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Abstract. Post‑translational modifications of histones by 
histone demethylases have an important role in the regulation 
of gene transcription and are implicated in cancers. Recently, 
the family of lysine (K)‑specific demethylase (KDM) proteins, 
referring to histone demethylases that dynamically regulate 
histone methylation, were indicated to be involved in various 
pathways related to cancer development. To date, numerous 
studies have been conducted to explore the effects of KDMs 
on cancer growth, metastasis and drug resistance, and a 
majority of KDMs have been indicated to be oncogenes in 
both leukemia and solid tumors. In addition, certain KDM 
inhibitors have been developed and have become the subject 
of clinical trials to explore their safety and efficacy in cancer 
therapy. However, most of them focus on hematopoietic malig‑
nancy. This review summarizes the effects of KDMs on tumor 
growth, drug resistance and the current status of KDM inhibi‑
tors in clinical trials.
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1. Introduction

There were an estimated 19.3 million new cases and 10 
million cancer‑related deaths in 2020, causing a great burden 
worldwide. The prevalence and mortality of cancer are also 
rapidly increasing (1). Therefore, there is an urgent need to 
develop effective cancer therapies. Although immunotherapy, 
particularly cytotoxic T lymphocyte‑associated protein 4 
inhibitors and programmed death 1 (PD‑1)/programmed 
death‑ligand 1 (PD‑L1) inhibitors have been proven to be 
effective in cancer therapy, the presence of immune‑mediated 
side effects (e.g., myocarditis, colitis, pruritus, hepatitis) limits 
their use in clinical practice (2,3). Furthermore, chemoresis‑
tance is becoming a key obstacle for effective cancer therapy. 
Therefore, more potential cancer targets should be identified 
to improve future cancer therapy in addition to investigating 
better combinatorial strategies for cancer therapy.

Histone methylation is a major type of post‑translational 
modification that has an important role in epigenetic modi‑
fication and contributes to numerous biological processes, 
particularly carcinogenesis (4). Methyl groups may be added 
to the side chains of arginine, lysine or histidine residues of 
histones during histone methylation, among which methyla‑
tion on lysine residues is the most common (5). In addition, 
the methylated lysine residues of histones may exhibit mono‑, 
di‑ or tri‑methylated patterns (me1/me2/me3) (6‑8).

The lysine (K)‑specific demethylase (KDM) family of 
proteins are histone demethylases that have the ability to 
remove methyl groups from lysine residues, which are in turn 
involved in numerous biological processes and diseases, such 
as development, differentiation, neurological diseases and 
cancer (9). Histone lysine methylation and demethylation are 
post‑translational modifications that are highly specific to the 
site and degree of methylation (6‑8,10‑14). The presence of 
histone lysine demethylases has been debated for numerous 
years, until lysine‑specific demethylase 1 (LSD1/KDM1A) 
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was discovered. LSD1/KDM1A, which belongs to the flavin 
adenine dinucleotide (FAD)‑dependent lysine‑specific 
histone demethylases, was characterized as the first histone 
lysine demethylase with the ability to mediate histone 3 
lysine 4 (H3K4) demethylation (15‑17). Furthermore, the 
KDM2 to KDM8 families belong to the Jumonji (JmjC) 
domain‑containing histone demethylases. Similar to 
FAD‑dependent lysine‑specific histone demethylases, JmjC 
domain‑containing histone demethylases also contribute to 
various biological processes by catalyzing demethylation on 
histone lysine (18‑24).

Different histone demethylases would target different 
sites of histone lysine and demethylation on different sites of 
histone lysine would have different effects on downstream 
gene expression (Fig. 1). Since methylated H3K4 and meth‑
ylated H3K36 are activating factors for gene expression, 
demethylation on H3K4 or H3K36 would repress downstream 
gene expression (25‑27). However, demethylation on H3K9, 
H3K27 or H4K20 would contribute to downstream gene acti‑
vation (Fig. 1) (27).

Overall, histone lysine methylation is closely associated 
with histone lysine demethylases and participates in gene 
expression regulation. As a result, histone demethylation 
performed by histone demethylases has an important role 
in numerous biological processes, particularly cancer devel‑
opment. In the present review, the role of histone lysine 
demethylases in cancer is discussed and their potential as a 
target for cancer therapy is further illustrated.

2. Overview of the role of histone demethylases in cancer

KDM1 family and cancer. The KDM1 family consists of 
KDM1A (also named LSD1) and KDM1B (also named LSD2). 
Both KDM1A and KDM1B have a FAD‑dependent amine 
oxidase domain and SWIRM domain. Furthermore, KDM1A 
also contains a Tower domain, which is responsible for protein 
interaction (28). The FAD‑dependent amine oxidase domain 
is responsible for removing a methyl group from monomethyl‑
ated (me1) or dimethylated (me2) lysine residues, while the 
SWIRM domain is responsible for assisting demethylation. 
Both KDM1A and KDM1B are able to catalyze the demeth‑
ylation of H3K4 with mono‑methylation or di‑methylation 
(H3K4me1/me2) (29). However, apart from demethylating 
H3K4me1/me2, KDM1A is also able to catalyze H3K9me1/me2 
demethylation (30,31).

In general, KDM1A was indicated to be overexpressed 
and associated with poor prognosis in a variety of cancers, 
indicating the oncogenic role of KDM1A (32‑35). Therefore, 
numerous studies have been performed to elucidate how 
KDM1A contributes to cancer development and progression. 
First, KDM1A was reported to regulate the cell cycle, which in 
turn modulated tumor growth. In an early study, KDM1A was 
indicated to remove dimethylation at the K370 of p53 to inhibit 
its interaction with p53 binding protein 1, thus inhibiting 
apoptosis and promoting tumor cell growth (36). In addition, 
KDM1A‑dependent demethylation of myosin phosphatase 
target subunit 1 (MYPT1) destabilized MYPT1 and reduced 
its expression level. Thus, downregulation of MYPT1 led to 
retinoblastoma protein 1 phosphorylation, finally enhancing 
the G1/S transition of cancer cells (37). In addition, KDM1A 

has the ability to reduce hypoxia‑inducible factor 1α (HIF‑1α) 
degradation and maintain HIF‑1α protein levels, thus promoting 
tumor growth (38). Furthermore, it was recently reported that 
the immune landscape is regulated by KDM1A by modulating 
the expression of immune checkpoint regulators and related 
chemokines, such as PD‑L1, C‑C motif chemokine ligand 5, 
C‑X‑C motif chemokine ligand 9 (CXCL9) and CXCL10 (39). 
Apart from these three most studied mechanisms, a variety 
of downstream genes regulated by KDM1A (E2F1, STAT3 
and AGO2) were identified to participate in cancer develop‑
ment (35).

