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Abstract. Red blood cell (RBC) transfusions may have a nega‑
tive impact on the prognosis of patients with cancer, where 
transfusion‑related immunomodulation (TRIM) may be a 
significant contributing factor. A number of components have 
been indicated to be associated with TRIM. Among these, 
the impact of extracellular vesicles (EVs) has been garnering 
increasing attention from researchers. EVs are defined as 
nano‑scale, cell‑derived vesicles that carry a variety of bioac‑
tive molecules, including proteins, nucleic acids and lipids, 
to mediate cell‑to‑cell communication and exert immuno‑
regulatory functions. RBCs in storage constitutively secrete 
EVs, which serve an important role in TRIM in patients with 
cancer receiving a blood transfusion. Therefore, the present 
review aimed to first summarize the available information on 
the biogenesis and characterization of EVs. Subsequently, the 
possible mechanisms of TRIM in patients with cancer and the 
impact of EVs on TRIM were discussed, aiming to provide an 
outlook for future studies, specifically for formulating recom‑
mendations for managing patients with cancer receiving RBC 
transfusions.
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1. Introduction

In 1981, Gantt first proposed that tumor antigens are similar 
to histocompatibility antigens such as histocompatibility anti‑
gens class II, based on a number of shared characteristics (1,2). 
In addition, he proposed that transfusion‑induced immunosup‑
pression is not selective for histocompatibility antigens, which 
may affect the prognosis of patients with malignancies (1). 
Allogeneic red blood cell (RBC) transfusion is a form of 
therapy similar to cell transplantation and it may induce 
immunosuppression, tumor recurrence and post‑operative 
infections in patients with cancer (3). Therefore, transfusions, 
particularly RBC transfusions for patients with cancer, warrant 
further scrutiny. Anemia is a common clinical condition among 
patients with cancer and has an incidence rate of 40‑90% in 
Turkey, the US and Europe (4,5). RBC transfusion is one of the 
primary treatment options for the management of anemia (6). 
In the clinic, patients with hematological/oncological diseases 
use up ~34% of the total RBC supply (7,8). However, despite 
its proven ability to increase hemoglobin (Hb) and hematocrit 
levels, RBC transfusion is associated with poor prognoses for 
patients with cancer (7,9). Specifically, the rates of 30‑day 
post‑operative mortality, major complications and prolonged 
duration of hospital stay for recipients of intraoperative 
blood transfusions have all been reported to be significantly 
increased compared to those with no transfusion (10). This is 
proposed to be the result of the immunomodulatory and proin‑
flammatory effects of allogeneic RBC transfusions, known as 
transfusion‑related immunomodulation (TRIM) (11‑14).

RBC extracts may be stored at the blood bank for ≤35 days 
using citrate phosphate dextrose adenine‑1 as the preservative 
solution, or for 42 days using Adsola‑1 as the preservative 
solution (15,16). During storage, RBCs suffer energy deple‑
tion, reductions in pH, alterations in cation homeostasis and 
oxidative stress, leading to changes in RBC morphology and 
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function (15‑18). This in turn promotes the release of extracel‑
lular vesicles (EVs) into the storage medium, the occurrence 
of which is referred to as RBC storage lesions (15‑18). EVs are 
spherical particles that are encased within a lipid bilayer with 
diameters of 30‑1,200 nm, which may be secreted by cells into 
the extracellular milieu either physically or under pathological 
conditions (19‑22). RBC‑derived EVs, which may contain 
RNAs, immunoglobulins, complement proteins and exposed 
phosphatidylserine (PS), may bind to recipient cells to mediate 
intercellular communication (22‑26). It is this mechanism that 
has been proposed to activate TRIM in patients with cancer to 
worsen prognosis (13,14,27).

