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Doramectin inhibits glioblastoma cell survival via
regulation of autophagy in vitro and in vivo
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Abstract. Glioblastoma (GBM) is one of the most widespread
and lethal types of cancer. However, there are currently no
drugs or therapeutic strategies that can completely cure GBM.
Doramectin (DRM) has a broad range of activities against
endoparasites and ectoparasites, and is extensively used in
livestock. In the present study, the effect of DRM on the induc-
tion of autophagy in U87 and C6 GBM and glioma cell lines,
as well as the mechanism of autophagy, were examined. First,
transmission electron microscopy, plasmid transfection and
western blot analysis demonstrated that DRM could induce
autophagy in U87 and C6 cells in vitro. Next, MTT and colony
formation assays revealed that DRM-induced autophagy
prevented U87 and C6 cell viability and colony formation
ratio. In addition, DRM-induced autophagy promoted U87
and C6 cell apoptosis, as indicated by DAPI analysis and flow
cytometry. Furthermore, transcriptome analysis demonstrated
that DRM modulated a number of genes and pathways involved
in autophagy. In a nude mouse xenograft model, immunohisto-
chemical staining and the TUNEL assay demonstrated that the
effect of DRM on the tumor was consistent with that in vivo.
These data indicated that DRM induced autophagy mainly by
blocking the PI3K/AKT/mTOR signaling pathway in GBM
cells. DRM-induced autophagy promoted the inhibition of
GBM cell proliferation and apoptosis in vitro and in vivo. The
present study suggested that DRM may be an effective drug
for the treatment of GBM.
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Introduction

Glioblastoma (GBM), the most common type of human primary
brain tumor, accounts for 81% of malignant tumors in the central
nervous system (1,2). GBM has been classified by World Health
Organization as a grade I'V glioma and it has a high recurrence
rate (3,4). In a Swiss population-based study, the survival rate
of patients with newly diagnosed GBM was ~18% at 1 year
and only 3% at 2 years (5,6). Despite the availability of state of
the art multimodality treatments, the median survival of GBM
patients is 12-15 months (7,8). The current treatments for GBM
include neurosurgical resection, radiotherapy and pharmaco-
therapy (9,10). However, these therapies fail tosuccessfully treat
GBM due to various reasons (11). One of the main reasons is the
high tendency of the tumor to invade the surrounding healthy
brain tissues (12). Another reason is the multi-drug resistance
encountered during GBM chemotherapy (13). Therefore, there
is an urgent need for novel and/or improved drugs or treatments
to improve the survival of patients with GBM.

Doramectin (DRM) is a genetically modified avermectin
(AVM), which is produced by actinomycetes (fungi) and has
potent anthelmintic and insecticidal activities (14,15). DRM is
one of the most widely used macrocyclic lactone endo/ectopar-
asiticides worldwide (16). It has been demonstrated that DRM
could reverse the multidrug resistance of cancer cells (17). In
addition, it has been reported that macrocyclic lactones are
well-tolerated agents, which are used to treat a large number
of animals for parasitic infections (18,19). Macrocyclic lactone
endo/ectoparasiticides have also been demonstrated to suppress
certain activities in human cancer cells (20). For instance,
certain studies, including our previous study, have revealed that
ivermectin (IVM) and AVM induce apoptosis and autophagy
in glioma, HeLa and Ehrlich carcinoma cells (21-23). DRM is
a third-generation derivative of the AVM class of macrolides.
Unlike AVM, it has a cyclohexyl group in the C25 position of
the AVM ring (Fig. 1). In addition, DRM is absorbed more
quickly, and has a longer lasting effect and plasma half-life in
animals compared with IVM and AVM (24). Therefore, it was
hypothesized that DRM may have similar effects on cancer
cells and may be a superior anticancer drug compared with
existing anticancer drugs.
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Programmed cell death has attracted considerable attention
from researchers as a tumor suppression mechanism (25,26).
This biological process emerged during anticancer therapies,
such as radiation, chemotherapy and certain targeted thera-
pies (27). There are two main morphologically distinctive forms
of programmed cell death. Apoptosis and autophagy (28,29).
Autophagy is a highly conserved mechanism of eukaryotic
cells that serves essential roles in development, tissue homeo-
stasis and diseases (30). A number of studies have suggested
that enforced overactivation of autophagy will lead to cell
death in certain contexts. For instance, excessive endoplasmic
reticulum-specific autophagy mediated by the autophagy
receptor FAM134B results in cell death in HeLa cells (31) and
SHOO03 activates autophagic cell death by activating ATF4 and
inhibiting G9a under hypoxia in gastric cancer cells (32).

It is well known that autophagy is characterized by the
formation of double-membrane vesicles, called autopha-
gosomes (33). In addition, a large number of studies have
demonstrated that autophagy can inhibit glioma growth (34,35).
However, the effects and mechanisms of DRM in inducing
autophagy in GBM cells remain unclear.

The aim of the present study was to explore the roles
of DRM in inducing autophagy in GBM cell lines cultured
in vitro and in vivo, and to analyze the potential mechanisms
of the observed effects using proteomics analysis. In addi-
tion, the present study attempted to elucidate the association
between DRM-induced autophagy and apoptosis in GBM cells
in vitro and in vivo.