Unlike KDM1A, only a small number of studies have 
identified the role of KDM1B in cancer. KDM1B is over‑
expressed in cancers, such as breast cancer (40), colorectal 
cancer (41) and lung cancer (42), functions in tumor growth and 
correlates with poor prognosis by catalyzing H3K4 demethyl‑
ation (43). According to the limited literature, the ability of 
KDM1B to inhibit apoptosis in a demethylation‑dependent 
manner is the key mechanism for tumor growth and 
progression (40,41,43,44).

KDM2 family and cancer. KDM2A and KDM2B belong to the 
KDM2 family, the early discovered JmjC domain‑containing 
proteins. Both KDM2A and KDM2B have a JmjC domain and 
one plant homeodomain (PHD) (29). However, KDM2A has 
H3K36me2 demethylation activity, while KDM2B demethyl‑
ates H3K4me3 and H3K36me2 (18,45). KDM2A and KDM2B 
were indicated to be overexpressed in cancer tissues and 
contribute to tumor growth and progression in various malig‑
nancies, including colorectal cancer, gastric cancer, ovarian 
cancer and cervical cancer (46‑55).

KDM2A mediates H3K36me2 demethylation at the histone 
deacetylase 3 (HDAC3) promoter, thereby suppressing HDAC3 
expression and promoting carcinogenesis and invasiveness of 
lung cancer (56). Similarly, KDM2A was observed to repress 
dual‑specificity phosphatase 3 (DUSP3) expression through 
KDM2A‑dependent H3K36me2 demethylation at the DUSP3 
promoter, which enhanced the ERK1/2 signaling pathway 
and facilitated lung tumorigenesis (25). In breast cancer, 
KDM2A promoted cancer stemness and angiogenesis through 
the upregulation of signaling molecules, such as Jagged1 and 
Notch receptor 1 (NOTCH1), in a demethylation‑dependent 
manner, hence leading to poor prognosis (57). Likewise, recent 
research has also indicated that higher KDM2A expression in 
cancer‑associated fibroblasts is associated with advanced tumor 
stage and poor survival in patients with breast cancer (58).

KDM2B was able to epigenetically suppress the expres‑
sion of Mps1 binding protein, an important component of the 
Hippo pathway, contributing to the progression of pancreatic 
cancer and leading to poor prognosis (59). In addition, among 
lung and pancreatic cancer cell lines, KDM2B participates in 
TGF‑β induced epithelial‑mesenchymal transition, contrib‑
uting to cancer invasion and metastasis (60). In malignant 
hematopoiesis, knocking down of KDM2B markedly reduced 
cell proliferation in vitro. Furthermore, knocking down 
KDM2B delayed or even abrogated leukemogenesis in human‑
ized xenograft models (61). Several studies have indicated the 
oncogenic role of KDM2B. However, one study identified the 
tumor‑suppressive effect of KDM2B, as silencing of KDM2B 
triggered invasion of breast cancer cell lines (62).
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KDM3 family and cancer. The KDM3 family is composed of 
three components: KDM3A (also named JMJD1A), KDM3B 
(also named JMJD1B) and KDM3C (also named JMJD1C). 
All of the three demethylases contain a JmjC domain at the 
C terminal, a zinc‑finger domain and an LXXLL motif. The 
JmjC domain is responsible for histone demethylation, while 
the zinc‑finger domain and LXXLL motif are separately 
responsible for DNA binding and nuclear receptor interac‑
tion (63). Among these demethylases, KDM3A and KDM3B 
were observed to specifically demethylate H3K9me1/me2 
in vitro and in vivo, whereas KDM3C mainly demethylated 
H3K9me2 (64‑67). Most studies performed to date indicate the 
oncogenic role of the KDM3 family in various cancer types.

In colorectal cancer, upregulation of KDM3A was indicated 
to be associated with tumorigenesis, advanced stage and poor 
prognosis (68,69). To achieve this effect, KDM3A specifically 
demethylates H3K9me2, promoting Wnt/β‑catenin pathway 
activation in vitro (70). In addition, H3K9me2 demethylation 

of the Hippo pathway was facilitated by KDM3A and contrib‑
uted to colorectal cancer tumorigenesis (71). Among breast 
cancers, KDM3A is essential for the tumorigenic growth of 
cancer stem cells and promotes invasion by demethylating 
p53‑K372me1 and inhibiting p53 transcription (72). In another 
study focusing on breast cancer, KDM3A was indicated to 
increase estrogen receptor (ER) activity via demethylation of 
H3K9me2/1 and activation of ER target genes, therefore facili‑
tating tumor growth (73). Apart from colorectal cancer and 
breast cancer, the oncogenic role of KDM3A was observed 
in prostate cancer (74‑76), lung cancer (77,78), pancreatic 
cancer (79), liver cancer (80,81) and Ewing sarcoma (82,83) 
through a variety of in vivo and in vitro experiments.

