INTERNATIONAL JOURNAL OF ONCOLOGY 61: 134, 2022

Epigenetic modifications: Critical participants of the
PD-L1 regulatory mechanism in solid tumors (Review)

XIAORAN MA!, JIBIAO WU?, BIN WANG>, CUN LIU*, LIJUAN LIU® and CHANGGANG SUN*?

1College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355;

2College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355;

3College of Basic Medicine, Qingdao University, Qingdao, Shandong 266073; 4College of Traditional Chinese Medicine,

Weifang Medical University; 5Department of Oncology, Weifang Traditional Chinese Hospital,
Weifang, Shandong 261041, PR. China

Received June 27,2022; Accepted September 8, 2022

DOI: 10.3892/ij0.2022.5424

Abstract. Immune checkpoint inhibitors targeting the
programmed cell death protein 1 (PD-1)/programmed death
ligand 1 (PD-L1) axis have achieved marked and durable effi-
cacy in patients with different solid tumors and have improved
their survival. However, the presence of primary or acquired
resistance to immune checkpoint blockades results in only a
small fraction of patients benefiting from the treatment. An
increasing number of preclinical studies have reported that
PD-L1 expression in tumor cells is involved in a number
of epigenetic changes, including histone modifications,
non-coding RNA regulation and DNA methylation. In addition,
multiple epigenetic targeting drugs have been demonstrated
to directly or indirectly interfere with PD-L1 expression in
various cancer models. This provides opportunities to better
characterize the regulatory mechanisms of PD-L1 expression
and explore novel therapeutic strategies to improve immu-
nosuppressant response rates and overcome drug resistance.
The present review focuses on the latest findings and evidence
on the epigenetic mechanism regulating PD-L1 expression
and discusses the biological and clinical implications of this
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regulatory mechanism in solid tumors. A rational combination
of epigenetic regulation and PD-1/PD-L1 axis blockade may
improve the prognosis of patients with solid tumors.
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1. Introduction

Programmed death ligand 1 (PD-L1) is a type I transmembrane
protein encoded by the CD274 gene (1,2). Immunohistochemical
detection has revealed that PD-L1 mRNA and protein expres-
sion is upregulated in various cancer types (3). However, since
PD-L1 mRNA is strictly post-transcriptionally regulated under
normal physiological conditions, PD-L1 protein is scarcely
expressed in normal cells (4). As a key member of the immune
checkpoints, PD-L1, together with its receptor programmed
cell death protein 1 (PD-1), serves an important role in tumor
cell clearance and immune surveillance by mediating signaling
processes that limit autoimmunity and prevent excessive immune
responses (5). In addition, quantification of PD-L1 expression
by immunohistochemistry on different detection platforms has
been used in various clinical trials as a key determinant of the
efficacy of checkpoint immunotherapy (6).

As one of the most promising approaches to activate the
immune system, immune checkpoint blockade has achieved
remarkable efficacy in antitumor therapy in the last decade (7).
In addition, the exploration of drugs targeting the PD-1/PD-L1
axis has led to the development of a number of immune
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checkpoint inhibitors (ICIs), such as anti-PD-L1 monoclonal
antibodies (atezolizumab, durvalumab and avelumab) and
anti-PD-1 monoclonal antibodies (nivolumab, pembrolizumab
and tislelizumab), which have become first-line therapy for
various solid tumors (3,8,9). These ICIs enhance the immune
system surveillance capacity and generate antitumor immune
responses by manipulating the interaction between PD-L1
and PD-1, leading to improved overall survival (OS) and
progression-free survival (PFS) of patients with cancer (3,10).

However, due to the diversity and complexity of the
tumor immune microenvironment and the continuous genetic
changes in tumor cells, immunotherapy is ineffective in most
patients with advanced tumors (11,12). In addition, the complex
drug resistance mechanism of cancer cells to immunotherapy
influences the clinical outcomes of patients with cancer (13).
Therefore, a combination therapy to improve the response
rate to PD-1/PD-L1 blockade and overcome resistance to
anti-PD-1/PD-L1 therapy is urgently required. Epigenetic
modifications that serve an important role in interactions
between the tumor microenvironment and tumor cells and
in the development of cancer cells represent such opportuni-
ties (14).

Epigenetic modifications are heritable changes in gene
expression caused by environmental, dietary, age and disease
factors that do not include changes in the DNA sequence
itself (15). Epigenetic modifications can reshape the tumor
microenvironment and alter cellular phenotypes through
aberrant histone patterns, non-coding RNAs levels and DNA
methylation at specific promoters, enabling cells to grow and
evade immune surveillance (16). Since epigenetic modifica-
tions are susceptible to external factors and are often reversible,
they are considered to be potential therapeutic targets for
various cancer types (17). Azacitidine, the first epigenetic
drug approved by the Food and Drug Administration (FDA),
marks a breakthrough in epigenetic medicine from theory to
application (18). Tazemetostat, a small-molecule inhibitor of
the histone methyltransferase enhancer of zeste homolog 2
(EZH?2), has recently been approved by the FDA to treat solid
tumors, including relapsed or refractory follicular lymphoma
and locally advanced or metastatic epithelioid sarcoma (19).
In addition, multiple DNA methyltransferase (DNMT) inhibi-
tors and histone-modifying enzyme inhibitors have shown
promising therapeutic effects in solid tumors highlighting
the potential of epigenetic therapy in the treatment of solid
tumors (20,21).

Detailed descriptions of the resistance mechanisms of ICIs
targeting the PD-1/PD-L1 axis have been provided in several
studies (22,23); therefore, these are only briefly summarized
in the present review. In addition, the latest research progress
and related mechanisms of epigenetic factors interfering
with PD-L1 expression, including histone modifications such
as acetylation and methylation, non-coding RNA regulation
and DNA methylation, in solid tumors are summarized and
discussed (Fig. 1). Among them (Table I), a variety of chro-
matin-modifying enzymes can regulate PD-L1 expression by
affecting the modifications that occur on lysine and arginine
residues (24-26). Noncoding RNAs can inhibit PD-L1 expres-
sion by binding to the 3' UTR or act as upstream regulators of
the PD-1/PD-L1 axis (27-29). The research on DNA methyla-
tion mainly focuses on its effect on the PD-L1 promoter (30).

The present review aims to provide novel insights for further
development of potential combination therapy strategies to
improve the response rate and tolerability of immunotherapy
in solid tumors.

2.Resistance mechanisms of ICIs targeting the PD-1/PD-L1
axis

ICIs that target the PD-1/PD-L1 axis have been extensively
studied (31-33). Their mechanisms of action are mainly
based on the following phenomena: i) Antigen-specific
T cells are activated upon recognition of tumor antigens
presented by major histocompatibility complex (MHC) on
antigen-presenting cells, and subsequently, activated T cells
release IFN-y to upregulate PD-L1 expression on tumor
cells (34); and ii) PD-L1 binds to PD-1 on the surface of T
cells, triggering the negative regulation of the PD-1/PD-L1
axis, which will inhibit the antitumor effect of T cells (35,36).
ICIs targeting the PD-1/PD-L1 axis reinvigorate T cells that
were inactive because of the PD-1/PD-L1 signaling inhibition,
and thereby, exert antitumor effects (36).

However, clinical data have indicated limited ICI efficacy
in a large group of patients with primary resistance unrespon-
sive to PD-1/PD-L1 blockade or acquired resistance after
initial response (13). To the best of our knowledge, due to the
complexity of antitumor immunity, the exact mechanism of
resistance to ICIs targeting the PD-1/PD-L1 axis has not been
fully elucidated or extensively reviewed. Resistance is trig-
gered by various complex mechanisms (Fig. 2). Mechanisms
leading to primary resistance include insufficient immunoge-
nicity of tumor antigens formed by non-mutated proteins or
mutant proteins that are not fully tolerated by T cells, irrevers-
ible exhaustion of T cells because of multiple inhibitory axes
in the tumor microenvironment, which prevent tumor-specific
T cells from becoming memory T cells, dysfunction of MHC
class I complexes caused by B-2-microglobulin mutations,
resistance to IFN-y signaling caused by Janus kinase (JAK)1/2
mutations, and immunosuppression because of immunosup-
pressive cells, cytokines and tumor metabolites in the tumor
microenvironment (37-43). The mechanisms of acquired resis-
tance are primarily associated with tumor subclones, leading
to increased numbers of tumor cells that can escape antitumor
immunity, re-exhaustion of T cells because of persistently
high antigen levels and activation of compensatory inhibitory
signals (44-46). As previously mentioned, the mechanism of
resistance to ICIs targeting the PD-1/PD-L1 axis is a complex
intervention system that is constantly being updated with the
increasing understanding of immunotherapy.