Materials and methods

Cell lines, reagents and antibodies. U87 human GBM cell lines
and C6 rat GBM cells were obtained from China Infrastructure
of Cell Line Resources, Institute of Basic Medical Sciences,
Chinese Academy of Medical Sciences (Beijing, China) and
have been authenticated by short tandem repeat (STR) profiling.
In addition, STR profiling identified that the original U87
cell line was established in 1968 at the University of Uppsala
(RRID: CVCL-GP63). These cells were cultured in DMEM
(cat. no. 12100-046; Gibco; Thermo Fisher Scientific, Inc.)
supplemented 10% new-fetal bovine serum (cat.no.23022-8615;
Zhejiang Tianhang Biotechnology Co., Ltd.) and 100 U/ml
penicillin/streptomycin (cat. no. C0222; Beyotime Institute
of Biotechnology). The cells were placed in an incubator at
37°C with 5% CO,. DRM was purchased from Sigma-Aldrich;
Merck KGaA. DMSO (cat. no. D2650) and chloroquine (CQ;
cat. no. C6628) were purchased from Merck KGaA. The
antibodies used were as follows: Autophagy-related 5 (Atg5;
dilution, 1:1,000; cat. no. 12994; Cell Signaling Technology,
Inc.), LC3 (detects both LC3I and LC3II; dilution, 1:1,000;
cat. no. 4599; Cell Signaling Technology, Inc.), p62 (dilution,
1:1,000; cat. no. 23214; Cell Signaling Technology, Inc.), Ki-67
(dilution, 1:1,000; cat. no. 9027; Cell Signaling Technology,
Inc.) and B-actin (dilution, 1:1,000; cat. no. 4970; Cell Signaling
Technology, Inc.). The Goat Anti-Rabbit IgG secondary anti-
body was obtained from OriGene Technologies, Inc. (dilution,
1: 2,000; cat. no. TA130015). All antibodies were dissolved
antibody dilution buffer (cat. no. A1800; Beijing Solarbio
Science & Technology Co., Ltd.). GFP-LC3 plasmid and GFP
plasmid were obtained from BioVector NTCC, Inc.

Transmission electron microscopy (TEM). The cells were
incubated with or without DRM for 48 h. The culture medium
was discarded, and the cells were washed three times with
PBS. They were then fixed overnight with 2.5% glutaralde-
hyde at 4°C and subsequently fixed with 1% osmium tetroxide
for 1-2 h at 4°C. Next, the cells were dehydrated using a
graded series of ethanol solutions (30, 50, 70, 90 and 100%)
for 10 min at a time, and embedded in Epoxy Embedding
medium (Merck KGaA) and polymerized at 37°C for 24h.
Finally, it was dyed with 3% uranium acetate and lead citrate
for 30 min at room temperature. The ultrathin sections
(0.1 pm) were observed using a transmission electron micro-
scope (H7650; Hitachi, Ltd.). Treatment without DRM was
used as a control.

Plasmid transfection. The cells were cultured in 6-well plates
at a density of 2x10° cells/well for 24 h. The cells were trans-
fected with green fluorescent protein 3 yg GFP-LC3 (2.5 ug/ul)
plasmid and 3 pg empty plasmid (4.8 pg/ul) containing no
LC3 protein using Lipofectamine® 2000 (cat. no. 11668019;
Invitrogen; Thermo Fisher Scientific, Inc.) according to the
manufacturer's instructions. Subsequently, transfected cells
were incubated in serum-free medium at 37°C for 4 h. After
4 h, the transfected cells were incubated with fresh medium
or fresh medium containing DRM for 48 h. After 48 h, the
DRM-treated transfected cells were then visualized under
an inverted fluorescence microscope (Olympus Corporation).
Furthermore, at 48 h after transfection, transfected cells
without DRM treatment were harvested using RIPA lysis
buffers (cat. no. PO013B; Beyotime Institute of Biotechnology)
supplemented with protease inhibitors (cat. no. ST506;
Beyotime Institute of Biotechnology). Next, total proteins
were used for western blot analysis. DRM-treated transfected
cells were not harvested. Treatment without DRM or empty
plasmid were used as a control.

Western blot analysis. U87 and C6 cells were incubated
with various concentrations of DRM (0, 5, 10 and 15 uM)
at 37°C for 48 h. Tumor tissue was ground to powder in a
mortar containing liquid nitrogen. The DRM-treated cells
and tumor tissue powder were harvested in RIPA lysis buffers
(cat. no. POO13B; Beyotime Institute of Biotechnology)
supplemented with protease inhibitors (cat. no. ST506;
Beyotime Institute of Biotechnology). Next, the concentra-
tion of total proteins was determined using a BCA assay kit
(cat. no. P0012; Beyotime Institute of Biotechnology). Total
proteins (30 ug protein/lane) were separated by 12% sodium
dodecyl sulphate-polyacrylamide gel electrophoresis and
transferred to polyvinylidene fluoride membranes (Millipore
Sigma; Merck KGaA). The membranes were then blocked
with 5% fat-free milk in TBS-0.1%Tween 20 buffer for 2 h at
37°C. Next, the blots were incubated with primary antibodies
overnight at 4°C. Subsequently, the protein bands were probed
with HRP-conjugated goat anti-rabbit IgG secondary antibody
(dilution, 1:2,000; cat. no. TA130015) for 1.5 h at room temper-
ature. Then, each band was visualized using BeyoECL Moon
(cat. no. POO18 FM; Beyotime Institute of Biotechnology).
Finally, the protein bands were analyzed using Image Lab™
Software (version 5.2.1; Bio-Rad Laboratories, Inc.) on a
ChemiDoc XRS+(Bio-Rad Laboratories, Inc.).
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Figure 1. Structure of doramectin.

