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Abstract. Doublecortin‑like kinase 1 (DCLK1) has been iden‑
tified as a novel biomarker of cancer stem cells among several 
different cancer types, including colon, breast, pancreas, kidney, 
liver, stomach and esophageal cancers. Studies have demonstrated 
that DCLK1 regulates tumorigenesis and epithelial‑mesen‑
chymal transformation via several important pathways, such as 
Notch, Wnt/β‑catenin, RAS and multiple microRNAs. The func‑
tion and biological mechanisms, including their association with 
the molecular structure and isoforms of DCLK1, are gradually 
being elucidated. However, the currently available knowledge 
regarding DCLK1 in terms of developing effective anti‑cancer 
drugs remains incomplete. In the present review, the molecular 
characteristics, biomarker function and biological mechanisms 
of DCLK1 are summarized and DCLK1 is proposed as a poten‑
tial anti‑tumor target via the glucose metabolism pathway.
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1. Introduction

In 2008, the Houchen group proposed that serine‑threonine 
kinase, doublecortin‑like kinase 1 (DCLK1, then known as 
DCAMKL‑1), was a specific marker protein for intestinal 
adenoma stem cells (1), which was the first of a series of 
research reports providing evidence that it may be an effec‑
tive target for oncology drug development. To date, DCLK1 
has been reported to be a selective marker of several types 
of cancer stem cells (CSCs), including those in colon, 
breast, pancreas, kidney and esophageal cancers (2,3). 
The first high‑level evidence for the CSC marker status of 
DCLK1 came in 2012, when Nakanishi et al (4) reported 
that DCLK1 does not mark normal stem cells, but specifi‑
cally marks CSCs in the adenomatous polyposis coli (APC) 
loss‑driven APCMin/+ model of intestinal tumorigenesis. 
Furthermore, in normal gastrointestinal epithelia, DCLK1 
has been indicated to mark fully differentiated epithelial tuft 
cells among several other cell types in the gastric antrum, 
bile duct and pancreas (5,6). Epithelial tuft cells are char‑
acterized by microtubule bundles located at the cell apex 
and express DCLK1 and acetylated α‑tubulin to take part 
in regulating the microenvironment (7). DCLK1+ tuft cells 
have a key role in tumorigenesis by regulating inflammation 
of the microenvironment via expression of proteins such as 
Cox1, Cox2 and hematopoietic prostaglandin‑D synthase in 
intestinal cancer (8).

After 20 years of research, DCLK1 is accepted as a specific 
marker of tuft cells and several types of CSCs and evidence 
of its ability to regulate tumor growth and metastasis has 
been provided (9). DCLK1 is expressed in lung, liver, heart, 
spleen, thymus, prostate and intestine and strongly marks 
specific cell types (Fig. 1) (10‑12). In the present review, the 
molecular structure and biological mechanisms of DCLK1 in 
tumorigenesis and metastasis were summarized and its role 
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in metabolism was highlighted as a potentially novel area for 
further exploration.

2. Molecular structure and function of DCLK1

The human DCLK1 gene is located on the long arm 
13q12.3‑q13 of the 13th chromosome, which contains two 
different promoter sequences to form splicing variants with 
different protein functional domains (13). Structural domains 
include two N‑terminal doublecortin (DCX) domains and one 
C‑terminal serine/threonine protein kinase domain, homolo‑
gous to the protein kinase superfamily and DCX (14,15). The 
structural characteristics of DCX1 are similar to those of 
DCX, which is able to specifically bind to microtubules, and 
DCX2 mainly interacts with microtubules and their dimers. 
These two DCX domains allow DCLK1 to bind microtubules 
and regulate microtubule aggregation to affect neuronal 
migration. The C‑terminal domain is similar to calmodulin 
dependent kinase II, but lacks a typical calmodulin binding 
site (16,17). At present, there are several splicing variants 
in the DCLK1 gene that have been identified, including a 
full‑length type with all domains and a poly‑arginine region, 
a DCX‑like type containing only the microtubule‑binding 
domains, and a smaller molecular‑weight type containing 
a phosphoserine‑rich region and kinase domain. These 
variations in protein domains resulting from alternative 
splicing and multiple transcriptional promoter regions are 
hypothesized to result in completely different molecular 
functions (18). Human DCLK1 includes 82‑ and 52‑kDa 
isoforms, which are transcribed from an upstream (A, 
CpG‑regulated) or downstream promoter (B, TATA‑box) 
with differing C‑terminal domains (Fig. 2). The A isoforms 
contain N‑terminal doublecortin domains to bind to micro‑
tubules and a protein kinase domain, while the B isoforms 
lack N‑terminal doublecortin domains. Later, DCX‑like 
was identified and only includes N‑terminal DCX domains 
produced from the A promoter and Camk‑related peptide, a 
56 amino acid B‑promoter‑derived peptide with unknown 
function, was also identified (19,20).