3. Regulation of PD-L1 expression in solid tumors by
histone modifications

As one of the components of eukaryotic nucleosomes, histones
can acquire a diverse set of post-translational modifica-
tions (47), of which acetylation and methylation are the most
studied ones. In cancer cells, these modifications can alter
the structural attributes of chromatin, regulate the function
of nucleosomes, and affect the expression of specific genes,
such as PD-L1 (48,49). Furthermore, histone modification, a
dynamic and reversible process, is influenced by a number of



INTERNATIONAL JOURNAL OF ONCOLOGY 61: 134, 2022

PD-1

P

mm?mm W?mmmm%mm
SELLLLLILIVILIY ALLEBILLJIIEILIBIIEILEILLELY,

PD-L1

Translation

HATs HDACs

Transcription b\v\

promoter

pre-mRNA
3'UTR

pSTAT3 YAPI,
PTEN KDMIA

4 miRNA

IncRNA

PD-L1

Figure 1. Multiple epigenetic factors are involved in the regulation of PD-L1 expression. The main histone-modifying factors involved in PD-L1 regulation are
shown in the bottom left of the figure and include HATs, HDACs, HMTs and HDMs. In DNA methylation, alteration of PD-L1 levels involves DNMT expres-
sion and methylation of IRF-1 and IRF-7. In addition, miRNAs inhibit PD-L1 expression by binding to the 3' UTR of PD-LI and promote PD-L1 expression
by affecting the expression of pSTAT3, YAP1, PTEN and KDMI1A. 3' UTR, 3' untranslated region; AC, acetylation; circRNA, circular RNA; DNMT, DNA
methyltransferase; HATS, histone acetyltransferases; HDACs, histone deacetylases; HDMs, histone demethylases; HMTs, histone methyltransferases; IClIs,
immune checkpoint inhibitors; IRF, interferon regulatory factor; KDMI1A, lysine demethylase 1A; IncRNA, long non-coding RNA; Me, methylation; miRNA,
microRNA; PD-1, programmed cell death protein 1; PD-L1, programmed death ligand 1; pSTAT3, phosphorylated STAT3; YAP1, Yes associated protein 1.

chromatin-modifying enzymes that exist as multicomponent
protein complexes (50). These enzymes are divided into
writers, erasers and readers, according to their different func-
tions (51). In multiple cancer types, including colon cancer
and lung cancer, PD-L1 expression is affected by different
chromatin-modifying enzymes, particularly histone deacety-
lases (HDAC) and histone methyltransferases (52,53).

Regulation of PD-LI expression in solid tumors by histone
acetylation. The acetylation of histones at their tail lysine
residue can reduce the affinity of histones for DNA by neutral-
izing positive charges, which will facilitate chromatin opening
and transcription (51). Enhancement of histone H3 acetylation
in the PD-L1 promoter is involved in PD-L1 expression in
various drug-resistant cancer cells, including those of breast
cancer, lung cancer and hepatocellular carcinoma (12). Histone
acetylation serves as a key mediator in the regulation of gene
expression, the levels and states of which are influenced by
the balance of factors opposing HDACs and histone acetyl-
transferases (HATSs) (54). HDACs are involved in regulating
the transcription of PD-L1 by regulating histone acetylation
through removing acetyl groups of lysine residues from
histone substrates (12).

HDAC3 is the key HDAC isoform responsible for
regulating PD-L1 transcription in tumors (55). Inhibition

of HDAC3 expression can increase IFN-y production and
PD-L1 promoter region histone acetylation, thereby acti-
vating PD-L1 transcription in tumor cells and increasing
the levels of PD-L1 in dendritic cells in the tumor microen-
vironment (55,56). Furthermore, HDAC3 maintains PD-L1
expression by inhibiting histone H3 acetylation at the PD-L1
promoter in drug-resistant cells of lung cancer, breast cancer
and hepatocellular carcinoma (12). As an oncogenic tran-
scription factor, STAT3 is activated in various cancer types,
such as pancreatic cancer, breast cancer and osteosarcoma,
and thus, affects the expression and transcription of genes
involved in cellular immune responses, proliferation and
chemoresistance (57). HDAC3 upregulates PD-L1 expres-
sion in pancreatic cancer by intervening in the STAT3
signaling pathway (58). In primary melanoma, HDACS
can inhibit PD-L1 expression by controlling the transcrip-
tional activation of PD-L1 by acting on STAT3-containing
transcriptional complexes (59). HDACG6 upregulates PD-L1
expression in melanoma and osteosarcoma by recruiting
and activating the transcription factor STAT3 (60,61). In
addition, HDACG6 expression is positively associated with
PD-L1 expression in ovarian cancer (62). HDACI10, another
member of the class IIB HDAC family, has been reported to
be positively associated with PD-L1 expression in patients
with lung cancer (63).