Analysis of autophagy with CQ. The autophagy inhibitor CQ
was also used to block autophagy at a final concentration of
15 uM. Briefly, U87 and C6 cells (1x10° cells/well) in a 6-well
plate were pretreated with CQ (15 yM) at 37°C for 2 h, and
then cells were treated with DRM (15 uM) at 37°C for 48 h.
Cells were collected for MTT, colony formation, western blot-
ting, DAPI staining and Annexin V-FITC/PI staining analysis.

MTT assay. U87 and C6 cells were seeded into 96-well plates
at a density of 3x10° cells/well and incubated overnight at
37°C for 24 h. DMEM supplemented with DRM alone or
together with the autophagy inhibitor CQ was added to the
96-well plates for 48 h. MTT (1 mg/ml dissolved in PBS;
100 ul/well; cat. no. M2128; Merck KGaA) was then added
to each well and cells were incubated for an additional 4 h
at 37°C. MTT was carefully removed and 150 x1 DMSO was
added. Absorbance was measured on a microplate reader
(BioTek Instruments, Inc.) at a wave length of 450 nm. The
cell viability inhibition rate (IR) was calculated as the ratio
between the OD of the CQ, CQ+DRM and DRM group and
the OD of the control group. Cells in the control group were
not treated with DRM and CQ.

Colony formation assay. U87 and C6 cells were seeded
into 6-well plates at a density of 3x10* cells/well. Following
overnight incubation at 37°C, U87 and C6 cells were treated
with DRM (15 M) alone or together with the autophagy
inhibitor CQ (15 uM) at 37°C for 48 h. The culture medium
was discarded, and the cells were washed with PBS three
times. The cells were then incubated with fresh medium
at 37°C. After 2 weeks, the colonies were fixed with 4%
formaldehyde for 30 min at room temperature and stained
with 0.4% crystal violet for 10 min at room temperature.
Subsequently, the counts of cell colonies were manually
scored. The number of colonies was counted and quanti-
fied. Colony formation quantification was performed using
ImagelJ software (version 2.0; National Institutes of Health).
A colony was defined as >50 cells. Cells in the control group
were not treated with DRM and CQ.

DAPI staining. The cells were seeded into 6-well plates at a
density of 3x10? cells/well and treated with 15 M DRM alone
or together with an autophagy inhibitor (CQ, 15 uM) for 48 h
at 37°C. The cells were harvested, washed twice with PBS,
fixed with 4% formaldehyde for 10 min at room temperature
and stained with DAPI (cat. no. D8471; Merck KGaA) staining
solution according to the manufacturer's instructions for
10 min at 37°C. The images were immediately captured using
a fluorescence microscope (Olympus Corporation). Images
were analyzed using Image Pro Plus v. 5.1 software (Media
Cybernetics, Inc.). Cells in the control group were not treated
with DRM and CQ.

Annexin V-FITC/PI staining for cell apoptosis. An
Annexin V-FITC/PI apoptosis detection kit (cat. no. C1062S;
Beyotime Institute of Biotechnology) was used to distinguish
apoptotic cells from normal cells. U87 and C6 cells were
incubated with DRM alone or together with the autophagy
inhibitor CQ for 48 h. Cells were harvested and stained with
the FITC-labeled Annexin V and PI for 15 min in the dark.
Flow cytometry was conducted immediately to detect apop-
totic cell populations. A BD Biosciences FACS Calibur flow
cytometer (BD Biosciences) was immediately used to detect
apoptotic cell populationsand data were analyzed using Flow
Jo 7.6.2 (Tree Star, Inc.).