2. Impact of RBC transfusions on the prognosis of patients 
with cancer

Several studies have reported that perioperative transfusions 
are associated with poor prognosis in a number of multiple 
solid malignant tumors (Table I), including, but not limited 
to, colorectal cancer (28‑31), gastric cancer (32), pancreatic 
cancer (33), lung cancer (34), epithelial ovarian cancer (12), 
non‑metastatic renal cell carcinoma (35), diffuse malig‑
nant peritoneal mesothelioma (36) and pseudomyxoma 
peritonei (36). The most convincing evidence for this asso‑
ciation between perioperative blood transfusion and tumor 
recurrence provided for colorectal cancer (37). Of note, the 
rates of postoperative complications, distant metastasis, 
cancer recurrence and post‑operative mortality were all 
indicated to be increased in patients receiving perioperative 
RBC transfusions (28‑31). In a previous retrospective analysis 
of patients with colorectal cancer who recently underwent 
radical resection, even after most, if not all of the known 
clinicopathological predictors were comprehensively factored 
into consideration, the overall mortality rate was still signifi‑
cantly associated with perioperative transfusions, although it 
was not associated with preoperative anemia (38). In addition, 
Grasso et al (39) reported that intraoperative transfusions may 
increase the degree of immunomodulation due to surgical 
pressures for gastric cancer surgery, thus worsening prognosis 
and leading to the proposal that this procedure should be 
avoided if possible. This poor prognosis may also be depen‑
dent on the dose of RBC transfusions (34,35). A number of 
studies have previously indicated that patients with colorectal 
cancer who were transfused with ≥3 leukoreduced RBC units 
after surgery had lower overall survival and higher recurrence 
rates compared with those in patients who did not receive any 
transfusion or patients who received only 1 or 2 RBC transfu‑
sions (28,30,40,41). However, other factors, such as the cancer 
stage, rather than blood transfusions, are critical predictors of 
poor outcome following surgery for colorectal cancer (42‑45).

The presence of leukocytes in RBC concentrates is one of 
the causes of adverse reactions post‑transfusion (46). However, 
although the removal rate of leukocytes from leukoreduced 
RBC products may reach 99.9% (22), leukoreduction may 
only at best mitigate and not eliminate the negative impact 
of transfusions on patients with cancer (12,28). In patients 
with bladder cancer receiving neoadjuvant chemotherapy 
prior to radical cystectomy, perioperative transfusions 
with leukoreduced RBCs are associated with lower overall 
survival rates (47). The typical transfusion standard is a Hb 

concentration of ≤10 g/dl (48). However, several randomized 
trials have revealed that a conservative transfusion regimen 
(Hb concentration ≤7‑8 g/dl) does not have any negative 
impact on the outcome of patients with cancer (49‑52). In 
addition, another large oncology meta‑analysis previously 
indicated that a restrictive transfusion policy may reduce the 
risk of perioperative transfusions by 36% without increasing 
the tumor recurrence or the mortality rate (53). Therefore, this 
restrictive threshold of transfusion should be clinically imple‑
mented to reduce the transfusion rates to maximize the impact 
on the survival of patients with cancer (12). A previous study 
indicated that transfusion with Hb ≥7 g/dl in hemodynamically 
stable patients is associated with increased risk of surgical 
site infection following rectal cancer surgery (54). However, 
a generous transfusion strategy (<9 g/dl) is recommended for 
patients with cancer coupled with infectious shock (55).

In conclusion, allogeneic RBC transfusions may have nega‑
tive effects on the prognosis of patients with cancer and should 
be avoided. This is particularly the case during and following 
the operation, unless otherwise necessary. In terms of the 
impact of blood transfusions on the survival of patients with 
cancer, controversies remain and future studies should focus on 
the mechanism of TRIM, which is increasingly reported to be a 
major contributing factor of transfusion‑related adverse events.