To date, research on the relationship between KDM3B and 
cancer is limited. In HepG2 cells, the expression of cyclin D1 
decreased significantly, the cell cycle was mostly halted in the 
G2/M phase and cell proliferation was reduced when KDM3B 
was knocked down (84). In addition, loss of KDM3B was 

Figure 1. Overview of histone demethylases targeting the site of histone lysine and their effect on gene expression. KDM1A, KDM1B, KDM2B and the KDM5 
family target H3K4. KDM1A and the KDM3, KDM4 and KDM7 families target H3K9. KDM6A, KDM6B, KDM7A and KDM7B target H3K27. The KDM2, 
KDM4 and KDM8 families target H3K36. KDM7A and KDM7B target H4K20. Demethylation of H3K4 and H3K36 would result in suppressing downstream 
gene expression, while demethylation of H3K9, H3K36 and H4K20 would result in the activation of downstream gene expression. KDM, lysine‑specific 
demethylase; H3K4, histone 3 lysine 4; Me, methyl group. 
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associated with slower growth of castration‑resistant prostate 
cancer cells, although it did not alter the androgen receptor 
signaling pathway (85). Recently, KDM3B was observed 
to activate the Wnt/β‑catenin signaling pathway, further 
enhancing the invasion and metastasis of breast cancer (86). In 
hematopoietic malignancies, KDM3B is recruited to the LIM 
domain‑only protein 2 (lmo2) promoter and transcription‑
ally activates lmo2, a hematopoietic oncogene that promotes 
leukemogenesis (87). By contrast, a recent study indicated that 
KDM3B is highly expressed in patients with acute myeloid 
leukemia (AML) with favorable prognoses, although KDM3B 
is highly expressed in hematopoietic malignancies compared 
to solid tumors. Further examination suggested that KDM3B 
has an important role in maintaining the fusion protein 
promyelocytic leukemia/retinoic acid receptor‑α levels and 
the chromatin state during cell differentiation in a demethyl‑
ation‑dependent manner, thus inhibiting acute promyelocytic 
leukemia progression (88).

Of note, the oncogenic effects of KDM3C on solid 
tumors and hematopoietic malignancies were identified, 
although only a small number of studies on KDM3C exist. 
In AML, KDM3C was able to be recruited by the fusion 
gene runt related transcription factor 1 (RUNX1)/RUNX1 
partner transcriptional co‑repressor 1 and demethylated 
H3K9me2, thus maintaining expression of the fusion gene 
and its targeting genes, such as p21, fms related receptor 
tyrosine kinase 1 and serine/threonine/tyrosine kinase 1, and 
increasing AML cell proliferation (65). Similarly, the use of 
small molecular modulators of KDM3C, which significantly 
decreased KDM3C expression, was able to effectively inhibit 
AML cell growth (89). Among esophageal and colorectal 
cancers, KDM3C epigenetically sustained the expression of 
yes‑associated protein 1 (YAP1) and activating transcrip‑
tion factor 2 separately and promoted tumor growth and 
metastasis (90,91).

KDM4 family and cancer. KDM4A (also named JMJD2A), 
KDM4B (also named JMJD2B), KDM4C (also named 
JMJD2C), KDM4D (also named JMJD2D), KDM4E (also 
named JMJD2E) and KDM4F belong to the KDM4 family. 
Of these, KDM4A, KDM4B and KDM4C have catalytic 
JmjN and JmjC domains, and non‑catalytic PHD and Tudor 
domains, whereas KDM4D only has catalytic domains (92). 
The KDM4 family has the ability to catalyze the demethylation 
of H3K9me2/me3 and H3K36me2/me3 (13,92). In a previous 
study, the KDM4 family, except for KDM4E and KDM4F with 
unclear functions in cancer, is mainly overexpressed and acts 
as oncogenes in different cancer cell lines and tissues (93‑96).

KDM4A has a critical role in tumor growth and invasion. 
KDM4A‑mediated H3K9 demethylation has been reported to 
contribute to androgen receptor activation and affect transcrip‑
tional activation through demethylating H3K9me2/me3 (13). 
In another study, researchers corroborated that KDM4A is 
responsible for the epigenetic upregulation of YAP1 through 
recruitment by ETS variant transcription factor 1, ultimately 
promoting tumor growth in prostate cancer (97). In lung 
cancers, KDM4A upregulated distal‑less homeobox 5, thereby 
activating the expression of the Myc gene and the downstream 
Wnt/β‑catenin signaling pathway to promote the growth, 
metastasis and the occurrence of lung cancer (98). In gastric 

cancer, KDM4A was also observed to promote tumor growth 
by suppressing apoptosis (99).

KDM4B is both functionally and structurally homo‑
geneous to KDM4A. However, the mechanism by which 
KDM4B contributes to tumor growth, invasion and metas‑
tasis is not similar to that of KDM4A. KDM4B was able 
to be upregulated by HIF‑α, further promoting G2/M 
phase transition by upregulating cyclin A1 (CCNA1) and 
downregulating WEE1 G2 checkpoint kinase. KDM4B 
was also able to promote G1 phase transition by epige‑
netically downregulating CCND1 through demethylating 
H3K9me2/me3, ultimately promoting the proliferation of 
breast cancer (100). This process of KDM4B regulation was 
also effective in promoting colorectal cancer growth (101). 
On the other hand, recent studies have emphasized the 
significance of KDM4B in inducing glucose uptake in tumor 
growth and progression (102,103). After the knockdown of 
KDM4B, H3K9me3 levels at the promoter of glucose trans‑
porter 1 (GLUT1) increased; thus, the expression of GLUT1 
decreased, leading to a reduction in glucose uptake in colon 
cancer cells (104).

KDM4C was able to remove the methyl group from 
H3K9me2/me3. When accompanied by KDM1A, KDM4C 
contributed to altering the expression of genes related to 
the androgen receptor and promoting prostate carcinogen‑
esis (105). A recent study indicated that KDM4C served as an 
oncogene in glioblastoma with a dual function of inactivating 
p53 by demethylating p53K372me1 and activating c‑Myc by 
directly binding to its promoter (106). In addition, similar to 
KDM4B, KDM4C was also able to remove methyl groups of 
H3K9 on HIF‑α and promote tumor growth (107‑109).

KDM4D is able to activate the HIF pathway (110,111) 
via demethylation of H3K9me3 and H3K36me3 (110) at the 
promoter region, activate downstream regulatory networks, 
and promote tumor initiation and progression. Through 
demethylation of H3K9me3 on the promoters of Hedgehog 
target genes or β‑catenin target genes and activating Hedgehog 
or β‑catenin signaling pathways, KDM4D was able to promote 
tumor proliferation, progression and invasion (112,113). 
Furthermore, KDM4D was able to directly antagonize p53 and 
inhibit p53 binding to its target gene in a demethylase‑inde‑
pendent manner; as a result, it functions as an oncogene in 
liver cancer (114).