RNA isolation. The total RNA of each sample was extracted
using a High Pure RNA Isolation Kit (cat. no. 1828665; Roche
Diagnostics) according to the manufacturer's instructions. The
total RNA of triplicate samples treated with or without DRM
(15 uM) for 48 h at 37°C was then sent to Wuhan Boyue Zhihe
Biotechnology Co., Ltd. RNA samples were then digested
with RNase free DNase I (cat. no. 89836; Invitrogen; Thermo
Fisher Scientific, Inc.) to eliminate residual genomic DNA,
and the digestion products were purified using magnetic beads
(Axygen; Corning, Inc.). Then, the quality and integrity of the
total RNA were assessed using an Agilent 2100 Bioanalyzer
(Agilent Technologies, Inc.) and 1.2% agarose gel electropho-
resis. The RNA concentration was measured using a Nano Drop
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2000 instrument (Nano Drop Technologies; Thermo Fisher
Scientific, Inc.). High-quality RNA samples with OD260/280
ratios ranging between 1.8 and 2.2 and OD260/230 =1.8-2.2,
RNA integrity number (RIN) =7 and total RNA concentration
=50 ng/ul were used for library preparation. After the RNA
sample passed the test, the eukaryotic mRNA (in the case
of prokaryote, the mRNA was enriched by removing rRNA
through the kit) was enriched using magnetic beads with
oligo (DT). RNA sequencing libraries were generated using
the KAPA stranded RNA-Seq Kit with RiboErase (HMR;
cat. no. KK8483; Kapa Biosystems; Roche Diagnostics)
with multiplexing primers according to the manufacturer's
protocol. Subsequently, a fragment buffer was added to break
the mRNA into short segments. nRNA was used as a template
to synthesize a single-stranded cDNA with six base random
primers. Then, buffer, INTPs, DNA polymer I and RNase H
were added to synthesize double-stranded cDNA. Then, the
double-stranded cDNA was purified with AMPure XP beads.
The purified double-stranded cDNA was first repaired with
A-tail and connected with the sequencing connector; then,
the fragment size was selected using AMPure XP beads.
Subsequently, the second strand of U-containing cDNA was
degraded with user enzyme so that the final sequencing infor-
mation came from the first strand of cDNA, thus preserving
the strand orientation of mRNA. Finally, the PCR amplifica-
tion was carried out, and the PCR products were purified with
AMPure XP beads to obtain the chain-specific cDNA library.
After the construction of the library, qubit 3.0 fluorometer
(cat. no. Q33216; Thermo Fisher Scientific, Inc.) was used for
preliminary quantification, and the library was diluted to 1
ng/ul. Then, Qsepl00 was used to detect the insert size of the
library. After the insert size met the expectation, qPCR was
used to accurately quantify the effective concentration of the
library (the effective concentration of the library was >2 nM),
so as to ensure the quality of the library. After the library passed
the inspection, different libraries were pooled according to
the requirements of effective concentration and target off line
data volume, following which HiSeq sequencing was carried
out. Paired end sequencing was performed using an [llumina
Hiseq X Ten with a read length of 150 bp. A total of 1 ug total
RNA was used for each Illumina library preparation. FastQC
v0.11.9 software (Babraham Bioinformatics; https://www.
bioinformatics.babraham.ac.uk/projects/fastqc/) was used
for quality analysis of the sequencing data in this project. The
number of reads per gene was calculated using featureCounts
V1.6.0 (featureCounts is a tool in the Subread v2.0.1 package;
http://subread.sourceforge.net).

Data processing and functional annotation. Gene expres-
sion was standardized by fragments per kilobase per million
mapped fragments using featureCounts v1.5.0. (36). The
following analyses were conducted on differentially expressed
genes (DEGs): i) A Venn diagram was drawn to identify
common and unique DEGs between the groups using Venny
2.1.1 (https://bioinfogp.cnb.csic.es/tools/venny/) and a Volcano
plot generated by ggplot2 v.3.0.0 (37) in R Package 3.5.3
(https://neuroconductor.org/neurocLite.R) was used to analyze
the screening of differentially expressed genes between samples;
ii) Genesis 1.8.1 (38) was used for hierarchical clustering, it was
used to compare the expression of DEGs in DRM vs. control

groups using cluster analysis software; and iii) Gene Ontology
(GO; http://www.geneontology.org) and Kyoto Encyclopedia
of Genes and Genomes (KEGG; http://www.genome.jp/),
pathway annotation and enrichment analyses were carried out
using the cluster profiler package 3.10.1 (https://bioconductor.
org/packages/clusterProfiler/) in R Package 3.5.3 (https://neuro-
conductor.org/neurocLite.R) (39). Pathview in KEGG was
used to analyze data (https://www.kegg.jp/pathway/map04140
and https:/www.kegg.jp/kegg/mapper/color.html).

Animal models. All animal experiments were carried out at
Harbin Weike Biotechnology Co., Ltd. The housing condi-
tions were as follows: 24°C, 50-60% humidity and 12:12 h
light-dark cycle. Animals were given free access to commer-
cial rat pellet diet and tap water. A total of 36 female BALB/c
mice were obtained from Beijing Vital River Laboratory
Animal Technology Co., Ltd. Each BALB/c mice weighed
about 17+1.58 g and was 6 weeks old. After 1 week of feeding
in a sterile environment, 100 ul PBS containing 2.0x10° C6
cells were injected subcutaneously into the flanks of nude
mice. After 10 days, tumor-bearing mice were allocated to
four groups and treated with either saline (100 ul; control
group), CQ (20 mg/kg/day CQ in 100 ul; CQ group), DRM
(14 mg/kg/day DRM in 100 pl; DRM group) or DRM+CQ
(20 mg/kg/day CQ combined with 14 mg/kg/day DRM in
100 ul; DRM+CQ group) for 24 days. The four treatments
were injected intraperitoneally into mice daily. Health and
behavior of all nude mice were monitored on a daily basis.
The length (L) and width (W) of tumors were measured and
calculated every 3 days (V=1/2 x L x W?). After 24 days, the
tumor volume of mice in the control group made it difficult to
live, including difficulty drinking, eating and moving, which
brought discomfort to the life of mice. At the same time, the
tumor volume had reached the purpose of the present study.
First, all mice were humanely euthanized by intraperitoneal
injection of Nembutal (150 mg/kg). Then, death was confirmed
using cervical dislocation as a secondary method of euthanasia.
All mice showed no vital signs and tumors were extracted for
immunostaining and weighing. The maximum tumor volume
in the present study was 760 mm?®. The experiment progressed
42 days from the injection of mice to euthanasia of mice. There
were no mice that died accidentally during the experiment,
and the mice showed healthy vital signs.