MA et al: EPIGENETIC MODIFICATIONS OF PD-L1 EXPRESSION

WO EH

0TOT ‘v 42 ITeN

(%) IIM PIJRIOOSSE A[QATIESAU pue CowyS¢H UM pajeroosse Aeanisod sem [T-(d Jo uonengaxdn reuondiosueiy, I90URD [B}OI0[0)) uBIRYPISES
('syo¥) s3urpuy A9y sadAy Jowng, Iedk ‘s/1oyIne 1S
uone[AyIow SUOISIH ‘g
(08) 1'T-Ad JO S[eAQ] uorssaIdxa paseardop ur paynsar 9OV (IH JO uoniqryuy IO0UED TRI[AYI0IN 1202 ‘H Djony]
(8L) A-NAT £q paonput uotssardxa [-qd pare[nsarumop g19O0LIN 610C [V J2 Uy
(Z9) uorne[A1a08 auo3sIy Jo uone[nsal ySnoy) uorssardxe [-(d pasearour ursdopruioy] I90URD [8}O310[0)) 1207 ‘Iv 12 yS
uorssaxdxa [ T-dd jo uonemgaidn
(91) 9y 031 pI[ Yoy ‘uonduosuen) /7D 2onput 0} 1jowoid /7D Yl JO UONLR[AId0E ¢H SUOISIY Y} PISBAIOUI VHV'S I90UBD J)BIS0I] 020 ‘v 12 NI |
(€L) uorssaldxa [T-(d PIeAd[d SIDVAH 1 SSe[D 1T0T ‘1P 32 Yq1_YS
Ty 1LVLS J03oe} uonduosuery oY) 3uneande Aq uoissaidxa [T-qd pae[ndaidn sprwepry) BWODIBSOIPUOYD) 120T ‘1v 12 and
(19) 9DV{H Aq uotssardxa [ T-(d JO uone[n3al ay) pajeIpawt ¢ VIS I010ej uondrosuely, BUIOOIBSOAISO) 10T ‘I 12 NWUAIY
(SL) uorssaxdxe [T-(d pare[nsaidn SIDVAH I SSBID C10T ‘1 12 SPOOM
(09) €IVLS JO uoneAnOR pue JUSUNINIIAI Y} Sundde Aq uorssardxa [ T-qd PoI[oHuod 9OVAH 910C ‘P 12 I
(86)  soxordwos reuonduosuen Sururejuod ¢ VIS Uo sunoe Aq [ T-dd Jo uoneanoe reuonduosuen ay ut pAedonied gOVAH SEWOUR[IIN 610 ‘Iv 12 nH
+H 2u0lsIy paje[A1ooe 03 xo[dwod Sururejuod-4qyg jo urpuiq ay3 Sunowoid Aq uonduosuer)
(€ 1 T-Ad 2dueyua os[e ued ng sisou3oid 100d yirm pajerdosse A[uo jou st uoissaidxa [ [vH Jo uonemndaidn 610C ‘Iv 12 ueq
6S) Kemyed Surreusis ¢ [VILS oyl ul Sutuaazaur £q uorssaidxa [T-Ad paren3al ¢OVAH I90Ued d1eAIdUR] 810C ‘Iv 12 Suep,
uondmosuen st jo uoneande o} Jurpes] ‘ouas [1-Ad
(s9) a3 Jo uor3ar rowoid oy Je Qg urloid urewropowolq Jo Jusu)INIdAI Isearour A[prder pinod s10)qryui ¢OVAH 610¢ ‘Iv 12 3uaQg
(tL) uorssaxdxa [ T-qd pare[n3aidn sIVQH 9ANOI[IS-] SSB[D 810C ‘v 12 Sueny
(99) uorssaxdxa [ T-qd Jo uonen3aidn ay3 03 po] uoniqyul ¢OVAH sewoydwAT g0z ‘7P 12 O[[9PUON
(T 1jowoid [T-qd 2yl 1e uone[A190e ¢H 2Quolsty Suniqryur Aq uorssardxa [ -4 urelurewt pnod ¢OVJH  ewourored re[njjaoojedoy 020C ‘v 12 Suep
(L) 11-Ad paren3aidn 1e3Sounadon 810T ‘I 12 21o11g
6L) V 1BIseINIXoN AQ pasea1dop Appuapuadop-9sop a1om S[oA9[ uolssaidxe uraroid [1-qd 720T ‘Ip 12 uIysS
(€9) uorssardxa [T-Qd Wim pajerdosse Ajpanisod sem 01DVAH 020 ‘Ip 12 I
D 1rowoid [T-qd 9yp 1e uoneA1e0e ¢H Quoisiy Suniqryur Aq uoissaidxa [T-qd ureiurew pnod ¢OVAH I90ued 3un| 020C ‘1 12 Suep
(S9) uorssaidxo [T-(d Jo uone[n3aidn paonpul- N pAooye [VH Pue [DVAH 610C ‘[v J2 uiareq
+9) Kemuyred 1 IVLS-MV( 2y Suneanse £q uoissardxa [T-Qd peonpul-ANL] 39245€ P[nod ZOVAH 120T ‘v 12 X
I'T-ad jo uonduosuen
(70) oy 1qryut £qarduy pue de/ g ¢H Ae[k1eoeap o) 1joword [-qd oy 01 surajord 7L AQ paAnIddI aq p[nod /[ DVAH 120T ‘Iv 42 uays
(T 1jowoid [T-qd 2yl 18 uone[A190e ¢H duolsty Suniqryur Aq uorssardxa -4 ureiurew pnod ¢OVAH I90UeD JseaIrg 020C ‘v 12 Suep
(sjoy) sSurpuy Aoy sad£y Jowny, IeoA ‘s/101Ine ISIL]

uone[A190e QUOoISIH ‘V

‘s1own) pIos ur [T-Ad Jo suoneoyrpow oneuadidy ‘T 9[qeL,



INTERNATIONAL JOURNAL OF ONCOLOGY 61: 134, 2022

z1) +L7aD Sunasre) £q sisoydode paonpur pue ‘uoneiSiur pue uorseAur ‘uonersjrjord payqryur dg-gg-yrw 0207 1v 12 Suepp
611) uorssaidxe [ T-qd Sunem3arumop Aq A[qissod Koeoyje Aderayjounwwr Jownjnue pasoidur g G-y 020 ‘Jv 12 Sueyz
(811 uoryejAroydsoyd 1gvA Sunowoid Aq uorssardxe [ T-(d @re[n3aidn pnood gg-yru 0202 ‘1p 12 noq
11 uonem3aidn [T-d panqryur d00z-Yru I90ued IseAIyg 610C ‘v 12 s1930Yg
120T ‘v 42
&11) uo1ssaIdxa [ T-(d PISeaIdap 90— I90UBD UBLIBAQ nopeisejseuy
(€11) uorssaxdxo [ T-(qd YIM PoIeroosse A[oAne3au sem pue uorssardxe [T-(d pare[nsar qoog-yru 020T ‘v 12 eanyeiey]
(Irn LN (€ st 03 Surpuiq Apoaxip Aq uorssaxdxa [T-qd passaxddns ([ -1 Jo uorssardxaroa() 810T ‘I 12 a1
(or11 120C ‘v 12 Sueyz,
‘601) 17T-Ad JO S[2AR] VNYW Y} PAIqIYUT VNYIW £-19] passaidxaroa *020C ‘v 12 Suoy
(Lo S[2A9] [T-(d parensaidn 03 paf Apoaxrp uorssardxo dg-g¢ -¥rw pue dg-// ¢-¥r Jo uoniqryuy 120T ‘v 42 erx
Lon ¢IvILS-d Sunowoid £q uorssardxe [-qd peonpur dg-/z ¢y Iooued Jun 8107 ‘I 12 Jue],
(syoy) s3urpuy Aoy sadAy Jown, IeoA ‘s/101Ine ISIL]
VNI ‘g
(0¢) uorssardxa [T-qd paonpur yorym ¢, Iy 18 ¢H duolsty pajejAroydsoyd JO7  ewourored re[njaooredoy 120T ‘Iv 12 Suep
(syoy) sSurpuy Aoy sadAy Jowng, IeoA ‘s/101Ine ISIL]
uone[Aroydsoyd auoisty ‘D
(16) 1dsT Suniqryur £q uorssardxa [T-Ad parowoid £/67-dS Iooued ueLIeAQ 020z ‘Iv 12 1p[0S
(68) 0[-JIH YySnoiy uorssardxa [T-qd pale[nsal pue s[oAd] [ T-Ad Yia pajeroosse A[anisod sem gHZA Iooued Jun| 610T ‘Iv 12 oeyz
(€9) S[9AS] VN YW [T-Ad Posea159p 0} po[ THZH JO uoheanoeuf BUWOUB[IN L10T ‘Ip 12 33u17Z
(L) S[9AQ] urajoxd pue YNYW [T-Ad Ponpur-A-NT PoonpaI YA JO UMOpoouy] I90UBD J)BIS0I] 1202 ‘Iv 12 noyz,
92) 1oowold /7D oY) 03 Surpurq Aoa11p Aq [ T-Ad Jo uondiiosuer) ay) 9jeanoe 0} CowydcH PozATeIed [ TTIN I90URD dneaIdURJ L1027 ‘v 12 0]
(98)  ZVCH 2u0IsIy JO UONR[AYIQWIP JLIJOWWAS BIA UoIssaIidxa [T-qd ‘snyl pue [ LV.LS Jo uonduosuen ay) pajowoid ¢ AN I0ued [BIIAIR)) 120T ‘1 12 3uelf
(¢6) Jouuew Judpuadop-uorenuaduod © ur uoissardxo [ 1-qd pare[nsaiumop [XOI 120T ‘Iv 12 nI|
(z6) Jouuew juspuadap-asop e ur uorssardxa [-(qd patensdaidn 0Ssz-I1DH 610C ‘Ip 12 u1))
(s9) uorssaxdxo [ T-(qd pare[nsar ¢owr/ 7 EH PUe §OWESEH SQUOISIY AI03Iqryuy I90URD JseaIg 610T ‘v 12 uIAIR(Q
(¢6) Iouuew Juspuadop-Uuorenuadu0d © ur uorssardxe [ T-(d pare[nsaiumop [XOI 1207 ‘Iv 12 nr|
uorssaxdxo
(06) $OXOH Surseardap pue uorssardxa gowry 73 ¢H sunowoid £q uorssardxa [ T-qd poonpal gAY JO Suou9[Ig 120C ‘v 12 0]
(syoy) sSurpuy A9y sad£3 Jowmny, TedA ‘s/101Ine ISIL]

