and
autophagy related 7 expression (60). In addition, another study
demonstrated that F. nucleatum confers resistance to 5-FU
by upregulating the expression of baculoviral IAP repeat
containing 3 via the TLR4/NF-kB pathway (61). These two
studies suggest that fully elucidating the mechanism of the
specific microbiota constituents inducing chemoresistance
poses a major challenge as the same bacteria may have two
or several regulatory pathways that alter drug response.
Garcia-Gonzalez et al (62) found that Escherichia coli and
Comamonas increase 5-FU efficacy by bacterial nucleotide
metabolism and lead to the sterility of C. elegans, a powerful
model system to study the effects of the microbiota on
chemotherapeutics. In addition to this mechanism, another
study reports that E. coli vitamin B6 and B9 metabolism are
essential for 5-FU efficacy in the same C. elegans model (63).

Platinum salt. Cisplatin is a platinum-based potent antitumor
agent used for PDAC, along with gemcitabine, but only for
patients with known breast cancer type 1/2 or partner and
localizer of BRCA2 mutations (3,64). Cisplatin causes tumor
cytotoxicity by forming platinum DNA adducts and intra-
strand cross-links, as well as through the modulation of the
immune system (65,66). Few studies have focused on micro-
biome-mediated cisplatin resistance (67,68). Gram-positive
bacterial antibiotics can weaken its antitumor effect (67), but
the specific mechanism remains to be elucidated. In addition,
the majority of gastrointestinal toxicities caused by cisplatin
have been attributed to various events, such as oxidative
stress and inflammation (68). Although there is no direct
evidence that the microbiome induces toxicity, the combina-
tion of cisplatin with the commensal microbiota or agents that
balance it could ameliorate cisplatin-induced gastrointestinal
toxicity (69-72), as well as other adverse effects (73-75). These
studies suggest the existence of a crucial intrinsic link between
the microbiome and cisplatin, but additional research should
focus on and clarify the mechanism.

Oxaliplatin, a third-generation platinum-based chemo-
therapeutic drug, has been approved for the first-line treatment
of PDAC in FOLFIRINOX/modified FOLFIRINOX strate-
gies (3). lida et al (76) suggest that an intact commensal
microbiota is indispensable for optimal responses to cancer
therapy with oxaliplatin and that ABX impairs the effect of
oxaliplatin by decreasing reactive oxygen species (ROS)
production, which serves a crucial role in DNA damage and
apoptosis (77). Although the complex microbiome holds
infinite possibilities to control the response of oxaliplatin (76),
the exact bacteria that serve a pivotal role are unknown. By
contrast, Geller et al (44) found that certain bacteria can
mediate resistance to oxaliplatin, including Klebsiella pneu-
moniae, Pseudomonas aeruginosa and Citrobacter freundii,
but not CDDL-mediated resistance and the mechanism was
unclear. In another study. Yu er al (60) demonstrate that that
F. nucleatum induces oxaliplatin resistance by targeting TLR4
and MYDS8S innate immune signaling and specific miRs to
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activate the autophagy pathway, similar to 5-FU. Although the
microbiome can either disturb or promote the effect of oxali-
platin, it is unclear which microbes are involved or the specific
mechanisms underlying their involvement.

The efficacy of oxaliplatin is limited by peripheral neurop-
athies, as well as gastrointestinal toxicity (78,79), but whether
the microbiota induces or mediates oxaliplatin toxicity has
rarely been reported. Shen et al (80) reports that the gut micro-
biota may promote the development of oxaliplatin-induced
pain, which can be reduced in germ-free mice and mice
pretreated with antibiotics. Mechanistically, the dorsal root
ganglion (DRG) is a key anatomical site for CIPN pathogen-
esis (81). Oxaliplatin may directly alter the gut microbiota and
increase LPS levels in the DRG (80). LPS derived from the
gut microbiota targets TLR4, which is expressed on hema-
topoietic cells and then stimulates primary macrophages,
leading to the production of inflammatory cytokines in the
DRG, such as IL-6 and TNF-a (80). Gastrointestinal injury
is one of the toxicities induced by oxaliplatin, an effect that
may be associated with alterations in the gut microbiota and
activation of inflammatory processes (82,83). Accordingly,
fecal microbiota transplantation (FMT) can alleviate the
injury (84).