3. TRIM in patients with cancer receiving RBC transfusions

TRIM refers to a number of mediators that are able to interact 
with immune cells to alter their physiological function, 
including factors derived from residual leukocytes and plate‑
lets, hemolytic contents (heme and iron release) and EVs (14). 
To date, widespread observations of TRIM have been made 
in immunologically compromised groups of individuals, 
including patients with cancer, preterm neonates and critically 
ill children (28,56,57). TRIM causes symptoms by exerting 
immunosuppressive and proinflammatory effects (14). Prior to 
the availability of immunosuppressive drugs, allogeneic RBC 
transfusions were indicated to increase the survival rate of 
patients receiving kidney transplants (58,59). By contrast, in 
animal models, allogeneic blood transfusions were observed 
to significantly increase the size of the tumor (60), whilst 
reducing the removal rate of tumor cells (61). Previous clinical 
studies have reported that after patients with colorectal 
cancer or several other tumors received perioperative blood 
transfusions, the absolute number of CD3+, CD4+ and CD8+ 
T lymphocyte subsets declined (30,62,63). For patients with 
gastric cancer who received perioperative allogeneic blood 
transfusions or autologous blood transfusions, plasma levels 
of neopterin, IFN‑γ, T lymphocyte subsets (CD3+, CD4+) 
and the CD4+/CD8+ ratio were significantly decreased (63). 
However, patients who received allogeneic blood transfusions 
exhibited even lower levels compared with those who received 
autologous blood transfusions (63). In addition, in patients 
with nasopharyngeal carcinoma, a lower CD4/CD8 ratio was 
indicated to be associated with unfavorable prognosis (64).

Residual leukocytes, together with the immunoactive 
substances they release, have been reported to serve a role in 
TRIM (14,65). After blood transfusion, interaction between 
major histocompatibility complex II or human leukocyte 
antigen (HLA)‑DR molecules and the recipient lymphocytes 
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may lead to allogeneic immunity or immunomodulation (14). 
Dendritic cells expressing CD200 may stimulate recipient cells 

into secreting TGF‑β (66), which is an immunosuppressive 
factor that has been associated with the escape of tumors from 

Table I. Impact of transfusions on the survival of patients with cancer.

A, Transfusion‑related immunomodulation

Author (year) Title (Refs.)

Al‑Refaie et al, 2012 Blood transfusion and cancer surgery outcomes:  (10)
 A continued reason for concern.
Deeb et al, 2020 allogeneic leukocyte‑reduced red blood cell transfusion is (28)
 associated with postoperative infectious complications
 and cancer recurrence after colon cancer resection.
Tamini et al, 2021 Colon Cancer Surgery: Does preoperative blood transfusion  (29)
 influence short‑term postoperative outcomes?
Qiu et al, 2016 Impact of perioperative blood transfusion on immune  (30)
 function and prognosis in colorectal cancer patients.
Acheson et al, 2012 Effects of allogeneic red blood cell transfusions on clinical (31)
 outcomes in patients undergoing colorectal cancer
 surgery: A systematic review and meta‑analysis.
Liu et al, 2018 Effect of perioperative blood transfusion on prognosis of  (32)
 patients with gastric cancer: A retrospective analysis of
 a single center database.
Benson and Barnett, 2011 Perioperative blood transfusions promote pancreas cancer progression. (33)
Churchhouse et al, 2012 Does blood transfusion increase the chance of recurrence in  (34)
 patients undergoing surgery for lung cancer?
Seon et al, 2020 Impact of perioperative blood transfusion on oncologic outcomes (35)
 in patients with nonmetastatic renal cell carcinoma treated with
 curative nephrectomy: A retrospective analysis of a large,
 single‑institutional cohort. 
Nizri et al, 2018 Dose‑dependent effect of red blood cells transfusion on  (36)
 perioperative and long‑term outcomes in peritoneal surface
  malignancies treated with cytoreduction and HIPEC. 
Cata et al, 2013 Inflammatory response, immunosuppression, and cancer  (37)
 recurrence after perioperative blood transfusions.

B, No impact

Author (year) Title (Refs.)