UoneR[AYIoW SUOISTH ‘g

"panunuo) ‘1 9[qeL



MA et al: EPIGENETIC MODIFICATIONS OF PD-L1 EXPRESSION

(LSD 1'1-ad Sutpuiq Appoanp £q uorssadxa [-(d @seaIdul p[nod HHLIIIA VNIU 190UED [8J93I0[0D) 610C ‘[v J2 nX
(9D THANNH 01 Sutpuiq £q [T-(d 2ue8 Sutioqysrou ay) Jo uoniqryur sy20[q YONI VNY2U[ Jo 1duosuen Arewtid 0TOT ‘[V }2 OSUIN
(Z90) 1'1-ad ssaxdxa Apjeuriouqe o) Kemyyed gi-N oy pareAnde YIVLOH VNI BUWOID 120C ‘v 12 Suepy
(€sm) uorssardxo [T-d paensardn gyALLAT VNIU 190Ued 18I0 TT0T ‘P 12 WS
(Ts1) Qua3 YnH 9y Jo Surpuiq ysnoiyy [ 1-Ad Jo Lrqels uorssaidxa ayj pasearour Z[OHNS I0ued 3un| 720T ‘Iv 32 Sueny
(1s1) 9-T11 Jo uona1das ay3 Sunowoid Aq sprydonnau ur uorssaidxe 17-qd parengaidn JILLOH VNIU] I0ued UBLIBAQ 120T ‘1v 12 uayD
(osT) 11-Ad/1-dd Sunensar £q sisoydode [[20 I, .80 198510 P[nod [SV-SdI0 VNIU[ T1ooueo [eadeydosy 610C ‘1v 12 Sueyg
(6171) uoneuninbiqnap [T-Ad PAIPAW-GNSD 21e[n3a1 p[nod [SV-¢VIVD VNI 020T ‘1v 12 Sueyz,
(8¥1) uorssardxo [T-Qd Peonpar ¢d6 [LA VNIIU[ Iooued jsealq 70T ‘v 42 ueq
(‘s s3urpuy Aoy sad£y Jowny, IeoA ‘s/101Ine ISIL]
VNJIUL ‘g
(ov1) S[OAQ] 1 T-Ad ewse[d yarm pajeroosse A[OATIESIU 9I9M 7-YIW PuB gg- I Iooued [RUSY  (OTOT ‘I 12 BIBAIOOU]
SBWIOUTOIRD 1202
(6€1) V IIN@ Sunendaiumop pue 3unadre; Aq uorssaidxa [T-qd panquyur dg-gze-yru Ienyaooiedoy ‘o)) pue Suep
(8€D) S[oAd] urajoxd pue YN oy 18 [T-(d JO uorssaidxa oy JqIyur ued oo -1 pue ¢6-yru L10T ‘[P 32 gJor)y
120¢
(LED) uorssaxdxa [ T-(d paonpal g19-yIw I90UBD OTJBAIOUR] ‘D 12 pIySeIpRAR[
(9¢1) uorssa1dxo [ T-qd pPoren3oIumop ¢a-yruu I0oued [eaSeydosyg 120C ‘v 12 uerg
(Ten dg-qogz-yrw SurSuods £q [T-Ad paren3ardn g1OOH 120C ‘v 12 nX
(1en) uo1ssa1dxa sj1 aje[n3aIumop 01 Y.LN £ [ T-Ad 2y ut uoi3ar oyroads e paja3ie) A[3021Ip [ - 1w 120T ‘1P 12 TuRySOY
(ogn) 17T-Ad JO S[2AS] A 2onpal 0} [T-(Id JO UOISAI Y LN £ oY) 03 punoq dg-egy -y 610T ‘[P 12 emeZIYsY
uorssaxdxe 17-ad
(06) Suronpar £qaIay) ‘S[[0 I30ULD [8}OI0[0D UT GHIN(Y Sunasie) £q uonduosuer) )X OH passairdar Apuajod eg1-yru J20UED [B19I0[0)) 120C ‘Iv 12 01|
621) 1'T-Ad Jo uorssardxaraao 03 Jurped[ Surpulq (L S-Yrur 3dnisip pinod uor3ar Y1, ,£ Yl I8 suoneIn dUIsoj£o 03 duruens) 210T ‘v 12 Suepp
dLn €
(821D 1T-Ad 2 ur suor3ar A1oje[n3ar Sunoe-sio juelrodwr Sunasdre) Appoaxp £q uorssardxa [1-qd passaxddns dg-go1-yrw 120T ‘1P 12 SHOIIA
(Lzn 1 T-dd paen3arumop pue pajasdre} Affeogroads dg-g-yru [ewosoxyg I90Uued JLIISBD) 020T ‘v 12 111
(921) uorssaxdxo [ T-(d paseaIour AqaIay) pue NH.LJ pPole[nSorumop [z-y I90UED TRIO 610T ‘P12 1T
(sen Kemyred MEId/LMV-NALd 9w Suneanoe 4q 1T-qd 2wen3aidn pinoo de-v/z-gru 020 IV 42 08X
(zen) uorssaxdxo [T-(d 21e[n31 0} [T-Ad JO ¥.LN € Y} 03 pUN0q 6O9¢-Y 1 610T ‘112 1]
(ren ALN € oy 03 Surpuiq £q uorssardxo /7D PIAB[NPOW /G-I PUE 6 [ -1t 810C ‘v 12 Suex
sy sSurpuy Aoy sad£y Jowny, IeoA ‘s/101Ine ISIL]

VNI ‘A

"panunuo) ' AqeL,



INTERNATIONAL JOURNAL OF ONCOLOGY 61: 134, 2022

(081) I'T-Ad jo uorssaidxaraao pajerpaur 1jowoid [T-qd oy Jo uoneAyiewodAHq I9OURD [B}ORI0[0)) 8107 ‘I 12 1yserq

(181) uorssardxa [ T-(qd Y pajeroosse sem uonejAypowradAy 1ojowoid vy 020T ‘Ip 12 1008[

081) 1'T-dd jo uorssaidxaraao pajerpawt ojowold [ -4 oyp Jo uone[AyjowodAHq I90uRD Jsearg 8107 Iv 12 1yse[q

(6L1) 610 [P 12 °[ puelg

(8L1) 1'T-dd Jo uoissaidxaiaao pajerpaw 1jo0wold [ T-qd 2yl jJo uonejAyowodAy SBWOI[D) ‘810T IV 12 NN

S[OA9] [ T-Ad Suri01sar AqQR1aY) “ /-1 PUe [-1¥] 9IL[AYIWap p[nod uIqrIdap

(LLT) pue ‘T 1-qd Surpoous uorssardxe 1/ 7D YM PIIBIOOSSe A[OATIESOU a10Mm /- YT PUB [-JYI SQUSS pare[or-A-NAT Q107 ‘Iv 12 1o

(9L1) uorssardxa 1 T-qd pare[nSarumop 131owoid [T-qd 9y JO UOTIR[AYIS]A L10Z ‘Jv 12 Sueyyz
I00UBD

(SLT) uorssaIdxa [ T-Ad 03 P9 YoIym ‘T LINNC JO 1uuod oy} uronpar £q uone[Ayiowap rojowold [1-qd peonpur 1J4DL 3uny [[90 [[ewWS-UON 810 ‘JP 12 BAOIRTSY

uole VELIANA teyl Apuajod azow uorssaxdxa [-qd payqryur

(€L1) oserdfsuenAylow V¢ LINNG PUe TLIANA Yl0q JO SUrewop [eurira)-_) ay) Sururejuod spruuserd JUBUIqUIOIIY I90URD 9)8IS0IJ 610Z ‘P 12 17T

LD Kdexoy apey00[q [T-dd JO Adoeoyje oy) pajuswSne s103quyur LINNJ I90URD URLIRAQ) CT0T ‘I 12 Susg