Irinotecan. Although FOLFIRINOX causes marked improve-
ments in patients with metastatic PDAC compared with
gemcitabine, the 3/4 toxicity rate is clearly greater (85), which
always leads to a dose reduction. Irinotecan (also known
as CPT-11) is the main drug in the FOLFIRINOX regimen
that occasionally induces severe toxicities, which limit its use
and efficacy (86). Delayed-onset diarrhea is a common clinical
adverse effect. The most likely mechanism of the induction
of severe diarrhea is that the f-glucuronidase secreted by
the gut microbiota dissociates SN-38G to SN-38, which is
responsible for both antitumor activity and dose-limiting
toxicity (87,88). This underlying mechanism reveals that the
gut microflora serves a critical role in the intestinal toxicity
of irinotecan (89), even though the association appears to be
controversial and mechanisms other than this enzyme, such
as TLR4-dependent mechanisms (90), may be involved in
irinotecan treatment (91,92).

Erlotinib. Erlotinib, an EGFR tyrosine kinase inhibitor,
increases overall survival when combined with gemcitabine (93)
and this combination therapy is another option for patients
with locally advanced or metastatic disease; it has a good
performance status and is a category 1 recommendation for
patients with metastatic disease in the National Comprehensive
Cancer Network guidelines (3). There is little research on
the relationship between the microbiome and erlotinib. Two
studies indicate that certain bacteria of intestinal origin had no
susceptibility to erlotinib and did not induce changes in intes-
tinal tissue morphology, but whether there were changes in the
abundance of the gut microbiome remain unknown (47,94).
Heshiki et al (95) found that baseline microbiota composition
could predict treatment response and the responder bacteria
(Bacteroides ovatus and B. xylanisolvens) increase the efficacy
of erlotinib in mice more than the non-responder bacteria
(Cenarchaeum symbiosum and Ruminococcus gnavus) when
administered by oral gavage. Mechanistically, the responder

bacteria may synergistically upregulate chemokines involved
in T-cell recruitment and then enhance erlotinib efficacy (95).

3. Further directions

Pharmacomicrobiomics, a new discipline exploring the
interactions between drugs and microbes (96), has the
potential to broaden our understanding of the interplay
between the microbiome and systemic therapy for PDAC. In
addition, clinical metagenomic next-generation sequencing
has provided a glimpse into the monitoring of chemotherapy
regimens (97). In addition, the increased knowledge obtained
in this field can potentially generate novel chemotherapeutic
or subsequent therapy approaches to enhance efficacy and
abrogate side effects by manipulating the a- and (-diversity of
the microbiota to individualize treatment. The present review
provided a detailed overview of the association between the
microbiome and systemic therapy drugs for PDAC. However,
since the majority of the studies' objectives are not PDAC,
the evidence obtained in the present study remains limited.
Therefore, carrying out research to further elucidate the role
of the microbiome in PDAC systemic therapy is urgent. From
the perspective of the present study, four main aspects need
additional attention in future research (Fig. 1).

Baseline gut microbiome for individualized chemotherapy
programs for patients with PDAC. Numerous clinical studies
have investigated whether the baseline gut microbiota predicts
the clinical response to systemic cancer therapy or bacterial
infection (19,98-100). Aarnoutse et al (101) profile the micro-
biota composition before, during and after three cycles of
systemic treatment with capecitabine or TAS-102 and attempt
to detect a microbiota composition that predicts chemotoxicity
in patients with metastatic and/or resectable colorectal cancer.

Heshiki et al (95) investigate the role of the gut microbiota
in a cancer patient cohort, which comprised 26 patients with
eight different types of cancer (including PDAC) treated with
targeted chemotherapy (n=15), or a combination of cytotoxic or
targeted chemotherapy with immunotherapy (n=11). Although
the cancer type varies, a dendrogram shows that the cluster
tends to be closely based on therapeutic effects rather than
on type of cancer or therapeutic regimens (95). Based on the
treatment outcome, the patients are grouped into responders
and non-responders and then the differences in intestinal
microbial composition and functionality are identified. Next, a
classification model is built that includes species and pathways
that could predict the response to anticancer treatments. In an
independent validation cohort, the prediction models achieved
high accuracy (area under curve=0.75) (95).