Baguena et al, 2020 Impact of perioperative transfusions and sepsis on long‑term (42)
 oncologic outcomes after curative colon cancer resection.
 A retrospective analysis of a prospective database.
Tarantino et al, 2013 Blood transfusion does not adversely affect survival after elective  (43)
 colon cancer resection: A propensity score analysis.
Hunsicker et al, 2019 Transfusion of red blood cells does not impact progression‑free  (44)
 and overall survival after surgery for ovarian cancer.
Zaw et al, 2017 Perioperative blood transfusion: Does it influence survival and  (45)
 cancer progression in metastatic spine tumor surgery?

A, Transfusion‑related immunomodulation. Blood transfusions are associated with the poor prognosis in patients with cancer through blood 
transfusion‑related immunomodulation, including colon cancer, gastric cancer and lung cancer. B, No impact. These studies have found that 
Transfusion of red blood cells does not impact progression and overall survival for patients with cancer, including colon cancer, ovarian cancer 
and metastatic spine tumor.
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immunosurveillance (67). Residual bioactive materials origi‑
nating from CD4+ T lymphocytes include immunomodulatory 
particles that contain large quantities of proinflammatory 
cytokines and chemokines, which may promote lymphoid 
hyperplasia and the generation of antibodies (68). In RBC 
products that have been stored for 30 days, large quantities of 
leukocyte‑derived soluble HLA (sHLA)‑I type antigens may 
be detected (69). sHLA‑I molecules may in turn induce CD8+ 
cell death to inhibit the cytotoxic activity of Epstein‑Barr 
virus‑specific CD8+ cytotoxic T‑lymphocytes (70) and neutro‑
phil chemotaxis (71). Several proinflammatory molecules from 
RBC supernatants (72), including IL‑1β, IL‑6 and TNF‑α, are 
able to promote the proliferation of HepG2 tumor cells (73) 
and the inflammatory cytokine response of peripheral blood 
mononuclear cells (74).

However, leukoreduction appears to be unable to elimi‑
nate TRIM (14). The survival rate of patients with epithelial 
ovarian cancer receiving pre‑storage leukoreduced RBC 
units remains lower compared to that of such patients with no 
transfusion (12). A previous study indicated that leukoreduced 
RBC concentrates that have been previously stored inhibited 
the proliferation of CD4+CD8+ T cells and B cells in vitro, but 
their fresh pre‑storage counterparts were able to reverse this 
suppression (75). In addition, pre‑storage leukoreduced RBC 
supernatants have been documented to induce the activation of 
regulatory T cells, which may in turn inhibit the proliferation 
of T cells (72). Regulatory T cells have potent immunosup‑
pressive activity to inhibit the anti‑tumor immune response in 
the body (76).

Taken together, these data suggest that RBC transfusions 
may have a negative impact on the immunity of patients with 
cancer, while residual leukocytes and leukocyte‑derived medi‑
ators may promote immunomodulation. Since leukoreduction 
is only able to relieve, but not eliminate TRIM, additional 
advanced techniques are expected to further minimize leuko‑
cyte numbers in RBC units. For patients with cancer receiving 
blood transfusions, fresh leukoreduced RBCs or even irradi‑
ated RBCs should be chosen where possible to avoid TRIM. 
However, in stored RBC supernatants, apart from leukocytes 
and the substances they release, EVs are also constantly 
secreted by RBCs in storage (77). EV numbers typically 
increase with longer storage durations and likely contribute to 
TRIM (77,78).

Previous studies have indicated that stored RBC‑derived EVs 
are able to mediate TRIM and proinflammatory effects (78‑80). 
RBC‑derived EVs have been reported to inhibit the proliferation 
and activation of B cells and macrophages in a dose‑dependent 
manner. Larger doses of EVs are able to stimulate macrophages 
to release IL‑8, whilst significantly suppressing TNF‑α (81). 
By contrast, exosomes from leukoreduced RBC units were 
observed to induce the secretion of proinflammatory cytokines 
and chemokines from peripheral blood mononuclear cells to 
strengthen T‑cell responses (22). In addition, RBC‑derived 
EVs may induce monocytes to secrete intercellular adhesion 
molecules and E‑selectins to activate endothelial cells, thereby 
promoting proinflammatory and procoagulant effects (82). 
Numerous studies have previously indicated that systemic 
inflammation is an independent predictor of recurrence of 
breast cancer (83), pancreatic cancer (84), non‑small‑cell lung 
cancer (85) and colorectal cancer (86,87).