810¢

(IL1) S[OAQ] [ T-(d PaseaIoul SIONQIYUI TJANC Pue ‘uoIssaidxa [T-qd UM PajeIoosse A[osIoAUl sem VELINNG BWOUR[OIN ‘v 12 dal101RYD

(6€1) uorssardxo [T-(d PayeAd|d uone[Ayew qzJAN 120C ‘v 12 Suepy
BUWIOUIOIRD

L) S[[99 JUBISISAI-QIURJRIOS UL [T-(Id JO UOISSAIdXIA0 YIIm pAIeIoosse A[oansod sem uorssaidxa [ LIANC YS'H Ienyeooyedoy L10T ‘r ]

(¢L) uorssaxdxe urajoxd [-qd poonpur sIoyqryul LIANG SEUWI00IBSOIPUOY)) 120T ‘v 42 Y19YsS

(691) uorssaxdxa [ T-(d pSyqIyul surqerouwas ‘uorssardxa [-(d poseaIoul aurpnioeze-g 120Z ‘v 12 0]

L91) uorssaidxe urejoid [T-qd YIm pajerdosse sem uonejAyiow rojowoxd [ 1-dd I90UBD JLISEL) 020Z ‘[P 12 AT

(s sSurpuy Aoy sad£y Jowny, IeoA ‘s/101Ine ISIL]

uoneAyIRW YNd ‘D

(€91) 0414 ul JUBISISAI [T-(d-PUL PONPaI UONIqIYUL TZZEO00 IO BsY 19oued Fung [20T ‘211

(‘s sSurpuy Aoy sad£y rowiny, IeoA ‘s/10UIne ISIL]

VNI A

(Ly1) pare[n3orumop sem uorssaidxa [ T-(d ‘PAQIYUI Sem 6ZOHNS VNIOUT JO uorssardxa oy Uy 1202 ‘v 42 IN

('s}ey) s3urpuy Aoy sadA) Jown, Iedk ‘s/I0yIne 1S

VNIOUL ‘A

"panunuo) T AqeL,



(Refs.)
(182)
(183)

Key findings
PD-L1 expression was more readily observed in microsatellite instability cancer caused by MLH1 promoter methylation

5-azacytidine inhibited the downregulation of PD-L1 mRNA and protein levels

Tumor types

Table 1. Continued.
G, DNA methylation
First author/s, year
Yamada et al, 2018
Hua et al, 2021

MA et al: EPIGENETIC MODIFICATIONS OF PD-L1 EXPRESSION

HDACI1/2, which belong to the class I HDAC family, can
be recruited by tet methylcytosine dioxygenase 2 proteins to
the PD-L1 promoter to deacetylate H3K27 acetylation, thereby
inhibiting the transcription of PD-L1 in breast cancer (24).
Additionally, HDAC2 promotes PD-L1 expression by upregu-
lating the phosphorylation of JAK1, JAK2 and STATI, as
well as translocation of STAT] to the nucleus and recruitment
of STAT1 to the PD-L1 promoter (64). HDAC1 expression
is consistently upregulated in tumor spheres derived from
breast cancer and affects the epithelial-mesenchymal transi-
tion (EMT)-induced upregulation of PD-L1 expression (65).
In addition, EMT-induced upregulation of PD-L1 expression
in breast cancer is also affected by HATs (65). HATs are
involved in histone acetylation by catalyzing the transfer of
acetyl groups (54). HAT1 was the first HAT to be discovered,
HAT]1 expression is upregulated in various solid tumors and
HATI acts as a transcription factor to regulate the expression
of multiple genes (66,67). In pancreatic cancer, upregulation of
HAT1 expression is not only associated with poor prognosis
but can also enhance PD-L1 transcription by promoting the
binding of bromodomain-containing 4 (BRD4)-containing
complex to acetylated histone H4 (25).

HDAC inhibitors (HDACis) can inhibit HDAC-mediated
deacetylation, leading to the hyperacetylation of histones and
re-expression of epigenetically silenced genes (68). At present,
only a few HDAC:is, such as vorinostat, romidepsin, belinostat
and Panobinostat, have been approved by the FDA to treat
malignancies, while other HDACis are undergoing various
clinical trials as options for the treatment of malignancies (69).
HDAC:s exert antitumor effects by inducing cell apoptosis,
inhibiting angiogenesis, and regulating cell autophagy and
immune responses; however, to the best of our knowledge, the
mechanisms by which they regulate PD-L1 have not been well
defined (70,71).

Class I HDAC:s can elevate PD-L1 expression in a variety
of tumors, including chondrosarcoma, Hodgkin's lymphoma,
melanoma, lung cancer, prostate cancer and colorectal
cancer (52,71-77). Among them, chidamide can upregulate
PD-L1 expression in chondrosarcoma by activating the tran-
scription factor STAT1 (72). In addition, it could enhance
the antigen presentation process in a chondrosarcoma mouse
model to improve therapeutic efficacy (72). When suberoyl-
anilide hydroxamic acid is used to treat prostate cancer cells,
it can increase histone H3 acetylation of the CD274 promoter
to induce CD274 transcription, leading to upregulation of
PD-L1 expression (76). As a naturally occurring selective
inhibitor of HDACs 1 and 2, romidepsin increases PD-L1
expression in colorectal cancer, mainly through the regulation
of histone acetylation and the transcription factor BRD4 (52).
Furthermore, HDACG6 inhibitors, as class II HDACis, can
dose-dependently reduce PD-L1 expression in colorectal,
lung and urothelial cancer (78-80). A study suggests that
HDAC:s can enhance the response to immunotherapy via
increasing tumor antigen levels and reactivation of proapop-
totic genes (81). However, HDACis have side effects, such as
lymphopenia, that limit the efficacy of immunotherapy (82).

Regulation of PD-LI1 expression in solid tumors by histone
methylation. Histone methylation is a reversible process on
arginine and lysine residues: Arginine is symmetrically or

3' UTR, 3' untranslated region; ac, acetylation; BRD4, bromodomain containing 4; CSN5, COP9 signalosome subunit 5; DNMT, DNA methyltransferase; EGF, epidermal growth factor; EMT, epithe-
lial-mesenchymal transition; EZH2, enhancer of zeste homolog 2; HATS, histone acetyltransferases; HCG18, HLA complex group 18; HDACis, HDAC inhibitors; HDACs, histone deacetylases; HIF-1a,

hypoxia-inducible factor 1-a; HNRNPH1, heterogeneous nuclear ribonucleoprotein H1; HOXC4, homeobox C4; HuR, Hu antigen R; I0X1, 5-carboxy-8-hydroxyquinoline; IRF, interferon regulatory
death ligand 1; PRMTS, protein arginine methyltransferase 5; SAHA, suberoylanilide hydroxamic acid; SNHG12, small nucleolar RNA host gene 12; TET?2, tet methylcytosine dioxygenase 2; WDRS,

myocyte enhancer factor 2D; miRNA/miR, microRNA; MLH1, mutL homolog 1; MLL1, lysine methyltransferase 2A; p-, phosphorylated; PD-1, programmed cell death protein 1; PD-L1, programmed
WD repeat domain 5; YAP1, Yes associated protein 1.

factor; JAK, Janus kinase; KDM1A, lysine demethylase 1A; KDM4B, lysine demethylase 4B; IncRNA, long non-coding RNA; LSDI, lysine-specific histone demethylase 1; me, methylation; MEF2D,
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Figure 2. Mechanisms of resistance to immune checkpoint inhibitors targeting the PD1/PD-L1 axis. First, the B2M mutation leads to dysfunction in
antigen presentation by inducing dysfunction of the MHCI complex. Second, type 2 macrophages, Tregs and cytokines, such as TGF-f3 and VEGF, in the
tumor microenvironment can attenuate CD8* T cell activity. In addition, following exerting efficacy and clearing antigens, a small group of tumor-specific
T cells transform into memory T cells that will be reactivated and expand when reencountering tumor antigens. Therefore, if tumor-specific T cells fail
to become memory T cells, it could lead to T-cell exhaustion. Finally, JAK1/2 mutations interfere with the transduction of INF-v signaling, resulting in
reduced PD-L1 expression, whereas upregulation of compensatory inhibitory signals makes it difficult for PD-1/PD-L1 blockade to activate CD8* T cells.
B2M, 3-2-microglobulin; IRF, interferon regulatory factor; JAK, Janus kinase; MHCI, major histocompatibility complex class I; PD-1, programmed cell death
protein 1; PD-L1, programmed death ligand 1; TCR, T-cell receptor; Treg, regulatory T cell.

asymmetrically methylated, while lysine can be monomethyl-
ated, dimethylated or trimethylated (83). Among these, H3K4,
H3K36 and H3K79 are associated with transcriptional activa-
tion of genes, whereas H3K9, H3K27 and H4K 20 are associated
with the transcriptional repression of genes (83). For example,
in colorectal cancer, the transcriptional upregulation of PD-L1
is positively associated with H3K4me3 and negatively associ-
ated with H3K9 tri-methylation (H3K9me3) (84). Inhibitory

H3K9me3 and H3K27me3 also regulate PD-L1 expression in
breast cancer tumor-forming cells (65).