In addition, the baseline gut microbiome can also be used
to predict the toxicity of chemotherapy. Stringer et al (102)
analyze stool and serum samples from 26 patients with
cancer receiving chemotherapy. The type of cancer and
chemotherapy regimen both differed from patient to patient;
the latter included capecitabine, cisplatin/5-FU, FOLFOX,
5-FU/folinic acid, COFF plus paclitaxel and carboplatin plus
gemcitabine. Specific bacteria were enriched (including E. coli
and Staphylococcus spp.) or depleted (including Lactobacillus
spp., Bifidobacterium spp., Bacteroides spp. and Enterococcus
spp.) in the majority of patients with chemotherapy-induced
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Systemic therapy for PDAC

(Gemcitabine, Paclitaxel, Fluoropyrimidine, Cisplatin, Oxaliplatin, Irinotecan, Erlotinib)

Multi‘omics’ analysis

(Metagenomics, metabonomics, proteomics,etc.)

Baseline microbiome Dynamic monitoring Developing targeted therapy
A i P S (Early discovering and preventing the (Illuminating the link and mechanism based on TME
protocolling individualized therapy regimen) drug resistance and toxicity during of PDAC for developing a novel targeted therapy

the regimen cycles)

Gut microbiome Gut microbiome

Supportive improve therapeutic methods

or improving therapeutic efficacy)

Gut and intratumoral

microbiome

‘When unmet, precise auxiliary methods need to be taken

+ Antibiotics
* Probiotics

* FMT

Figure 1. Further interrelated directions of microbiome research for improving systemic therapy for PDAC. Baseline gut microbiome sequencing and multi
‘omics’ functional analysis can be used to establish a prediction model for selecting a precision chemotherapy regimen. During the cycles of chemotherapy,
dynamic monitoring of the changes in the gut microbiome can contribute to the early discovery of upcoming resistance or toxicity, so that certain precise inter-
ventions for balancing microbiome dysbiosis can be carried out. However, the microbiome is complex and further research should focus not only on the gut,
but also on the tissue, in search of a novel targeted systemic therapy or methods for improving therapeutic efficacy. PDAC, pancreatic ductal adenocarcinoma;

TME, tumor microenvironment; FMT, fecal microbiota transplantation.

diarrhea (CD) and alterations in inflammation and circulating
matrix metalloproteinases were observed (102). These changes
may serve as predictive biomarkers of chemotherapeutic
toxicity. In addition, the biomarkers based on the baseline gut
microbiome could be combined with additional biomarkers,
including metabolites.

Relevant clinical studies of PDAC are not yet available.
However, ongoing or previous studies have suggested that the
baseline microbiota may be able to predict treatment response.
Related clinical research on PDAC exploring different
regimens, stages and performance statuses should therefore
be performed. This research can be more comprehensive,
investigating not only the gut or intratumor microbiota but
also the related metabolites and other small molecules, which
could be generalized to the aforementioned microbiome.
That accumulated knowledge could help build a systemic
and comprehensive prediction model for the response to
chemotherapy regimens.

Dynamic monitoring of changes in the gut microbiome
during the chemotherapy cycle and exploration of the
function-mediated diversity mechanism. Systemic cancer
therapies can affect the entire body, as well as the human
microbiota composition and abundance, including that of
gut and intratumor environment microbiota. The majority of

existing studies have focused on the link between intestinal
barrier dysfunction and toxicity (44,48,52,103-108) In addi-
tion, whether the drugs induce changes in the microbiome and
then lead to resistance is unclear. This phenomenon is called
function-mediated diversity and certain studies have hinted at
that possibility.

In animal studies, Lin er al (103) describe the
microbiota changes during irinotecan therapy. Following
irinotecan chemotherapy, cecal Clostridium cluster XI
and Enterobacteriaceae, which do not mediate CD, are
increased and antimicrobial activity is excluded in vitro by
irinotecan and SN-38 (103). Panebianco et al (104) demon-
strate the influence of gemcitabine chemotherapy on the
fecal microbiota of PC-xenografted mice. At the phylum
level, Firmicutes and Bacteroidetes are considerably depleted
and Proteobacteria and Verrucomicrobia are enriched. For
Proteobacteria, one study demonstrates its ability to induce
resistance to gemcitabine (44). Atthe specieslevel, Akkermansia
muciniphila and E. coli are significantly enriched, while
B. acidifaciens is depleted (104). For 5-FU, the majority of
studies have described the influence of chemotherapy-induced
mucositis, mainly due to microbial dysbiosis, as mentioned
above. A detailed study shows that the changes in jejunum,
colon and fecal samples are different (52). Lactobacillus spp.
and Streptococcus spp. are all depleted in the jejunum and
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colon, but Clostridium spp. are depleted and Escherichia spp.
are enriched in the jejunum, while Enterococcus spp. are
depleted in the colon. In the fecal samples, the results show
a decreasing trend in Lactobacillus spp. and Bacteroides spp.
and an increasing trend in E. coli (52). Paclitaxel-treated
mice also exhibit a decrease in fecal bacterial diversity (48).
Chemotherapy drugs induce changes in the microbiome not
only in composition and abundance but also in the emergence
of antibiotic-resistant pathogenic bacteria (105).