KDM5 family and cancer. The KDM5 family includes four 
members, KDM5A (also named JARID1A), KDM5B (also 
named JARID1B), KDM5C (also named JARID1C), and 
KDM5D (also named JARID1D), having highly similar 
structures. All members contain five domains: JmjC, JmjN, 
a zinc finger an ARID (DNA‑binding domain), as well 
as a PHD (histone‑binding domain) lining between JmjC 
and JmjN (115,116). Thus, all four members were able to 
demethylate H3K4me2/me3 and participate in the epigenetic 
regulation of biological processes related to cancer (117,118). 
However, Both KDM5A and KDM5B have 3 PHD domains, 
while KDM5C and KDM5D have only 2 PHD domains. Since 
the PHD domain is important for the binding of H3K4 with 
the JmjC domain, KDM5C and KDM5D may exhibit poor 
catalytic function and different effects in cancer compared to 
KDM5A and KDM5B (29).
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Compared to normal tissues, KDM5A is overexpressed in 
cancer tissues and contributes to tumor growth and poor prog‑
nosis. KDM5A has the ability to repress p27, a cyclin‑dependent 
kinase (CDK) inhibitor in cancer, trigger G1/S phase transition 
and promote tumor malignancy (119‑122). Furthermore, by 
demethylating H3K4me2/me3 at the promoter, KDM5A was 
able to suppress the expression of insulin‑like growth factor 
2 mRNA binding protein 2 and NOTCH2, facilitating tumor 
proliferation, invasion and metastasis (123,124).

KDM5B mainly has oncogenic effects in cancers. In breast 
cancer, KDM5B was indicated to be overexpressed and associ‑
ated with poor prognosis (125). Furthermore, it was indicated 
that KDM5B suppressed BRCA1, caveolin 1 and homeobox 
A5 expression by reducing H3K4me3 levels and facilitated 
G1 progression and tumor growth in breast cell lines (126). 
Through activating the c‑Met signaling pathway or inhibiting 
p53 accumulation, KDM5B promoted lung cancer cell aggres‑
siveness (127,128). In addition, other studies also indicated 
that knockdown of KDM5B led to cell cycle arrest at the G1/S 
phase; the ability of KDM5B to influence tumor prolifera‑
tion by adjusting the cell cycle was identified in liver cancer, 
bladder cancer and acute lymphoblastic leukemia (129‑131). 
Furthermore, the oncogenic effect of KDM5B in prostate 
cancer and colorectal cancer by demethylating H3K4 was 
identified (132,133).

Unlike that of KDM5A and KDM5B, the role of KDM5C 
in tumors has remained elusive. In clear‑cell renal cell 
carcinoma xenograft models, tumor cells highly expressing 
KDM5C were able to significantly suppress tumor 
growth (134). Furthermore, patients with renal cancer and 
KDM5C‑inactivating mutations had shorter overall survival, 
suggesting the tumor‑suppressive role of KDM5C (135,136). 
Of note, the tumor‑suppressive effect of KDM5C was 
also observed in intrahepatic cholangiocarcinoma (137). 
However, KDM5C exhibits a tumor‑promoting effect in 
other cancer types. In lung cancer, KDM5C facilitates 
tumor proliferation and metastasis by promoting H3K4me2 
demethylation modification of the promoter of miR‑133a 
and downregulation of miR‑133a (138). Furthermore, 
KDM5C highly expressed in liver cancer was indicated to 
be associated with distant metastasis and poor prognosis by 
demethylating at H3K4 (139). In colon cancer, KDM5C was 
also observed to promote cell proliferation by demethylating 
H3K4me2/me3 (140). In addition, KDM5C upregulated ER 
expression and inhibited type I IFN expression in a breast 
cancer cell line, and, as a result, promoting breast carcino‑
genesis and cancer cell growth in a demethylase‑independent 
manner (141).

KDM5D was mainly observed to have a tumor‑suppres‑
sive effect. Upon specific knockdown of KDM5D, tumor 
cell apoptosis was reduced and tumor proliferation was 
promoted in a prostate cancer cell line (142). In addition, 
KDM5D repressed the invasion‑associated genes matrix 
metallopeptidase 1 (MMP1), MMP2, MMP3 and MMP7 by 
demethylating H3K4me3, thus suppressing prostate cancer 
invasion and metastasis (143). Apart from prostate cancer, 
the mechanism of KDM5D to inhibit cancer cell growth 
and contributing to a better prognosis through its demethyl‑
ating activity was also observed in gastric cancer and lung 
cancer (144‑146).

KDM6 family and cancer. KDM6A (also named UTX), 
KDM6B (also named JMJD3) and KDM6C (also named 
UTY) belong to the KDM6 family. KDM6A is located at the 
X chromosome, KDM6C is located at the Y chromosome and 
KDM6B is located at chromosome 17 (147,148). All three 
contain the JmjC domain and have the ability to catalyze the 
demethylation of H3K27me2/me3 (147,149), although KDM6C 
has relatively poor catalytic activity compared to KDM6A and 
KDM6B (148).

Current evidence suggests both tumor‑promoting and 
tumor‑suppressive effects of KDM6A and KDM6B in cancers. 
KDM6A mutations frequently occur in various cancers. 
In hepatocellular carcinoma, overexpression of KDM6A 
significantly suppressed tumorigenesis (150). In addition, by 
inhibiting enhancer of zeste 2 polycomb repressive complex 2 
subunit (EZH2)‑mediated transcriptional repression through 
catalyzing demethylation of H3K27me3, KDM6A acts as a 
tumor suppressor in bladder cancer (151). However, a recent 
study identified the oncogenic role of KDM6A and KDM6B 
by epigenetically targeting stemness‑controlling genes 
through demethylating H3K27me3, which makes KDM6A 
and KDM6B important in maintaining cancer cell stemness. 
At the same time, upregulation of KDM6B was indicated to be 
strongly associated with a higher recurrence rate and shorter 
survival in colorectal cancer (152). Furthermore, significantly 
increasing the levels of H3K27me3 using GSK‑J4, a KDM6 
family inhibitor, suppressed tumor growth in lung cancer 
mouse models, indicating an oncogenic effect of KDM6A and 
KDM6B (153).