Histone methylation is a complex modification process
regulated by various methyltransferases and demethylases.
Protein arginine methyltransferase 5 (PRMTS5) catalyzes
the symmetric dimethylarginine of histone and non-histone
proteins and is closely associated with tumor cell prolifera-
tion, invasion and metastasis (85). In cervical cancer, PRMTS5
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promotes the transcription of STAT1, and thus, PD-L1 expres-
sion through symmetric dimethylation of histone H3R2 (86).
As one of the H3K4 methylation-specific histone methyltrans-
ferases, mixed lineage leukemia 1 catalyzes H3K4me3 to
activate the transcription of PD-L1 in pancreatic cancer cells
by directly binding to the CD274 promoter (26). Knockdown of
WD repeat domain 5, a key component of the patient SE trans-
location 1/MLL histone methyltransferase complex, reduces
IFN-vy-induced PD-L1 mRNA and protein levels in prostate
cancer (87). EZH2 is a core component of the polycomb
repressive complex 2 and possesses histone methyltransferase
activity (88). In melanoma, EZH?2 inactivation can lead to
decreased PD-L1 mRNA levels (53). Similarly, EZH?2 is also
positively associated with PD-L1 levels in lung cancer tissues
and regulates PD-L1 expression through hypoxia-inducible
factor 1-a (89).

Lysine demethylase 4B (KDM4B) is a demethylase that acts
on lysine, and its silencing can reduce PD-L1 expression by
promoting H3K27me3 expression and reducing homeobox C4
(HOXC4) expression in colorectal cancer cells (90). In addition,
lysine-specific histone demethylase 1 (LSDI1) regulates the chro-
matin landscape and gene expression by demethylating proteins,
such as histone H3 (91). HCI-2509, a noncompetitive highly
potent reversible LSD1 inhibitor, upregulates PD-L1 expression
in breast cancer cells in a dose-dependent manner (92). SP-2577,
which is currently undergoing a phase I clinical trial, is also a
potent and reversible LSDI inhibitor that can promote PD-L1
expression in small cell carcinoma of the ovarian hypercalcemic
type cells by inhibiting LSD1 (91). Based on these developments,
LSD1 inhibition may be a promising epigenetic adjunctive
therapy to ICIs. In addition, 5-carboxy-8-hydroxyquinoline
(I0X1), a histone demethylase inhibitor that inhibits Jumonji
domain 1A of histone demethylases, can downregulate PD-L1
expression in a concentration-dependent manner in various
cancer cells, including CT26, HCT116 and MCF-7 cells (93).
IOX1 could also reverse doxorubicin-induced upregulation of
PD-L1 expression (93).

Regulation of PD-LI expression in solid tumors by histone
phosphorylation. Histone phosphorylation is the most abun-
dant and dynamic modification during mitosis of tumor cells,
and its occurrence alone or in dense clusters can have a great
impact on the structure and function of modified proteins (94).
A study has demonstrated that histone phosphorylation can
dissociate readers of methylated histones without loss of
epigenetic information (95). This allows histone phosphory-
lation to serve a functional role in initiating chromatin for
reliable chromosome segregation and preventing genetic
instability (96).

Among them, histone H3 phosphorylation is known as
a common epigenetic modification that affects chromatin
structure and gene transcription (97). Pyruvate kinase
isoform M2 (PKM?2), a rate-limiting enzyme in glycolysis, is
a transcriptional coactivator of multiple target genes associ-
ated with tumor cell proliferation and metastasis, and can be
stimulated by epidermal growth factor (EGF) to translocate
to the nucleus (98). In hepatocellular carcinoma, EGF can
induce phosphorylation of PKM2 at Ser*” and translocation of
the PKM2 protein to the nucleus, and then phosphorylation of
histone H3 at Thr'!' to induce PD-L1 expression (30).

4. Regulation of PD-L1 expression in solid tumors by
non-coding RNAs

Non-coding RNAs are an abundant component of the human
transcriptome. Since ncRNAs have the ability to regulate gene
expression, protein translation and growth pathways, they
can regulate a variety of cellular processes, such as growth,
differentiation and drug resistance, which are highly related to
the occurrence and development of cancer (99). Furthermore,
non-coding RNAs, particularly microRNAs (miRNAs/miRs),
long non-coding RNAs (IncRNAs) and circular RNAs
(circRNAs), can regulate the expression of immune genes, such
as PD-L1, in a variety of tumors, thereby serving an important
role in immunotherapy (100).

Regulation of PD-LI expression in solid tumors by miRNAs.
miRNAs are highly conserved small non-coding RNAs
comprising 19-22 nucleotides that inhibit gene expression by
binding to complementary nucleotides in the 3' untranslated
region (3' UTR) of mRNA targets (101,102). The mecha-
nism of this interaction occurs under both physiological and
pathological conditions, and thus, serves an important role in
a number of biological processes, including cell proliferation,
metastasis, apoptosis and metabolism (103,104). Aberrant
miRNA expression during tumorigenesis can affect several
cancer-related signaling pathways and transcripts, thereby
aberrantly expressed miRNAs are becoming important
diagnostic markers and attractive therapeutic candidates for
multiple cancer types (105). In addition, a study has indi-
cated that miRNAs can exert profound regulatory effects on
the expression levels of PD-L1 through complex regulatory
mechanisms (106).

In lung cancer, elevated levels of PD-L1 promote cell prolif-
eration, invasion, migration and immune escape, and contribute
to chemoresistance (107). miR-3127-5p induces PD-L1 expres-
sion in lung cancer cells by promoting phosphorylation of
STAT3 (107). PD-L1 serves as a common downstream target
of miR-377-3p and miR-155-5p, and inhibiting their expres-
sion can directly lead to upregulated PD-L1 levels (27). Let-7
miRNA serves a tumor-suppressive role in multiple cancer
types by participating in the post-transcriptional expression
of PD-L1 and has been implicated in the regulation of tumor
immunotherapy (28,108). Hong et al (109) reported that Let-7
miRNA could be enriched by probes in the 3' UTR region of
PD-L1 mRNA in lung cancer cells, and overexpression of Let-7
miRNA could inhibit PD-L1 mRNA expression in lung cancer
cells (110). Similarly, overexpression of miR-140 can also
suppress PD-L1 expression by directly binding to its 3' UTR
and participating in the miR-140/PD-L1/cyclin E pathway in
lung cancer to regulate the cell cycle and proliferation (111).