Immunohistochemical staining. All specimens were fixed in
10% neutral-buffered formalin for 48 h at room temperature
and embedded in paraffin. Next, 5-ym-thick sections were
dewaxed and rehydrated. All specimens were dewaxed in
xylene and rehydrated in a graded series of ethanol solu-
tion at room temperature for 5 min at a time. Sections were
treated with 0.01 mol/l boiling sodium citrate buffer for
10 min. Subsequently, sections were treated with 3% H,0,
at room temperature for 30 min. Next, they were incubated
in QuickBlock™ Blocking Buffer (cat. no. P0260; Beyotime
Institute of Biotechnology) at 37°C for 20 min. Then, they
were incubated in LC3 (dilution, 1:6,000; cat. no. 4599; Cell
Signaling Technology, Inc.), p62 (dilution, 1:250; cat. no. 23214;
Cell Signaling Technology, Inc.) and Ki-67 (dilution, 1:800;
cat. no. 9027; Cell Signaling Technology, Inc.) primary anti-
bodies for 90 min at 37°C. With an HRP-conjugated goat
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anti-rabbit IgG (dilution, 1:1,000; cat. no. 40295G; BIOSS) at
37°C for 90 min. The sections were incubated with a DAB
Horseradish Peroxidase Color Development Kit (cat. no. P0202;
Beyotime Institute of Biotechnology) at room temperature for
30 min, and then washed with distilled water two times. Finally,
the sections were counter stained with hematoxylin for 10 min
at room temperature and the slides were observed under a light
microscope (D5100; Nikon Corporation) and analyzed using
ImagelJ software (version 2.0; National Institutes of Health).
The number of positive cell nuclei in 30 random fields from
randomly chosen tumor sections for each animal was counted
at a magnification of x400.

TUNEL assay. Cell apoptosis was assessed in vivo using
a TUNEL assay. An In Situ Cell Death Detection kit
(cat. no. 11684817910; Roche Diagnostics GmbH) was used
according to the manufacturer's instructions. All specimens
were fixed in 10% neutral-buffered formalin for 48 h at room
temperature and embedded in paraffin. Sections were first
dewaxed in xylene and rehydrated in ethanol solution, after
incubation with proteinase K working solution (20 M) for
30 min at room temperature. The tumor sections were washed
with PBS twice. The slides were exposed to TUNEL reaction
mixture prepared freshly for 1 h at 37°C in the dark. Then,
the slide were rinsed three times with PBS. All slides were
analyzed in a drop of PBS under a fluorescence microscope
(Olympus Corporation) and analyzed using ImageJ software
(version 2.0; National Institutes of Health). The number of
positive cell nuclei in 30 random fields from randomly selected
tumor sections for each animal was counted at a magnification
of x400.

Statistical analysis. For quantification, Ki-67, Atg5, p62 and
LC3 staining intensity was measured from the number of posi-
tive cell nuclei in 25% fields using ImageJ software (version 2.0;
National Institutes of Health). All areas were chosen randomly
from all sections. The intensity of bands in western blotting
was also measured by ImageJ software (National Institutes of
Health). All data are presented as the mean + SD of at least
three independent experiments. The acquired experimental
data were analyzed using SPSS 17.0 software (SPSS, Inc.) and
GraphPad Prism 5.0 (GraphPad Software, Inc). The differ-
ences between two groups were analyzed using an unpaired
Student's t-test. Student's t-test was used when two groups
were compared and one-way ANOVA was used when several
groups were compared. The Tukey method was used as the
post hoc test. P<0.05 was considered to indicate a statistically
significant difference.

Results

DRM increases autophagy in GBM cells. Various methods
were used to determine the effect of DRM on the levels of
autophagy in GBM cells. TEM results revealed accumula-
tion of autolysosomes and autophagosomes in the DRM
group, but not in the control group (Fig. 2A). Furthermore,
LC3 puncta were observed using the GFP-LC3 transient
transfection assay. Microscopy images indicated that DRM
increased the distribution and number of LC3 puncta
(Fig. 2B). Additionally, LC3I/LC3II protein expression after

transfection was detected by western blotting. The results
demonstrated that LC3I/LC3II protein expression increased
after transfection without DRM treatment (Fig. 2C). LC3 is
a marker of autophagy. During the initiation of autophagy,
LC3I enzymatically decomposes a small polypeptide segment
and transforms it into LC3II (40). The ratio of LC3II/LC3I
can be used to estimate the level of autophagy (41). At the
same time, p62 and Atg5 proteins are important indicators
of regulation of LC3I and LC3II protein conversion (42,43).
Western blot analysis demonstrated that DRM induced the
accumulation of LC3I/LC3II and Atg5 in U87 and C6 cells
when the DRM concentration was 15 yM. In addition, DRM
(15 pM) induced degradation of p62 in U87 and C6 cells
(Fig. 2D-G). In combination, these data suggested that DRM
could promote autophagy initiation in GBM cells.

DRM-induced autophagy decreases proliferation in GBM
cells. The effect of DRM-induced autophagy on GBM cells
was further explored. Western blot analysis was conducted to
detect the protein expression levels of p62 and LC3I/LC3II
in the presence of the autophagy inhibitor CQ. As expected,
the autophagy inhibitor CQ partially inhibited DRM-induced
cell autophagy (Fig. 3A-C). In the DRM+CQ group compared
with the DRM group, the LC3I/LC3II protein expression was
decreased. Subsequently, MTT and colony formation assays
were used to assess the viability and colony formation ratio
of GBM cells. According to MTT assay results, DRM signifi-
cantly reduced cell viability compared with DRM combined
with CQ in U87 and C6 cells (Fig. 3F). As shown in Fig. 3D
and E, treatment with DRM combined with CQ was associated
with a significant increase in the colony formation ability of
U87 and C6 cells compared with treatment with DRM only.
In conclusion, these results indicated that DRM-induced
autophagy could reduce the proliferation of GBM cells.