In a clinical study, Zwielehner et al (106) investigate the
chemotherapy-induced changes in fecal microbiota. After
analyzing the feces of 17 cancer patients before and after the
chemotherapy cycle at four time points, the percentage of
Clostridium cluster XIVa decreased from 22+13 to 19+12%,
while the average proportions of Bacteroides, Bifidobacteria
and Clostridium cluster IV increased (106). The changes
among the four time points were also shown (106). Due to the
variety of types of cancer and chemotherapy regiments, the
conclusions of that study are limited and should be further
confirmed in a more rigorous design. Another study identifies
a significant decrease in the abundance of Firmicutes
and Actinobacteria and increase in the abundance of
Proteobacteria, as compared with those before chemotherapy
in fecal samples (107), but the specific regimen is unknown.
Kong ef al (108) performed a study to identify alterations
in the gut microbiota of colorectal cancer patients treated
with adjuvant chemotherapy (capecitabine plus oxaliplatin)
following radical surgery. Although no significant difference
in the diversity and composition of the gut microbiota was
observed among the various time points chemotherapy, the
dynamic changes revealed by heat map clustering analysis
showed that the abundance of Bacteroidetes was increased,
while that of Firmicutes was decreased after chemotherapy
compared to before chemotherapy (108).

These limited studies suggest that multiple cycles of
chemotherapy cause changes in the gut microbiota and that
altered organisms may cause drug resistance or sensitivity.
This alteration in microbial diversity may be mediated and
accelerated by the functional response to chemotherapy,
with the microecosystems changing towards a more
favorable environment (109), which has been destroyed
by systemic chemotherapy. However, no related research
has been conducted for PDAC. Concentrating on dynamic
changes and functional response diversity will help clini-
cians deal with resistance or impede infection quickly and
effectively.

Identifying the mechanism to develop a novel targeted therapy
or improve therapeutic efficacy. The microbiota is complex
and certain studies have illustrated that certain bacteria can
mediate the resistance and toxicity of certain chemotherapy
drugs. However, the specific mechanism may be multifactorial.
For example, Fusobacterium, an oral bacterium detected in
PDAC tissue (20,27), mediates 5-FU resistance by activating
the autophagy and TLR4/NF-«xB pathways (60,61). In addition,
identifying specific bacteria and mechanisms is conducive to
developing a new targeted therapy to improve resistance. For
irinotecan, targeted gut microbial enzyme inhibitors may
be a new potential method to alleviate gastrointestinal tract
toxicity and enhance efficacy (110,111). Due to the structural

and functional differences in B-glucuronidases from the
human gut microbes (112,113), B-glucuronidase inhibitors
should be selective and not affect the survival of the micro-
biota (114,115); therefore, the molecular mechanism should be
specific. In addition, when analyzing the species and functional
composition of the gut microbiome, the focus cannot only be
placed on the abundant species, which do not always equate to
abundant molecular functions (116). Functional analysis needs
to be specific to a particular microbiome, including species
with low abundance.

In addition, an increased understanding of the complex
mechanisms underlying the role of the microbiome in the
systemic therapy of PDAC needs to include the role of the
microbiome in the TME, which is composed of a minority of
malignant cells, endothelial cells, immune cells, fibroblasts
and extracellular matrix (117), as well as the microbiota.
Therapeutic failures of chemotherapy, particularly gemcitabine,
have been attributed to the PDAC microenvironment (118).
Given the complexity of the PDAC TME, the cause of resis-
tance to chemotherapy is multifactorial and the microbiome
may serve a moderate role. For example, intrapancreatic and
gut-specific microbes serve as helpers in the shaping of the
immunosuppressive PDAC TME, which leads to tumor-asso-
ciated macrophages (TAMs) becoming highly abundant in
PDAC, ranging from M1-like TAMs to immune-suppressive
M2-like TAMs (33). In this process, deoxycytidine macro-
phages release competitively inhibits gemcitabine uptake and
metabolism and leads to chemoresistance (119). Therefore,
the microbiota may induce gemcitabine resistance by shaping
the PDAC intratumoral immune microenvironment. The
aforementioned data markedly indicate that the microbiome
can mediate therapeutic responses systematically through
numerous mechanisms and that these can also be structured as
the ‘TIMER’ mechanistic framework (120). Elucidating these
mechanisms will be conducive to developing a novel targeted
therapy-based microbiome.