KDM7 family and cancer. The KDM7 family is composed 
of KDM7A (also named JHDM1D), KDM7B (also named 
PHF8) and KDM7C (also named PHF2). All demethylases 
of the KDM7 family share the same composition, containing 
a JmjC domain at the C‑terminus and a PHD domain at the 
N‑terminus. The PHD domain binds to H3K4me3, while the 
JmjC domain is responsible for binding to H3K9me2 (154). 
However, the structure of each demethylase is slightly 
different, which may be the reason for the different functions. 
Among the KDM7 family, KDM7C only catalyzes H3K9me2 
demethylation. However, KDM7A and KDM7B are able to 
catalyze demethylation of H3K9me1/me2, H3K27 me1/me2 
and H4K20me1 (155).

An early study demonstrated that KDM7A acts as a tumor 
suppressor by inhibiting the in vivo growth of B16 and HeLa 
cells upon overexpression of KDM7A, even though this 
suppressive effect was not prominent in vitro (156). However, 
recent studies have discovered the oncogenic role of KDM7A, 
since KDM7A was indicated to be upregulated in prostate 
cancer tissue (157) and to promote the migration and invasion 
of breast cancer cells in vitro and in vivo (158). Therefore, the 
definitive role of KDM7A remains to be determined.

By contrast, KDM7B was indicated to have an oncogenic 
effect. KDM7B was determined to be associated with a higher 
Gleason score and poor prognosis by comparing prostate 
cancer tissue samples from 97 patients (159). In addition, 
KDM7B was indicated to act as an oncogene by activating 
genes related to tumor progression [PRKCA, ICAM‑1, Snail 
(SNAI1), VIM and FIP200] in a demethylase‑dependent 
or demethylase‑independent manner and promote tumor 
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progression in gastric cancer and hepatocellular carci‑
noma (160‑162). However, its demethylase‑catalyzing ability 
is also responsible for other effects. By catalyzing demeth‑
ylation of H3K4me3 and H3K9me2/1, KDM7B activates 
the expression of SNAI1, which contributed to breast cancer 
epithelial‑to‑mesenchymal transition, tumorigenesis and 
metastasis (163). In addition to SNAI1, forkhead box protein 
A2 was also epigenetically upregulated by KDM7B through 
demethylating H3K9me1/me2, H3K27me2 and H4K20me1, 
further illustrating the oncogenic effect of KDM7B (164).

By contrast, KDM7C acts as a tumor suppressor. KDM7C 
expression was indicated to be downregulated in hepatocel‑
lular, colon and stomach cancer tissues as compared with that 
in normal tissues. Upregulation of KDM7C was associated 
with a favorable prognosis in hepatocellular carcinoma and 
decreased tumor cell migration (165). Another study demon‑
strated that KDM7C demethylates H3K9me2 at p53 promoters, 
resulting in activation of p53 transcription and suppression of 
tumor growth (166).

KDM8 family and cancer. KDM8 (also named JMJD5) has a 
JmjC domain and β‑barrel fold structure and has H3K36me2 
demethylating activity (167). However, the effect of KDM8 
in tumorigenesis has remained to be determined. In an early 
study, KDM8 was indicated to be overexpressed in breast 
cancer tissues, catalyzing H3K36me2 demethylation and 
leading to cyclin A1 overexpression. This results in the initia‑
tion of G2/M phase transition and the promotion of tumor cell 
proliferation (168). In addition, downregulation of KDM8 was 
indicated to inhibit tumor proliferation and metastasis in oral 
cancer by upregulating the expression of p53 and E‑cadherin 
and downregulating the expression of N‑cadherin and 
vimentin (169). However, in a large‑scale, multi‑cohort study 
of gene expression profiles in several cancer types, KDM8 
was indicated to be downregulated in pancreatic cancer and 
liver cancer, and was reduced as the tumor grade increased. 
Furthermore, the expression of KDM8 was negatively corre‑
lated with the hypoxia score and the expression of cell cycle 
genes (such as CCNA2, CCNB1, CDK1 and CDK2), indicating 
the tumor‑suppressive role of KDM8 (170). Therefore, further 
studies on KDM8 are warranted.

3. Role of histone demethylases in cancer therapy resistance

Current cancer therapies include surgery, chemotherapy, 
radiotherapy, targeted therapy and immunotherapy. For each 
treatment modality, significant progress has been achieved 
in the management of cancer. However, resistance to cancer 
therapy is a major problem in cancer treatment. Targeting 
histone demethylases not only has a critical role in tumor 
growth, invasion and metastasis, but also in chemoresis‑
tance, radioresistance and resistance to targeted therapy and 
immunotherapy (Table I). To date, most studies on the effect 
of histone demethylases in cancer therapy resistance were 
focused on the KDM1, KDM5 and KDM6 families.

Upregulation of KDM1A and KDM1B is associated with 
chemoresistance and poor survival. In liver cancer, both 
KDM1A knockdown and combination of KDM1A inhibitors 
with regorafenib improved resistance to regorafenib (171). 
In breast cancer, KDM1A overexpression was responsible 

for doxorubicin resistance (172) and regulation of the tumor 
microenvironment, and contributed to the resistance against 
PD‑1 inhibitors in vivo (39). Similar to the role of KDM1A in 
chemoresistance, the downregulation of KDM1B improved 
cisplatin resistance in ovarian cancer (173). In enzalu‑
tamide‑resistant prostate cancer, inhibition of KDM1B 
by tranylcypromine improved enzalutamide resistance by 
decreasing androgen receptor‑depending anterior gradient 2 
transcription epigenetically (174). Similarly, inhibition of 
KDM4B epigenetically suppressed c‑Myc transcription and 
enhanced the efficacy of enzalutamide treatment in vitro and 
in vivo (175).