Inhibition of autophagy decreases DRM-induced apop-
tosis. The effect of DRM-induced autophagy on GBM cell
apoptosis was further investigated. First, DAPI staining was
performed to explore the role of autophagy in DRM-induced
DNA double-strand breaks. In Fig. 4A, the fragmented DNA
was increased in the DRM only group compared with the
DRM+CQ group. Subsequently, apoptosis was analyzed
by flow cytometry. Apoptosis was increased in the DRM
group compared with the DRM+CQ, CQ and control groups
(Fig. 4B and C). These findings suggested that DRM-induced
autophagy could promote apoptosis in GBM cells.

Analysis of DEGs in DRM-treated C6 cells. Comparison of
DRM-treated C6 cells with untreated C6 cells revealed a higher
degree of differential expression of genes. First, to ensure the
reliability of the sequencing results, the inter-sample correla-
tion was analyzed (Fig. 5A). As shown by the Venn diagram
and Volcano plot in Fig. 5B and C, the transcript expression
profiles identified 3,747 DEGs, including 1,660 upregulated
and 2,087 downregulated genes.

GO enrichment analysis of DEGs. To further explore the
potential functions of DEGs, the DEGs in the treatment
groups were examined by GO functional enrichment anal-
ysis in relation to the control group. Each group of DEGs
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Figure 2. DRM-induced autophagy in U87 and C6 cells. (A) Transmission electron microscopy revealed autophagosome accumulation in U87 and C6 cells
treated with O or 15 yM DRM for 48 h. Red arrows indicate autophagosomes. Scale bar, 2 ym. (B) Fluorescence microscopy using GFP-LC3 as a measure
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protein expression levels of LC3I/LC3II and B-actin indifferent groups was performed. (D) U87 cells were treated with different concentrations of DRM
(0,5, 10 and 15 uM) for 48 h. Western blot analysis was performed to detect protein expression levels of Atg5, p62, LC3I/LC3II and $-actin. (E) Graphical
representation of semi-quantitative analysis of autophagic proteins in U87 cells. (F) Protein expression level of Atg5, p62, LC3I/LC3II and B-actin in C6 cells
treated with different concentrations of DRM (0, 5, 10 and 15 yM) for 48 h, as determined by western blot. (G) Graphical representation of semi-quantitative
analysis of autophagic proteins in C6 cells. The results are presented as the mean + SD, n=3. "P<0.05, “P<0.01 and ““P<0.001 vs. empty or 0 M. Atg5,
autophagy-related 5; CTR, control; DRM, doramectin; GFP, green fluorescent protein.
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covered three aspects of biology. The top 50 functionally enriched in ‘chromosome segregation’, ‘nuclear division’,
enriched classes in each group are shown in Fig. 6. With  ‘mitotic nuclear division’, ‘nuclear chromosome segrega-
regards to biological processes, the DEGs were mainly tion” and ‘cell division’ (Fig. 6A). With regards to cellular
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components, the DEGs were mainly enriched in ‘focal
adhesion’, ‘cell-substrate junction’, ‘cell-substrate adherens
junction’, ‘cytosolic ribosome’ and ‘chromosome, centro-
meric region’ (Fig. 6B). With regards to molecular functions,
the DEGs were mainly enriched in ‘structural constituent of
ribosome’, ‘growth factor binding’, ‘cell adhesion molecule
binding’, ‘actin binding’ and ‘integrin binding’ (Fig. 6C).

KEGG signaling pathway enrichment analysis of DEGs. In
order to further explore the effect of DRM on GBM signaling
pathways, KEGG functional enrichment analysis of DEGs
was also performed. The results in Fig. 7 revealed that the
autophagy signaling pathway was not the only pathway that
was enriched. Multiple signaling pathways associated with
autophagy and apoptosis, such as ‘DNA replication’ and
the ‘p53 signaling pathway’, ‘mTOR signaling pathway’,
‘PI3K/Akt signaling pathway’ and ‘MAPK signaling
pathway’, were significantly enriched in C6 DRM-treated
cells. A number of autophagy-related pathways were
changed, indicating that the autophagy pathway was altered
in the DRM group compared with the control group and that
the DEGs in these pathway categories may be closely associ-
ated with DRM-induced autophagy. The top 100 signaling

pathways that were altered after DRM treatment of C6 cells
were randomly shown.

Analysis of DEGs involved in the autophagy signaling pathway.
DEGs involved in autophagy are shown in the heat map in Fig. 8.
Following treatment of C6 cells with DRM for 48 h, 51 DEGs
were shown. In Fig. 9, a number of the genes that influence and
control autophagy were shown, and these were also shown in
the heat map, for example, a series of autophagy-related genes
(Atgs), mMTOR, AKT and pI3K, were identified.