The miR-200 family, consisting of five members,
miR-200a, miR-200b, miR-200c, miR-429 and miR-141, has
also been implicated in the regulation of PD-L1 and inhibition
of tumor cell proliferation and migration (112). Among them,
miR-200b may regulate PD-L1 expression in lung cancer
cells and is negatively associated with PD-L1 expression in
patients with lung cancer (113). miR-200c, which is located on
chromosome 12p13, can inhibit PD-L1 upregulation in ovarian
and breast cancer cells to slow cell proliferation (114,115). In
breast cancer, high PD-L1 expression is associated with poor
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prognosis (116,117), and miR-92 can upregulate PD-L1 expres-
sion by promoting YAPI phosphorylation (118). miR-5119
improved antitumor immunotherapy efficacy in a mouse breast
cancer model, possibly by downregulating PD-L1 expres-
sion (119). Furthermore, miR-570-3p, miR-195 and miR-497
induce apoptosis in breast cancer cells by binding to the 3'
UTR to regulate CD274 expression (120,121). miR-3609 can
also bind to the 3' UTR of PD-L1 to regulate its expression and
reverse the chemoresistance of breast cancer cells by blocking
the PD-L1 immune checkpoint (122).

Exosomes, subcellular vesicles with a diameter of
30-150 nm, contain numerous miRNAs, mRNAs and
functional proteins, which are released after fusion of
multivesicular bodies with the cell surface (123). Therefore,
the identification of exosome contents may provide more
information about specific tumor biomarkers. As an impor-
tant part of the tumor microenvironment, exosomes are one
of the most important factors in promoting tumor metastasis
and progression by regulating immune responses, promoting
angiogenesis and blocking EMT (124). As one of the highly
enriched miRNAs found in exosomes of breast cancer cells,
miR-27a-3p can upregulate PD-L1 in macrophages and
promote immune evasion of breast cancer cells by activating
the PTEN-AKT/PI3K pathway (125). PTEN expression is also
inhibited by miR-21 mediated by oral cancer exosomes, which
upregulate PD-L1 expression (126). Exosomal miR-16-5p can
specifically target and downregulate PD-L1 in gastric cancer
cells and block the PD-1/PD-L1 checkpoint to inhibit gastric
cancer cell proliferation, leading to T-cell activation (127).
Furthermore, aberrant expression of PD-L1 in gastric cancer
is associated with miR-105-5p and miR-570 (128,129). In
addition, miR-105-5p suppresses PD-L1 expression by directly
targeting important cis-acting regulatory regions in the PD-L1
3' UTR to combat immune escape (128). Furthermore, guanine
to cytosine mutations in the 3' UTR region can disrupt miR-570
binding, leading to upregulation of PD-L1 expression (129).

In colorectal cancer, PD-L1 expression has been demon-
strated to be regulated by several miRNAs, such as miR-15a,
miR-148a-3p, miR-124 and miR-20b-5p (90,130-132). miR-15a
potently represses HOXC4 transcription by targeting KDM4B
in colorectal cancer cells, thereby reducing PD-L1 expres-
sion and ultimately inhibiting immune evasion in colorectal
cancer cells (90). miR-148a-3p may directly bind to the 3' UTR
region of PD-L1 to reduce the level of PD-L1 on the surface of
colorectal cancer cells to reduce T-cell apoptosis and restore
its activity (130). It has been reported that the frequency and
activity of regulatory T cells (Tregs) were increased in human
cancer types and that PD-L1 may be involved in Treg develop-
ment and enhance their immunosuppressive capacity (133,134).
miR-124 can directly target a specific region in the PD-L1 3'
UTR to downregulate its expression and inhibit Treg differ-
entiation, thereby promoting T cell-mediated anticancer
responses in colorectal cancer cells (131). HLA complex group
18 (HCG18) serves an oncogenic role as a competitive endog-
enous RNA for several miRNAs (135). In colorectal cancer,
HCGI18 promotes proliferation, inhibits apoptosis, upregulates
PD-L1 by sponging miR-20b-5p, enhances resistance to
cetuximab, and inhibits CD8* T-cell activation by targeting
the miR-20b-5p/PD-L1 axis (132). In other cancer types of the
digestive tract, several miRNAs exhibit inhibitory effects on

the expression of PD-L1. Bian et al (136) found that miR-493
overexpression could downregulate PD-L1 expression in
esophageal cancer. Transfection with miR-612 reduces PD-L1
expression in pancreatic cancer cells (137). In pancreatic
cancer cells, miR-93 and miR-106b can inhibit the expression
of PD-L1 at the mRNA and protein levels (138). A study has
demonstrated that miR-329-3p inhibited PD-L1 expression by
targeting and downregulating lysine demethylase 1A, and it
enhanced the response of hepatocellular carcinoma cells to
T cell-induced cytotoxic effects (139). Furthermore, miR-22
and miR-24 are negatively associated with plasma PD-L1
levels in renal cancer, suggesting that the miRNA network
can suppress PD-L1 expression (140). Studies suggest that
miRNA-based drugs (miRNA mimics or miRNA antagonists)
are promising and may be a novel strategy for cancer treat-
ment (141,142).

Regulation of PD-LI expression in solid tumors by [ncRNAs.
IncRNAs, RNA transcripts of >200 nucleotides, do not have
protein-coding potential, but appear to be less expressed
than protein-coding genes and have more tissue-specific
features (143,144). IncRNAs can target multiple mechanisms
by affecting different genes, and their abnormal expression is
associated with the occurrence of different diseases, particu-
larly cancer (145). In particular, increasing evidence suggests
that IncRNAs have significant potential in immunotherapy
by regulating PD-L1 expression in the tumor microenviron-
ment (146,147).

In breast cancer, IncRNA KRT19P3 may inhibit tumor
progression by reducing PD-L1 expression in tumor cells and
activating the tumor-killing potential of CD8* T cells (148).
However, IncRNA GATA3-ASI can promote immune evasion
of breast cancer cells by regulating COP9 signalosome subunit
5-mediated PD-L1 deubiquitination (149). In esophageal
cancer and ovarian cancer, IncRNASs can also mediate immune
escape by affecting PD-L1 expression (29,150,151). After
binding to glutathione peroxidase 4, IncRNA OIP5-AS1 can
trigger CD8* T cell apoptosis by regulating PD-1/PD-L1, thus
promoting immune escape of esophageal cancer cells (29).
Furthermore, IncRNA HOTTIP upregulates PD-L1 expres-
sion in neutrophils by promoting the secretion of IL-6, thereby
inhibiting T cell activity and antitumor immunity (150).
Additionally, IncRNA PVT1 promotes PD-L1 expression
in ovarian cancer by upregulating STAT3 phosphorylation
levels (151). Furthermore, IncRNA small nucleolar RNA host
gene 12 promotes non-small cell lung cancer (NSCLC) cell
proliferation and immune escape by increasing the expres-
sion stability of PD-L1 through binding of the human antigen
R gene (152).

A study has demonstrated that IncRNA IFITM4P induced
PD-L1 expression in oral cancer via two mechanisms (153).
First, in the nucleus, IFITM4P decreases PTEN transcription
by enhancing lysine demethylase 5A binding to the PTEN
promoter, thereby upregulating PD-L1 expression (153).
Second, in the cytoplasm, IFITM4P acts as a scaffold,
promoting SAM and SH3 domain containing 1 binding and
phosphorylating transforming growth factor $-activated kinase
1, which in turn increases the phosphorylation of NF-xB, while
inducing PD-L1 expression (153). The IncRNA HOTAIR
promotes the immune escape of glioma cells by activating
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the NF-«kB pathway to abnormally express PD-L1 (154). It has
been reported that IncRNAs could regulate different biological
processes, including gene expression and RNA metabolism,
after binding to protein partners (155). The primary transcript
of IncRNA INCR blocks inhibition of the neighboring gene
PD-L1 by binding to heterogeneous nuclear ribonucleoprotein
HI (156). Notably, in colorectal cancer, IncRNA MIR17HG
can increase PD-L1 expression levels by directly binding
PD-L1 (157). Furthermore, when IncRNA SNHG29 expression
is inhibited, PD-L1 expression is downregulated in colorectal
cancer cells to promote antitumor immunity (147).