To date, accumulating evidence has identified the 
role of the KDM5 family in chemotherapy resistance of 
cancers (117). An early study demonstrated that breast cancer 
cells with KDM5A amplification exhibited resistance to 
EGFR inhibitors (176). Furthermore, KDM5A also contrib‑
uted to temozolomide resistance in glioblastoma through 
enhancing drug efflux, and knocking down KDM5A or using 
HDAC inhibitors to suppress histone demethylases was able to 
resolve temozolomide resistance (177). Furthermore, KDM5B 
also contributes to chemoresistance. Demethylation of H3K4, 
as a consequence of upregulation of KDM5B, was observed 
in cisplatin‑resistant gastric cancer cells (178). Knockdown 
of KDM5B resolved multidrug resistance of melanoma 
in vivo by blocking the mitochondrial respiratory chain (179) 
and enhancing the transition from CD34‑ to CD34+ mela‑
noma‑propagating cell subpopulations that are more sensitive 
to BRAF inhibitors through the demethylase‑dependent 
pathway (180). In addition to chemoresistance, the KDM5 
family also suppressed the sensitivity to endocrine therapy 
in breast cancer (181). Furthermore, inhibiting the expression 
of KDM5 family members in breast cancer cells increased 
DNA damage accumulation through ionizing radiation. This 
phenomenon suggested that breast cancer cell radiosensitivity 
may be improved by knocking down KDM5 demethylase 
expression (182). Certain studies have demonstrated that 
KDM5C aggravates drug resistance in colon cancer cells by 
catalyzing H3K4me3 demethylation (183). In prostate cancer 
cells, knocking down KDM5D led to reduced sensitivity to 
docetaxel. At the same time, overexpression of KDM5D in 
prostate cancer cells improved docetaxel sensitivity (184), 
demonstrating the effect of KDM5D to improve chemoresis‑
tance, consistent with its tumor‑suppressive effect.

Both in vitro and in vivo, increasing H3K27me3 improved 
the sensitivity of osteosarcoma and colorectal carcinoma 
to platinum drugs due to the resulting downregulation of 
KDM6A and KDM6B (185,186). In addition, when GSK‑J4, a 
KDM6 inhibitor, was added along with the standard treatment 
for diffuse large B‑cell lymphoma, the cell apoptotic effect 
was significantly enhanced and a better therapeutic effect was 
achieved (187). Furthermore, KDM6A was also indicated to 
contribute to imatinib resistance in chronic myelogenous 
leukemia, independent of its demethylase activity (188). Under 
hypoxic conditions, overexpression of KDM3A and KDM6B 
was responsible for resistance to radiotherapy by reducing 
DNA damage and apoptosis in esophageal squamous cell 
carcinoma (189). Furthermore, overexpression of KDM3A 
was strongly associated with castration therapy resistance in 
prostate cancer (190).
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Table I. Overview of histone demethylases in cancer and cancer therapy resistance.

Histone
demethylase Target Effect on tumorigenesis Effect on cancer therapy resistance

KDM1A H3K4me1/me2 Oncogenic effect:  Promoting resistance:
 H3K9me1/me2 ‑ Liver cancer ‑ Liver cancer: Regorafenib
  ‑ Pancreatic cancer ‑ Breast cancer: Doxorubicin
  ‑ Breast cancer ‑  Breast cancer: Immune
  ‑ Glioblastoma      checkpoint inhibitor
KDM1B H3K4me1/me2 Oncogenic effect: Promoting Resistance:
  ‑ Breast cancer ‑  Ovarian cancer: Cisplatin
  ‑ Colorectal cancer ‑  Prostate cancer: Enzalutamide
  ‑ Lung cancer 
KDM2A H3K36me2 Oncogenic effect:                            /
  ‑ Breast cancer
  ‑ Colorectal cancer
  ‑ Lung cancer
  ‑ Gastric cancer
KDM2B H3K4me3 Oncogenic effect:                            /
 H3K36me2 ‑ Pancreatic cancer
  ‑ Lung cancer
  ‑ Leukemia
  Tumor‑suppressive effect:
  ‑ Breast cancer
KDM3A H3K9me1/me2 Oncogenic effect: Promoting resistance:
  ‑ Colorectal cancer ‑ Esophageal squamous cell
  ‑ Breast cancer    carcinoma: Radiotherapy
  ‑ Prostate cancer ‑  Prostate cancer: Castration therapy
  ‑ Lung cancer
  ‑ Pancreatic cancer
  ‑ Liver cancer
  ‑ Ewing sarcoma
KDM3B H3K9me1/me2 Oncogenic effect:                            /
  ‑ Liver cancer
  ‑ Breast cancer
  ‑ Prostate cancer
  Tumor‑suppressive effect: 
  ‑ Leukemia
KDM3C H3K9me2 Oncogenic effect:                             /
  ‑ AML
  ‑ Esophageal cancer
  ‑ Colorectal cancer
KDM4A H3K9me2/me3 Oncogenic effect:                             /
 H3K36me2/me3  ‑ Prostate cancer
  ‑ Lung cancer
  ‑ Gastric cancer
KDM4B H3K9me2/me3 Oncogenic effect: Promoting resistance:
 H3K36me2/me3 ‑ Breast cancer ‑ Prostate cancer: Enzalutamide
  ‑ Colorectal cancer
KDM4C H3K9me2/me3 Oncogenic effect:                           /
 H3K36me2/me3 ‑ Prostate cancer
  ‑ Glioblastoma
  ‑ Breast cancer
  ‑ Osteosarcoma
  ‑ Lung cancer
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Table I. Continued.