DRM-induced autophagy suppresses C6 cell xenograft
growth in vivo. The present study further determined the
effect of DRM-induced autophagy on the regulation of
GBM xenograft growth in vivo. No obvious differences in
the weight of the mice were observed between the DRM,
CQ and CQ+DRM groups and the control group (Fig. 10A).
When comparing the two DRM intervention groups,
significant suppression of tumor growth was observed in the
CQ-untreated group compared with the DRM+CQ-treated
group (Fig. 10B and C). To further verify that DRM-induced
autophagy can inhibit GBM cell proliferation, immunohis-
tochemical analysis of tumor sections was performed. As
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shown in Fig. 10D, compared with the CQ+DRM group, the
expression levels of Ki-67, a marker of cell proliferation,
were decreased in the DRM group. These results indicated
that DRM-induced autophagy was involved in the reduction
of tumor growth in a mouse xenograft model of GBM.

DRM-induced autophagy promotes apoptosis in vivo. To
further detect the effect of DRM on autophagy in vivo,

immunohistochemical staining and western blot analysis were
performed. Immunohistochemical staining indicated that
fewer p62-positive and more LC3-positive cells were observed
in the tumors from DRM-treated mice compared with those
from control mice (Fig. 11A). Similarly, western blot analysis
revealed that the LC3I/LC3II protein was significantly elevated
and P62 protein was significantly reduced in DRM-treated
mice compared with the control mice (Fig. 11B). These results
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Figure 8. Heat map showing the expression fold changes of autophagy-related differentially expressed genes in DRM-treated C6 cells. CTR, control; DRM,

doramectin.

demonstrated that treatment with DRM triggered autophagy
in GBM cells in vivo. The association between DRM-induced
autophagy and apoptosis was also explored in the nude mouse
xenograft model. According to the TUNEL assay, an increased
number of apoptotic cells were identified in the DRM-treated
group compared with the CQ+DRM group (Fig. 11C), indi-
cating that DRM-induced autophagy could enhance tumor
apoptosis.

Discussion

The antitumor activity of macrocyclic lactones has been a
research hotspot in recent years (44). Numerous studies have
demonstrated that macrocyclic lactones inhibit the prolif-
eration of cancer cells (45-47). In our previous study, it was
demonstrated that IVM and AVM of the AVM family not
only inhibited the proliferation of glioma cells via evoking
apoptosis but also induced autophagy in glioma cells (21,48).
Furthermore, IVM has been used to treat filariasis and kill
ixodesscapularis ticks feeding on humans (49). In the present
study, DRM, a more effective and less toxic drug from the
AVM family, was used to treat GBM. Different from studies on
GBM and other macrocyclic drugs, the present study adopted
other research methods to explore the effects of DRM on
GBM. For instance, transcriptome analysis, which can explain

the molecular mechanism of DRM-induced apoptosis and
autophagy in GBM cells, was conducted. Whether DRM can
induce autophagy of GBM cells remains to be studied further.
The present study revealed that DRM induced autophagy
in vitro and in vivo. In addition, DRM-induced autophagy
served an important role in suppressing GBM cell prolif-
eration. It was further demonstrated that DRM modulated a
number of pathways and genes involved in autophagy, thereby
affecting the initiation of autophagy.

In the present study, TEM and a GFP-LC3 transient trans-
fection assay demonstrated that DRM not only induced the
formation of autophagosomes but also induced the forma-
tion of a higher number of GFP-LC3 puncta on U87 and
C6 cells. In addition, LC3 exists in both its soluble (LC3I)
and autophagosome-related (LC3II) forms, and LC3I can
transform into LC3II (40). The LC3II/LC3I ratio is used to
assess the levels of autophagy (41,42). During the process of
autophagy, the p62 protein is involved in the conversion of
LC3I to LC3II (50). As expected, DRM-induced autophagy
was identified by western blot analysis, as revealed by the
increase in LC3I/LC3II and the decrease in p62 protein
expression. This result demonstrated that DRM can induce
autophagy in GBM cells in vivo.

The functional relationship between autophagy and cell
survival is complex, with recent evidence suggesting that
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autophagy is a double-edged sword in cell death (51). On the
one hand, it is considered an essential mechanism of protec-
tion and survival. On the other hand, it is also regarded as a
type of programmed cell death (52,53). However, the specific
mechanism of the dual role of autophagy needs to be explored
further. A study has reported that it is cell line-dependent (54).
Some studies have suggested that different drugs had opposite
effects in the same cell lines. For example, IVM-induced
autophagy increased cell proliferation in glioma (48). However,
5-methoxypsoralen induced glioma cell death by inhibiting
autophagy (55). Therefore, DRM, a potential anticancer
agent, is required to further explore the role of autophagy in

cell death. In the present study, the autophagy inhibitor CQ
was used to clarify the specific mechanisms involved in the
effects of DRM-induced autophagy on GBM cells. When CQ
enters the lysosome, it becomes protonated because of the low
pH within the lysosome, and accumulation of the protonated
form of chloroquine with in the lysosome leads to less acidic
conditions and thereby decreased lysosomal function (56).
First, autophagic flux assays demonstrated that CQ markedly
increased LC3II expression in CQ-pretreated cells. In addi-
tion, MTT and colony formation assays were conducted to
determine the effect of DRM-induced autophagy on inhibition
of U87 and C6 cell viability and colony formation ratio. These
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results demonstrated that DRM-induced autophagy might be
one of the reasons for the inhibition of proliferation in GBM
cell lines.