4. Biogenesis and characterization of stored RBC‑derived 
EVs

With prolonged storage durations, the number of RBC‑derived 
EVs gradually increases (88‑90). Among these EVs, the 
number of small EVs (sEVs) with diameters <200 nm is greater 
than that of large EVs (lEVs) with diameters >200 nm (91). 
Leukoreduction may significantly reduce the quantity of EV in 
the RBC products (92). A variety of leukoreduction methods 
may confer different effects on the size and quantity of EVs in 
the final RBC transfusion pack (92). Typically, two primary 
methods are used to prepare leukoreduced packed RBC units, 
namely whole‑blood filtration and red‑cell filtration, the differ‑
ence of which is in the time of leukoreduction (93). Whole‑blood 
filtration involves the removal of leukocytes using a leukocyte 
depletion filter prior to its preparation into various leukore‑
duced blood products (93). By contrast, red‑cell filtration first 
separates the majority of the plasma, platelets and leukocytes 
from the whole blood by centrifugation before RBC concen‑
trates are prepared, from which leukocytes are subsequently 
removed using the leukocyte depletion filter to obtain the final 
product of leukoreduced RBC units (93). Therefore, the total 
number of EVs and the specific number of residual cell‑derived 
EVs are both smaller in RBC concentrates collected through 
red‑cell filtration (77,88,91). In particular, RBC products from 
B‑type blood, compared with those from other blood types, 
have higher numbers of RBC‑derived EV but lower residual 
platelet‑derived EV numbers (94). The cause of this remains 
unknown and therefore warrants further investigation. In 
addition, RBC EV numbers have been reported to increase if 
certain filter types are used, including MacoPharma‑LCRD2 
for red‑cell filtration and Fresenius‑T2975 for whole‑blood 
filtration, or if the RBC products were prepared on day 2 after 
blood collection (94). None of these findings were indicated to 
be associated with the sex or age of the donors (94).

Biogenesis of EVs. Due to metabolite accumulation/deple‑
tion and oxidative damage, the cytoskeleton of stored RBCs 
is damaged, such that the morphology of RBCs changes 
from the biconcave disc cell shape to echinocytes (95‑99). 
Lipids and proteins carried within EVs may be released 
from the membrane, leading to reduced RBC deforma‑
tion (95‑99). The formation of RBC EVs is associated with 
changes in the phospholipid profile in the RBC membrane, 
particularly PS (100). Under physiological conditions, PS is 
exclusively present in the inner leaflet of the RBC membrane, 
which is regulated by three transporting enzymes, flippase 
(transporting PS inwards), scramblase (transporting PS bidi‑
rectionally) and floppase (transporting PS outward) (100). 
Exposed PS is typically the signal of RBC apoptosis and 
eryptosis (100,101), which is mainly mediated by flippase 
and scramblase (101‑103). As the storage duration increases, 
the concentration of K+ outside the cell also increases (100). 
At the same time, inside the erythrocytes, reductions in ATP 
concentration inhibit flippase, whilst decreases in membrane 
cholesterol levels lead to an increase in scramblase activity, 
which translocation of PS from the inner RBC membrane to 
the cell surface to form EVs (Fig. 1) (97,100,101). In addition, 
proteomic analysis of stored RBCs previously revealed an 
increase in Hb binding to the membrane and the aggregation 
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and degradation of integral membrane protein band 3, which 
is an indication of membrane remodeling during storage (25). 
The affinity between the denatured Hb and integral 
membrane protein band 3 may promote the binding of IgG 
and senescence antigens originating from band 3, triggering 
the formation of EVs (25).