Histone
demethylase Target Effect on tumorigenesis Effect on cancer therapy resistance

KDM4D H3K9me3 Oncogenic effect:                           /
 H3K36me3 ‑ Gastrointestinal stromal tumor
  ‑ Colorectal cancer
  ‑ Liver cancer
KDM5A H3K4me2/me3 Oncogenic effect:  Promoting resistance:
  ‑ Lung cancer ‑ Breast cancer: EGFR inhibitors
  ‑ Liver cancer ‑ Breast cancer: Endocrine therapy
  ‑ Breast cancer ‑ Glioblastoma: Temozolomide
  ‑ Pancreatic cancer 
KDM5B H3K4me2/me3 Oncogenic effect: Promoting resistance:
  ‑ Breast cancer ‑ Gastric cancer: Cisplatin
  ‑ Lung cancer ‑ Breast cancer: Endocrine therapy
  ‑ Liver cancer ‑ Breast cancer: Radiotherapy
  ‑ Bladder cancer ‑ Melanoma: Multidrug therapy
  ‑ Colorectal cancer
  ‑ Acute lymphatic leukemia  
KDM5C H3K4me2/me3 Oncogenic effect: Promoting resistance:
  ‑ Lung cancer ‑ Colon cancer: Multidrug therapy
  ‑ Liver cancer
  ‑ Colon cancer
  ‑ Breast cancer 
  Tumor‑suppressive effect:
  ‑ Renal cancer
  ‑ Intrahepatic cholangiocarcinoma
KDM5D H3K4me2/me3 Tumor‑suppressive effect: Combatting resistance:
  ‑ Prostate cancer ‑ Prostate cancer: Docetaxel
  ‑ Gastric cancer
  ‑ Lung cancer
KDM6A H3K27me2/me3 Oncogenic effect: Promoting resistance:
  ‑ Colorectal cancer ‑ Osteosarcoma: Cisplatin
  ‑ Lung cancer ‑ Colorectal cancer: Oxaliplatin
   ‑Chronic myelogenous
   leukemia: Imatinib
  Tumor‑suppressive effect:
  ‑ Hepatocellular carcinoma
  ‑ Bladder cancer 
KDM6B H3K27me2/me3 Oncogenic effect: Promoting Resistance:
  ‑ Colorectal cancer ‑ Osteosarcoma: Cisplatin
  ‑ Lung cancer ‑ Colorectal cancer: Oxaliplatin
   ‑ Diffuse large B‑ cell lymphoma:
      Chemotherapy
   ‑ Esophageal squamous cell
      carcinoma: Radiotherapy
KDM6C H3K27me2/me3                           /                            /
KDM7A H3K9me1/me2 Oncogenic effect:                            /
 H3K27me1/me2 ‑ Prostate cancer
 H4K20me1  ‑ Breast cancer
  Tumor‑suppressive effect: 
  ‑ Melanoma
  ‑ Cervical cancer
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4. KDM inhibitors in cancer therapy

As the effects of KDMs on tumor growth, invasion and 
metastasis are being discovered (Fig. 2 and Table I), several 
inhibitors of KDMs have been identified or developed as 
novel cancer treatment strategies. Numerous potent KDM1A 
inhibitors have been developed and have demonstrated an 
excellent capacity to inhibit cancer cell growth and metastasis 
(Table II) (191‑193).

Inhibitors of the JmjC family, including ML324 (inhibitor 
of KDM4) and GSK‑J4 (inhibitor of KDM6), achieved excel‑
lent anti‑tumor activity either alone or in combination therapy 
in both cell lines and animal models (194,195). However, to 
date, no clinical trial has been conducted to investigate the role 
of JmjC KDM family inhibitors in cancer therapy (196,197). 
The major obstacle to the therapeutic use of JmjC demethylase 
family inhibitors is the lack of selective and potent inhibitors, 
which is possibly due to the high similarity among catalytic 
domains (196‑198). Under these circumstances, an increasing 
number of effective and selective inhibitors of the JmjC 
demethylases family, such as CBN209350 and purpurogallin 
analogs, are being developed for cancer therapy (199,200).

KDM1A inhibitors in clinical trials of cancer
Tranylcypromine (TCP) in clinical trials of cancer. TCP, a 
monoamine oxidase inhibitor used for depression, irrevers‑
ibly inhibits KDM1A. A recently completed phase I clinical 
trial (NCT02273102) demonstrated that combined TCP and 
all‑trans retinoic acid (ATRA) therapy exhibited satisfactory 
effects and acceptable safety by inhibiting KDM1A and 
sensitizing AML cells to ATRA (201). In addition, two further 
clinical trials (NCT02261779 and NCT02717884) investigated 
the feasibility of using TCP in relapsed or refractory AML, 
and a trial to assess the effect of TCP to sensitize ATRA in 
patients with non‑M3 AML is still recruiting.

Iadademstat in clinical trials of cancer. Iadademstat (also 
called ORY‑1001) is a selective covalent KDM1A inhibitor, 
which is at the forefront of clinical trials among all KDM1A 
inhibitors. In addition to the anti‑cancer effect of iadademstat 
in cancer cell lines (202,203), it also has good bioavailability 
and significantly inhibits tumor growth in vivo (204). The 
first‑in‑human phase I study of iadademstat (EudraCT 
2013‑002447‑29) demonstrated a favorable effect on relapsed 
or refractory AML with good safety, and one case achieved 
complete remission (205). Subsequently, a phase II trial to 
identify the effect of combined iadademstat and azacitidine 
was launched (EudraCT 2018‑000482‑36). In addition, a 
phase I trial of iadademstat in relapsed small cell lung cancer 
(SCLC) (NCT02913443) was completed with 18 participants, 
although the results have not been published.

GSK2879552 in clinical trials of cancer. GSK2879552 is 
a potent and selective small‑molecule KDM1A inhibitor 
that exhibits anti‑cancer activity in numerous cancer cell 
lines (206,207). All three clinical trials investigating the 
safety and clinical viability of GSK2879552 in AML 
(NCT02177812), SCLC (NCT02034123) and myelodysplastic 
syndrome (NCT02929498) have been terminated due to 
frequent adverse events and inadequate efficacy of cancer treat‑
ment. In the trial NCT02034123, 83% of participants developed 
adverse events, while 100% of participants in NCT02177812 
and NCT02929498 developed adverse events. The most 
common adverse events were hematological toxicity (such as 
thrombocytopenia or neutropenia) and fatigue. However, the 
disease control rate in NCT02034123 was only 14% (208).