Regulation of PD-LI expression in solid tumors by circRNAs.
circRNAs comprise a large class of endogenous non-coding
RNAs with covalently closed loops that function independently
of linear transcripts transcribed from the same gene (158).
circRNAs are mostly generated through a process of ‘back
splicing’, in which downstream splice donor sites are covalently
linked to upstream splice acceptor sites, and are abundant in
the cytoplasm (159). On the one hand, circRNAs can act as
transcriptional regulators, miRNA sponges or protein decoys
to serve an important role in tumor development and metas-
tasis (160,161). On the other hand, circRNAs can alter drug
concentrations in tumor cells by regulating the expression
levels of related genes, such as multidrug resistance-associated
protein-1 and multidrug resistance gene 1, which affects the
drug resistance of tumor cells, such as glioma and liver cancer
cells (162). In a mouse model of NSCLC, combined anti-PD-L1
and hsa_circ_0003222 inhibitory therapy not only reduced the
tumor volume, but hsa_circ_0003222 inhibition also reduced
the anti-PD-L1 resistance of NSCLC cells in vivo (163).

5. Regulation of PD-L1 expression in solid tumors by DNA
methylation

As the most extensively studied type of epigenetic modifica-
tion necessary for the regulation of gene transcription, DNA
methylation is a covalent modification of the nucleotide
cytosine at the 5-position (164). Although it does not alter the
DNA sequence, it has an important effect on gene expression
and is often associated with gene silencing (165). A study
has demonstrated that DNA hypomethylation may lead to
the expression of PD-L1 and inhibitory cytokines, which can
be immunosuppressive (166). Therefore, the analysis of the
specific mechanism of DNA methylation in regulating PD-L1
gene expression may have important clinical and biological
implications.

In gastric cancer, PD-L1 promoter methylation is associ-
ated with PD-L1 protein expression, lymph node stage and
the prognosis of advanced gastric cancer (167). A study has
demonstrated that patients with gastric cancer with a meth-
ylated PD-L1 promoter exhibited shorter PFS and OS times
than those without a methylated PD-L1 promoter (167). DNA
methylation is mainly catalyzed by a family of DNMTs (168).
In addition, 5-azacytidine, as a DNMT inhibitor, can increase
PD-L1 expression in gastric cancer MKN-45 cells, whereas
gemcitabine,a DNA demethylation inhibitor, can inhibit PD-L1
expression in these cells (169). Chondrosarcomas do not typi-
cally express PD-L1 to act as an immune-cold tumor; however,
DNMT inhibitors can induce PD-L1 protein expression (73).

In sorafenib-resistant hepatocellular carcinoma, high DNMT1
expression is positively associated with upregulation of PD-L1
expression (170). Myocyte enhancer factor 2D (MEF2D) is
a transcription factor involved in a number of tumorigenic
processes, and the reduction of MEF2D methylation increases
its binding to the PD-L1 promoter and elevates PD-L1
expression in hepatocellular carcinoma (139). In melanoma,
DNMT?3A is inversely associated with PD-L1 expression at
both the mRNA and protein levels, and treatment with DNMT
inhibitors strongly increases PD-L1 levels on the surface of
melanoma cells (171). DNMT inhibitors may also augment the
efficacy of PD-L1 blockade therapy in ovarian cancer (172).
Li et al (173) evaluated the synergistic effect of DNMT3A and
DNMT1 on PD-L1 expression in DU145 prostate cancer cells.
Recombinant plasmids containing the C-terminal domains
of DNMT1 and DNMT3A methyltransferases inhibit PD-L1
expression more potently than those containing DNMT3A
alone (173).

After EMT, tumor cells have increased capacities for prolif-
eration and metastasis by evading the immune system (174).
Asgarova et al (175) found that, during EMT signaling in
NSCLC, TGFp1 induced PD-L1 promoter demethylation by
reducing the content of DNMT], leading to the expression of
PD-L1. In epidermal growth factor receptor tyrosine kinase
inhibitor-resistant NSCLC, methylation of the PD-L1 promoter
may contribute to the downregulation of PD-L1 expres-
sion (176). In anti-PD-1/PD-L1 therapy, IFN-y-induced PD-L1
expression predicts a higher response rate (175). Lai et al (177)
reported that the IFN-y-related genes interferon regulatory
factor (IRF)-1 and IRF-7, which are hypermethylated in
lung cancer tissues, were negatively associated with CD274
expression. The methylation inhibitor decitabine can demeth-
ylate IRF-1 and IRF-7, thereby restoring PD-L1 levels (177).
In gliomas, increased methylation of the PD-L1 promoter
downregulates the mRNA and protein expression levels
of PD-L1 (178). Therefore, hypomethylation of the PD-L1
promoter mediates upregulation of PD-L1 expression (179).
A similar relationship has been demonstrated in patients with
breast and colorectal cancer: The higher the hypomethylation
levels were, the higher the PD-L1 expression levels were (180).
In addition, PD-L1 expression in breast cancer cells is also
associated with BRCA1 promoter hypermethylation (181).
In patients with colorectal cancer, PD-L1 expression is more
readily observed in microsatellite unstable cancers caused
by mutL homolog 1 promoter methylation (182). The DNMT
inhibitor 5-azacytidine also inhibits the downregulation
of PD-L1 mRNA and protein levels in colorectal cancer
cells (183).

6. Conclusions

This review summarizes the most comprehensive under-
standing of epigenetic factors affecting PD-L1 expression
in solid tumors, including histone modifications, noncoding
RNAs and DNA methylation (Table I). In terms of their
potential contribution to PD-L1 expression in solid tumors,
studies of histone modifications have mostly focused on
acetylation, methylation and phosphorylation (54,94). During
this process, multiple chromatin-modifying enzymes, such
as HDACs, HATSs, histone methyltransferases and histone
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demethylases, regulate PD-L1 expression by affecting modi-
fications that occur on lysine and arginine residues. Most
studies on miRNAs have focused on their binding to the 3'
UTR of PD-L1 (109-111). As one of the key factors affecting
PD-L1 expression, various miRNAs can inhibit PD-L1 expres-
sion by binding to the 3' UTR of mRNAs. IncRNAs mainly
act as upstream regulators of the PD-1/PD-L1 axis to affect
antitumor immunity. Finally, research on DNA methylation
has exclusively focused on its effect on the PD-L1 promoter,
and hypomethylation of the PD-L1 promoter often leads to
upregulation of PD-L1 expression, thereby exerting immuno-
suppressive effects (30).

A large number of preclinical studies have revealed
the critical role of epigenetic factors in antitumor immune
responses and reversal of immunosuppression, particularly
in PD-L1/PD-1 blockade (72,91,172,184). The rational appli-
cation of a combination of multiple epigenetic targeted drugs,
including DNMT inhibitors and histone-modifying enzyme
inhibitors, with anti-PD-L1 immunotherapy, represents an
opportunity to improve antitumor efficacy, enhance response
rates to PD-1/PD-L1 blocking antibodies and reverse drug
resistance. However, combinations are still in the early
stages of development and there are still certain problems.
First, the additional toxicity afforded by these epigenetic
molecules cannot be underestimated. Some epigenetic drugs
have been used for a long time with manageable side effects;
however, the side effects associated with ICIs have not been
extensively studied, especially in long-term treatment (16).
Second, although exosomes are rich in miRNAs, mRNAs
and functional proteins, and usually serve an important
role in the regulation of PD-L1 expression by epigenetic
factors (125,127), current clinical studies of exosome-based
PD-L1 modification are lacking. Finally, although studies
suggest that upregulated PD-L1 expression may be partly
related to the activity of miRNAs, it is not completely clear
whether tumors with increased PD-L1 expression due to
dysregulated miRNA expression also exhibit higher response
rates to ICIs (27,128,129). The development of large-scale
epigenetic marking studies and the continuous updating
of testbed technologies may open the way to address these
issues.

In conclusion, at present, a large amount of work is still
required to explore epigenetic changes in depth. Future studies
may develop more precise and effective drugs and treatment
regimens by identifying more potential therapeutic targets and
mechanisms of action. Epigenetic combination therapies will
ultimately be combined in an optimal manner to enhance the
effectiveness of anti-PD-L1 immunotherapy in solid tumors,
improving the prognosis of patients.
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