Accurately understanding the value of synergistic methods.
As described aforementioned, the microbiota can provide
a novel way to enhance the efficacy and reduce the toxicity
of chemotherapeutic approaches. Several strategies can
be used to synergize with systemic therapy to improve
efficacy, such as antibiotics, probiotics, FMT, prebiotics,
diet and physical activity, by modulating the composition of
the microbiome (121,122). However, future studies should
accurately improve our understanding of the value of these
synergistic methods.

Antibiotics. The use of antibiotics to remodel the diversity and
constitution of the microbiota and alleviate toxicity have proven
to be effective (123-125); however, they may also impair the
response to chemotherapy. lida er al (76) note that antibiotics
impair oxaliplatin therapy efficacy by decreasing ROS produc-
tion, which is the reason why anticancer drugs work (77) and
are similarly regulated by antibiotics. The overuse of antibi-
otics targeting anaerobes is associated with a poor prognosis
in patients with hepatocellular carcinoma who have undergone
chemotherapy (126). In addition, the elimination of symbiotic
bacteria increases the risk of pathogenic bacteria-induced
infection (127).
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Probiotics. Probiotic supplementation is beneficial for human
health (128) and can also be used as an adjuvant for cancer
prevention and treatment (129,130). The supernatant of
Lactobacillus plantarum increases 5-FU chemosensitivity
by inactivating Wnt/pB-catenin signaling (131). Lactobacillus
also enhances the effects of cisplatin by upregulating
interferon-vy, granzyme B and perforin-1 expression (69)
and Lactobacillus rhamnosus can prevent 5-FU/oxalipl-
atin-induced intestinal injury (53,132). Irinotecan-induced
intestinal injury can also be prevented by pretreatment with
bacteria (133). Certain clinical studies show that combined
probiotics reduce the frequency of gastrointestinal complaints
during chemotherapy cycles (134,135).

In addition to probiotics, other combinations should be
explored, such as metabolites or digestive enzymes. Identifying
an improved combination of probiotics can significantly reduce
the untoward effects of chemotherapy (136). Urolithin A, which
is the main metabolite produced by the human gut microbiota,
can potentiate the effects of both 5-FU and 5-dFUR on colon
cancer cells (137). Probiotics supplemented with digestive
enzymes can restore the gut microbial community and protect
against 5-FU-induced gut dysbiosis (56).

FMT. There are few studies on FMT for improving systemic
anticancer therapy. Le Bastard e al (138) assess the efficacy
of FMT in 5-FU-induced gut dysbiosis in a mouse model.
FMT ameliorates the disruption of the intestinal microbiota
by significantly enriching the species with anti-inflammatory
properties in mice (138). The results show that FMT has the
potential to improve the resistance and toxicity induced by
systemic therapy for PDAC. However, due to its uncertainties,
FMT might increase the chance of infection and fecal donor
selection and screening are difficult. Therefore, selective
microbiota transplantation may be a better choice and
additional studies should be carried out to investigate that
option.

4. Conclusion

Although few of these studies have focused on PDAC, the
mechanism underlying drug alterations by the microbiome
may be similar. Microbiome studies provide a novel direc-
tion for the improvement of the response to systemic therapy
for PDAC. A deep exploration of the mechanism and the
relationship between the microbiome and systemic therapy
drugs for PDAC is essential, due to the low survival rate and
chemotherapeutic resistance of PDAC. In clinical practice,
the combination of the microbiota and its metabolites and
metabolic pathways could be used to establish a model for
predicting the response to systemic chemotherapy regimens,
which can be conducted flexibly and individually. During
regimen cycles, the microbiota is destroyed, inducing resis-
tance. Therefore, dynamic monitoring of the gut microbiota
and timely adjustment of the regimen or restoration of the
composition of the microbiome through the use of cooperative
strategies may prove beneficial. Admittedly, the model and
detection of the microbiome composition of patients should be
fast, robust and inexpensive. In addition, mechanistic studies
of the microbiome could provide novel targeted therapies or
synergetic schemes to establish personalized medicine for

each patient. In conclusion, the relationship and main mecha-
nism between the microbiome and drugs for PDAC treatment
were outlined in the present review and certain directions for
future research were proposed.
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