It is well-known that the functional relationship between
apoptosis and autophagy is complex (57). They suppress or
promote one another or unilaterally promote or inhibit one
another. Autophagy and apoptosis have been demonstrated
to be interconnected by crosstalk between several molecular
nodes (58). Research has demonstrated that Atg5 can be
cleaved by calpain, which interacts with Bcl-XL and promotes
cytochrome c release with caspase activation and apop-
tosis (59). The association between DRM-induced autophagy
and apoptosis in GBM cells is not well understood, but the
present study revealed that DRM induced GBM cell apoptosis
via the mitochondria-dependent pathway, which is highly
regulated by Bcl-2 family members. In addition, the present
study demonstrated that DRM increased Atg5 protein expres-
sion, suggesting that DRM-induced autophagy can affect
apoptotic changes. In order to clarify the association between
autophagy and apoptosis, the autophagy inhibitor CQ was
used to understand the role of DRM-induced autophagy in the
apoptosis of U87 and C6 cells. Flow cytometry demonstrated
that DRM-induced autophagy could increase the apoptotic rate
in U87 and C6 cells. DAPI staining confirmed this conclusion.
Therefore, it was demonstrated that DRM-induced autophagy
promoted the increase in apoptosis in GBM cells.

The molecular mechanisms of the initiation of autophagy
are not yet fully understood. However, a number of studies
have demonstrated that numerous signaling pathways may be
involved in the initiation of autophagy (60-62). Therefore, the
regulation of the autophagy pathway was investigated using
the KEGG database. mTOR was identified as a protein that
serves a key regulatory role in the formation and maturation
of autophagosomes, and the PI3K/AKT and AMP-activated
protein kinase (AMPK) signaling pathways are also involved
in the initiation of autophagy. In brief, a large number of
genes are involved in regulating autophagy in cells. A tran-
scriptome analysis was conducted on C6 cells to provide a
genome-wide view of biological responses to DRM exposure.
At the molecular level, transcriptome analysis revealed
that a large number of significant DEGs were enriched
in autophagy-related pathways. Autophagosome forma-
tion is dependent on the covalent attachment of a series of
Atg proteins during protein ubiquitination (43,63). It was
demonstrated that DRM induced autophagy in GBM cells
at the molecular level. KEGG analysis results demonstrated
that a number of autophagy pathways were altered in the
DRM group compared with the control group, including the
autophagy-animal, PI3K/AKT, lysosome, phagosome, mTOR,
MAPK, AMPK and DNA replication signaling pathways.
Previously, the PI3K/AKT/mTOR pathway, as a critical regu-
lator of autophagy, has been reported to be involved in the
initiation and promotion of a series of pathological disorders
in tumors (64). The PI3K/AKT/mTOR pathway was identified
as the most enriched pathway in KEGG analysis, and the levels
of PI3K, AKT and mTOR proteins were markedly reduced.
This finding suggested that DRM-induced autophagy was
mainly caused by the attenuation of PI3K/AKT/mTOR phos-
phorylation in GBM cells. Transcriptome analysis provided
further evidence of DRM-induced autophagy. Our follow-up

study will be based on the DEGs identified in the present
study, which will serve as a foundation for exploring the other
effects of DRM on GBM further.

To acquire more reliable evidence to support and
verify the in vitro experimental findings, a xenograft nude
mouse model was used to clarify the underlying molecular
mechanisms of DRM autophagy in GBM cells in vivo. In
the previous study, a subcutaneous injection of IVM was
administered to a xenograft nude mouse model at a dose of
14 mg/kg, and the toxicity was found to be acceptable and the
dose safe (19,45). Therefore, the same drug dosage was used
in the in vivo experiment. A number of clinical trials have
used CQ alone or in combination with other chemotherapies
for the treatment of cancer (65,66). In the present study, the
effect of DRM+CQ was tested in a xenograft nude mouse
model. The in vivo experiments revealed that the tumor
volume was significantly smaller in the DRM group than
in the DRM+CQ group. Immunohistochemical analysis of
Ki-67 activity also confirmed this conclusion. In addition,
a TUNEL assay revealed that DRM-induced autophagy
increased cell apoptosis in vivo. It was further demonstrated
that DRM could induce autophagy in vivo. These findings
were consistent with those of previous in vitro studies.
Additionally, our research team has also examined the inhibi-
tory effect of DRM on other tumors. For example, research
has demonstrated that the inhibitory effect on breast cancer
cells was not obvious (17). Esophageal cancer is inhibited by
DRM (Li et al, unpublished data). Although DRM was found
to have an effect on GBM cell proliferation and apoptosis in
our previous experimental exploration (Chen et al, unpub-
lished data), the lack of specific experimental data in this
regard is a limitation of the present study. In future studies,
the effects of DRM on GBM cells will be explored further to
provide more data support for DRM as a novel drug for the
treatment of cancer.

In conclusion, it was first demonstrated that DRM induced
autophagy in U87 and C6 GBM cells in vitro and in vivo. In
addition, the present study demonstrated that DRM altered a
number of pathways involved in autophagy in C6 cells, and
induced GBM cell autophagy mainly by blocking PI3K, AKT
and mTOR at the molecular level. In addition, autophagy
could inhibit GBM cell proliferation and apoptosis in vitro and
in vivo. In combination, these findings provided a theoretical
basis for the clinical application of DRM in the treatment of
GBM.
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