CC‑90011 in clinical trials of cancer. CC‑90011 is a potent, 
selective and reversible KDM1A inhibitor developed by 
adding a fluorine substitution at the 3‑position of benzoni‑
trile (209). In a phase I study of non‑Hodgkin lymphoma, 

Table I. Continued.

Histone
demethylase Target Effect on tumorigenesis Effect on cancer therapy resistance

KDM7B H3K9me1/me2 Oncogenic effect: /
 H3K27me1/me2 ‑ Prostate cancer
 H4K20me1 ‑ Gastric cancer
  ‑ Hepatocellular carcinoma
KDM7C H3K9me2 Tumor‑suppressive effect: /
  ‑ Hepatocellular cancer
  ‑ Colon cancer
  ‑ Gastric cancer 
KDM8 H3K36me2 Oncogenic effect: /
  ‑ Breast cancer
  ‑ Oral squamous cell carcinoma
  Tumor‑suppressive effect: 
  ‑ Pancreatic cancer
  ‑ Hepatocellular carcinoma

KDM, lysine‑specific demethylase; H3K4, histone 3 lysine 4; me1/2/3, mono‑/di‑/tri‑methylation.
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Table II. Inhibitors of KDMs in clinical trials.

KDM inhibitor/trial identifier no. Disease Status

Tranylcypromine  
  NCT02273102 AML and MDS Completed
  NCT02261779 Relapsed or refractory AML Recruiting
  NCT02717884 Non‑M3 AML Recruiting
Iadademstat  
  EudraCT 2013‑002447‑29 Relapsed or refractory AML Completed
  EudraCT 2018‑000482‑36 AML Recruiting
  NCT02913443 Relapsed SCLC Completed
GSK2879552  
  NCT02177812 AML Terminated
  NCT02034123 SCLC Terminated
  NCT02929498 MDS Terminated
CC‑90011  
  NCT02875223 Non‑Hodgkin lymphoma Recruiting
  NCT04628988 Castration‑resistant prostate cancer Recruiting
  NCT03850067 SCLC Recruiting
  NCT04350463 SCLC and squamous cell carcinoma Recruiting

AML, acute myeloid leukemia; MDS, myelodysplastic syndrome; SCLC, small‑cell lung cancer; KDM, lysine‑specific demethylase.

Figure 2. Overview of histone demethylases in cancer. Most histone demethylases exhibit oncogenic effects, while a minority (KDM5D and KDM7C) exhibit 
tumor‑suppressive effects. In addition, the effect of KDM3B, KDM5C, KDM6A, KDM6B and KDM8 in cancer is not clear as they exhibit both oncogenic and 
tumor‑suppressive effects. Red indicates oncogenic and green tumor‑suppressive effects in cancer. KDM, lysine‑specific demethylase.
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CC‑90011 was indicated to be well‑tolerated and this clinical 
trial (NCT02875223) is still recruiting (210). In addition, 
a phase I functional imaging study to assess the effect of 
CC‑90011 on metastatic castration‑resistant prostate cancer 
(NCT04628988) is now recruiting. Furthermore, a phase Ib, 
multi‑center clinical trial sponsored by Celgene was launched 
to demonstrate the safety and efficacy of combining CC‑90011 
with cisplatin and etoposide in SCLC (NCT03850067). 
Finally, a phase 2 clinical trial assessing the safety and effi‑
cacy of CC‑90011 in combination with nivolumab in SCLC 
and squamous cell carcinoma (NCT04350463) by evaluating 
the treatment response has recently started recruiting.

5. Conclusions and perspectives

Previous reviews have provided insight into histone demethyl‑
ases in cancer, metabolic disease, regeneration, inflammation 
and neurological diseases (29). At the same time, previous 
reviews have also concluded on the role of KDMs in cancer 
and the mechanisms by which KDMs participate in cancer 
development and progression (92,211). It is evident that most 
histone demethylases act as oncogenes in cancer development. 
However, the effects of KDM3B, KDM5C, KDM6A, KDM6B 
and KDM8 are still under debate, while KDM5D and KDM7C 
were proven to be tumor suppressive. Furthermore, histone 
demethylases have been indicated to contribute to chemore‑
sistance and resistance to radiotherapy, targeted therapy and 
immunotherapy. However, only a small number of studies 
have illustrated how histone demethylases contribute to cancer 
therapy resistance. Therefore, it is important to perform 
further studies to answer this question. To date, several phase I 
clinical trials have been launched to identify the safety and 
efficacy of histone demethylase inhibitors in cancer therapy, 
whether combined with the current standard of treatment or 
not. Certain inhibitors demonstrated an ideal effect and most 
clinical trials for these drugs are still recruiting, although all 
clinical trials of GSK2879552 have already been terminated.

One important reason for the unclear effects of certain 
KDMs on cancer is that catalytic domains other than JmjC of 
these KDMs may also be involved in the biological processes; 
however, how these domains interact with the cancer develop‑
ment process remains largely elusive. Hence, further studies on 
the effect and interaction of the catalytic domains in biological 
processes should be performed to thoroughly illustrate the 
regulatory mechanism between KDMs and cancers.

It is evident that histone demethylases have the potential 
to be cancer therapeutics in the future; however, additional 
studies should be performed to facilitate their wide use in the 
clinic. On the basis of the success of KDM inhibitors resolving 
therapy resistance in vitro and in vivo, clinical trials examining 
the effect of KDM inhibitors on cancer therapy resistance are 
expected. Following the termination of JmjC KDM inhibi‑
tors, the development of more selective and potent inhibitors 
is essential for further clinical application. On the other hand, 
medication resolving the side effects of JmjC KDM inhibitors is 
desired to ensure the application of these inhibitors in the future. 
Recently, JIB‑04, a histone lysine demethylase inhibitor, has 
been successfully delivered to prostate cancer cells and tumor 
spheroids by nanoparticles (212). Therefore, with the great 
success of nanoparticle drug delivery systems, it is foreseeable 

that delivering KDM inhibitors directly to tumors may reduce 
side effects and enable their wide use in solid tumors.
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