During the process of RBC storage, since PS is 
increasingly exposed to the EVs, the majority of EVs are 
PS‑positive (100). PS on the surface of RBCs is a recognition 
signal for macrophages, which increases the osmotic fragility 
of RBCs (104,105). Under oxidative stress, RBC‑derived EVs 
contain highly oxidized, dysfunctional Hb (HbChr) (106). 
EVs released during RBC storage contain lipid raft proteins, 
oxidative or reactive signaling components associated with 
aging RBCs (23,107). RBCs transfer exposed PS, HbChr and 
damaged membrane components into EVs, which postpones 

the removal of healthy RBCs (23,106,108). Therefore, the 
generation of EVs may result from the auto‑protective mecha‑
nism of RBCs (107,109).

Accumulating evidence suggests that after Ca2+ is added, 
exposure of PS on the surface of RBCs and the formation 
of EVs are associated with increased Ca2+ levels inside the 
cell (102,103,110). Although citrates in the RBC preservation 
solution may chelate Ca2+ to a reduce Ca2+ in the plasma, it 
has been reported that EDTA, heparin and citrates are unable 
to completely chelate Ca2+ in extracellular medium, such that 
Ca2+ may be released by platelets and leukocytes following cell 
death to be taken up by RBCs (111). Thus, Cloos et al (111) 
proposed four consecutive events in the biogenesis of stored 
RBC‑derived EVs, namely cholesterol domain decrease, oxida‑
tive stress, sphingomyelin/sphingomyelinase/ceramide/Ca2+ 
alteration and PS exposure. However, Sudnitsyna et al (106) 
documented that the oxidative stress process, whereby Hb is 
oxidized to HbChr, is the primary trigger of RBC transforma‑
tion and formation of EVs independent of intracellular Ca2+ 
levels (106). Therefore, the association between changes in 
the intracellular Ca2+ levels and the formation of EVs remains 
controversial and requires further investigation.

Characterization. Based on differences in their biogenesis, 
EVs may be assigned to the following three categories: 
Cup‑shaped exosomes originating from the endosomal 
network; microvesicles that are constantly undergoing cycles 
of budding and fission at the plasma membrane; and apoptotic 
bodies released from apoptotic cells (112,113). The majority 
of RBC‑derived EVs are <1,000 nm in diameter and most 
of them are ~200 nm (22,93,113). These EVs are primarily 
comprised of the following two types: sEVs (50‑200 nm) and 
lEVs (150‑300 nm) (22,26,113). Transmission electron micros‑
copy images revealed the ball shape of stored RBC‑derived 
EVs, but a certain degree of heterogeneity in terms of form 
and size (16,114). Particle sizes and concentrations of EVs 
may be measured using flow cytometry, tunable resistive 
pulse sensing (TRPS), dynamic light scattering (DLS) and 

Figure 1. Lipid composition of RBCs. RBCs undergo storage lesions during storage, whereby cell membranes are damaged and extracellular vesicles are 
released. RBCs, red blood cells. 

Figure 2. Biomarkers and contents contained within RBC‑derived extracel‑
lular vesicles. Hb, hemoglobin; AchE‑E, acetylcholinesterase‑erythrocytes. 
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nanoparticle tracking analysis (88,115). DLS was previously 
used to detect significant increases in the average sizes of EVs 
in stored RBCs, whilst TRPS was used to reveal significant 
decreases (93). This contrast may be explained by the tendency 
of DLS to bias the analysis towards the detection of larger 
particles (116).

According to recommendations from The Minimal 
Information for Studies of Extracellular Vesicles 2018 
(MISEV2018) guidelines, ≥3 positive protein markers are 
required for the characterization of EVs, including ≥1 trans‑
membrane/lipid‑bound protein, a cytosolic protein and ≥1 
negative protein marker (117). For transmembrane proteins, 
the tetraspanin CD63 (117) and the multi‑pass membrane 
protein CD47 (94) may be used to confirm the presence of 
the lipid bilayer in EVs. By contrast, CD235a (22,81,118) 
or acetylcholinesterase‑erythrocytes (117) may be used as 
erythrocyte‑specific markers. Hb, a cytosolic protein unique to 
RBCs, may be wrapped in the lipid‑bilayer and then released 
with EVs (Fig. 2) (16). In addition, apolipoproteins A1/2 and 
B (16) or albumin (117) may be used as a negative control 
to assess the purity of EVs. Previous studies have indicated 
that EVs from leukoreduced RBC products are primarily of 
RBC origin (108), which may be contaminated in storage 
by platelets and other cell types instead of leukocytes (22). 
Following the publication of the MISEV2018 guidelines, a 
number of studies that used only one or two protein markers 
for the characterization of stored RBCs persisted, which 
should have been performed in accordance with unified 

standards (77,93,94). To date, there has been no consensus 
on which protein markers should be used to distinguish lEVs 
and microvesicles from sEVs and exosomes, since EVs may 
be produced using different centrifugation methods from 
different cell types (117). Using CD63, Danesh et al (22) 
differentiated exosomes from sEVs derived from RBCs and 
proposed that exosomes are CD63‑positive. However, their 
results require further verification.

5. Mechanism of stored RBC‑derived EVs in TRIM in 
patients with cancer receiving transfusions

Since they may carry a variety of lipids, proteins and nucleic 
acids, EVs are able to mediate cell‑to‑cell communication to 
regulate cellular processes, including inflammation, immune 
signaling and angiogenesis (Fig. 3) (119). EVs may also be 
potentially used as cancer biomarkers (120,121). RBC‑derived 
EVs are able to bind to C1q in the blood, activate the clas‑
sical complement pathway and suppress the function of both 
macrophages and the immune system (81). Such binding may 
be mediated by PS on the surfaces of RBCs (65). RBC‑derived 
microvesicles that contain PS were observed to increase 
systemic inflammation in mice by the thrombin‑dependent 
activation of complement (122). In addition, proteins from RBC 
EVs may activate factor IX through two independent pathways, 
namely the classical coagulation factor (F)XIIa/FXI/FIX 
pathway and the direct kallikrein pathway, to mediate inflam‑
matory and/or thrombotic activities (114). During storage, 

Figure 3. Mechanism of stored RBC‑derived EVs in TRIM in patients with cancer receiving transfusions. PS on the surface of RBC‑derived EVs are able 
to bind to C1q in the blood to activate the classical pathway of complement and inhibit immune cells from releasing a variety of immune factors, such as 
TNF‑α. Hb binding to EVs may interact with NO, leading to the consumption of NO, contraction of blood vessels, formation of thrombosis and increased risk 
of transfusion‑induced inflammation. Proteins from RBC EVs are able to activate factor IX through two independent pathways, the classical FXIIa/FXI/FIX 
pathway and direct kallikrein to mediate thrombosis. RBC‑derived EVs are able to carry RNAs, especially microRNAs, which may influence various biolog‑
ical processes, including signal transduction and nucleotide metabolism to mediate intercellular communication. RBC, red blood cell; NO, nitric oxide; PS, 
phosphatidylserine; C1q, complement C1q; Hb, hemoglobin; NO, nitric oxide; FXII, coagulation factor XII; FXI, coagulation factor XI; FIX, coagulation 
factor IX; TG, thrombin generation; PK, pre‑kallikrein; TRIM, transfusion‑related immunomodulation; EV, extracellular vesicle. 
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Hb is released from RBCs into the preservation medium 
in the form of cell‑free Hb and microparticles as a result 
of storage lesions, such that a longer storage duration leads 
to a higher concentration (90,123). After RBC transfusion, 
cell‑free Hb and Hb binding to EVs interact with nitric oxide 
(NO) (124), leading to the contraction of blood vessels, forma‑
tion of thrombosis and increased risk of transfusion‑induced 
inflammation (125). Such reactions were also observed to be 
1,000‑fold faster compared with those mediated by complete 
RBCs (90,123). NO, on the one hand, may be cytotoxic and 
able to induce apoptosis of cells as an anti‑tumor agent, but 
on the other hand, it may promote angiogenesis and cancer 
metastasis as an oncogenic agent, which associates it with 
cancer (126). RBC‑derived EVs may also carry several types 
of RNA to mediate communication between cells (26,127). 
It has been previously reported that the highest quantity of 
microRNA (miR)‑451a (26) from RBC‑derived EVs is able 
to regulate innate immunity, inflammatory responses and 
immune functions (128,129). Reduced expression of miR‑451a 
was indicated to upregulate the expression of macrophage 
migration inhibitory factor in breast cancer (130) and that of 
phosphomannomutase‑2 in renal cell carcinoma (131), both of 
which are associated with increased metastatic and invasive 
abilities of tumor cells (131,132).

It should be noted that a number of studies have also 
suggested that monocyte suppression is not only mediated 
by EVs separated from RBC units alone, but other potential 
soluble mediators, such as miRs (118). Residual platelet‑derived 
EVs in RBC products have been previously detected (94), 
which are potent mediators of inflammation in vitro (133). It 
was previously reported that although leukoreduction alone 
was not able to reduce TRIM, leukoreduction and radiation 
with γ‑rays together was able to, suggesting that γ‑rays may 
enhance the impact of leukoreduction on alloimmunity (134). 
After leukoreduction through leukocyte filtration, leukocytes 
of 5x106 units typically persist, meaning that the continuous 
existence of filtrate leukocytes remains accountable for 
TRIM (12). Mechanistically, γ‑rays act on the nuclei of white 
blood cells to induce apoptosis, thereby reducing microchime‑
rism and allosensitization (135). In addition, after transfusion 
with leukoreduced and γ‑irradiated RBCs, regulatory T cells 
exhibited reduced activity, which in turn reduced the extent 
of immunosuppression in the body (134). Therefore, TRIM in 
patients with cancer may be concluded to be due to a combined 
action of factors, including residual leukocytes, residual 
platelets and EVs. Stored RBC‑derived EVs may inhibit the 
proliferation and activation of immune cells through multiple 
mechanisms. Thus, attention should be paid to their roles in 
TRIM. RBC transfusions enable the entry of large quanti‑
ties of immunosuppressive EVs into the body. Therefore, the 
potential negative impact of RBC transfusions on patients with 
cancer should be taken into full consideration.

6. Outlook

An increasing number of studies have indicated that RBCs 
and immune cells interact with each other. RBCs contain a 
variety of immunoregulatory factors, suggesting, to a certain 
extent, that RBCs themselves may be involved in TRIM. 
Characterization of RBC EVs is the focus of the majority of 

recent investigations, though it remains unclear whether Ca2+ 
serves a role in the generation of RBC EVs. To date, studies 
into the immunomodulatory role of stored RBC EVs have been 
limited to in vitro studies and animal models. Further clinical 
studies are required to investigate the full impact of RBC 
EVs on the human immune system. In addition, it remains 
unknown how stored RBC EVs exert their immunomodula‑
tory roles, specifically what roles the proteins and RNAs they 
carry serve. The quantity of RBC EVs is affected by a variety 
of factors, which influences not only the quality of RBC prod‑
ucts, but also the clinical outcomes of patients. In terms of the 
effects of external factors, including differences in filters and 
blood processing time, enhanced measures should be taken 
to control blood preparation procedures and to reduce the 
number of EVs in blood products.

RBC transfusion is a common therapeutic option for anemia 
in patients with advanced cancer. However, RBC transfusions 
are becoming increasingly associated with unfavorable prog‑
noses in patients with malignancies. Therefore, on the basis of 
some guidelines (48,136), a number of recommendations has 
been proposed as precautionary measures: To reduce blood 
transfusion where possible when the normal Hb level is main‑
tained; to apply autotransfusion and fresh RBC products if 
transfusions are necessary; to remove residual leukocytes and 
EVs from RBC products through leukocyte filtration; to use 
irradiated RBCs if possible; and to apply conservative blood 
transfusion strategies for patients with cancer (Hb ≤7‑8 g/l).
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