The biological activity of DCLK1 in cancer is different 
between β‑promoter (alternatively termed as DCLK1‑S or 
DCLK3/4, 45‑52 kDa, isoform 3/4) and α‑promoter (termed as 
DCLK1‑L or DCLK1/2, ~82 kDa, isoform 1/2) isoforms. One 
study determined that hypermethylation of the α‑promoter 
directly led to the absence of expression of DCLK1‑L in 15 
human colon cancer cell lines, and that the α‑promoter was 
activated by β‑catenin and T‑cell factor‑4/lymphoid enhancer 
factor (LEF), while the β‑promoter was activated by NF‑κB 
p65 in cancer cells. In this study, the majority of human 
CRCs were reported to express DCLK1‑S, which developed 
an invasive phenotype and this was associated with unfavor‑
able overall survival (19). Park et al (21) identified DCLK1‑B 
transcription as directly activated by Wnt/β‑catenin 
signaling and that LEF1 mediates Wnt‑induced CSC proper‑
ties. Sarkar et al (22) reported that DCLK1‑L and DCLK1‑S 
are in nuclear and mitochondrial fractions, as well as plasma 
membrane and cytosolic fractions, but DCLK1‑S is in the 
nuclei and mitochondria in colon cancer. DCLK1 α‑promoter 
demonstrated hypermethylation in cholangiocarcinoma, but 
hypomethylation in α‑ and β‑promoter regions in renal cell 

carcinoma (RCC) (23). Of note, two mouse models using 
DCLK1 A‑promoter isoforms to drive Cre‑recombinase 
(DCLK1‑CreERT and DCLK1‑CreERT2) demonstrated 
lineage tracing of CRC tumors in the presence of APC 
mutation (24,25). Interestingly, Ge et al (26) reported 
that both DCLK1‑AS (isoform 1, 82 kD) and DCLK1‑BL 
(isoform 4) isoforms are able to efficiently activate epithe‑
lial‑to‑mesenchymal transition (EMT) in pancreatic ductal 
adenocarcinoma (PDAC) cell lines. Overall, there is a signifi‑
cant shortcoming in the literature regarding the function of 
DCLK1 isoforms in cancer. The combined evidence suggests 
that all major DCLK1 isoforms are oncogenic, but there may 
be a variation among different tumor types or even among 
tumor subtypes.

3. Biological mechanism of DCLK1 in different types of 
cancer

Colorectal cancer (CRC). The biological function of DCLK1 
in tumorigenesis and metastasis as a marker of tuft cells 
and CSCs is most thoroughly studied in CRC. In normal 
human intestinal tissue, stem cells are located at the base of 
the intestinal crypt epithelium, where they are marked by 
leucine‑rich repeat‑containing G protein‑coupled receptor 
5 (LGR5) without co‑expressing gut endocrine markers 
chromogranin A and somatostatin (Fig. 3) (27). DCLK1 
marks fully differentiated intestinal tuft cells located in the 
crypt and villus (28). Long‑lived DCLK1+ tuft cells with 
characteristic microvilli feature self‑renewal ability and 
potential quiescent stem‑like functionality (29). Knockdown 
of the Wnt regulator APC does not alter this quiescence, 
but subsequent activation through inflammation induced by 
dextran sodium sulfate is sufficient to initiate colon cancer 
in Dclk1‑Cre/Apcflox/flox (Dclk1‑Cre/Apcflox/flox transgenic mice 
featuring knocking out APC gene in DCLK1+ cells) transgenic 
mice (30). These findings are supported in DCLK1‑knockout 
mice where deficiency results in increased epithelial barrier 
permeability, higher levels of pro‑inflammatory cytokines 
and chemokines, decreased levels of LGR5 and dysregulated 
Wnt/β‑Catenin pathway genes in Villin‑Cre/Dclk1flox/f lox 
(Villin‑Cre/Dclk1flox/flox mice featuring deletion of DCLK1 
expression in villin‑positive cells) mice (31). In 2009, 
Gerbe et al (32) provided conclusive evidence that DCLK1 
was in fact a tuft cell rather than stem cell marker, as 
indicated by the position and marker co‑expression 
(cyclooxygenase enzymes 1/2, advillin and tubulin) of 
DCLK1‑expressing cells. Lineage tracing studies demon‑
strated that DCLK1‑positive cells also express colorectal 
CSC markers, such as CD133 and CD44 (3,4,33). Of note, 
DCLK1‑positive normal intestinal epithelial cells isolated by 
fluorescence‑assisted cell sorting form spheroids that may 
assemble into glandular epithelial structures and express 
multiple markers of gut epithelial lineages when implanted 
subcutaneously in athymic nude mice (27). Self‑renewal 
and differentiation characteristics of DCLK1‑positive cells 
and low expression in normal tissue both led researchers to 
speculate that they may mark a type of stem cell (34,35), 
but these findings are no longer supported in the literature 
and previous results are likely artifacts resulting from the 
existence of rare DCLK1/LGR5 double‑positive cells.
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Figure 1. DCLK1 protein expression in different human normal and cancerous tissues. (A) Representative immunohistochemistry of DCLK1 staining in 
different human organs. The red arrows point at DCLK1‑positive cells. Representative immunohistochemistry of DCLK1 staining in different types of human 
cancer (scale bars, 50 µm). (B) DCLK1 protein expression levels in different types of human cancer. All data were obtained from the human protein atlas 
(https://www.proteinatlas.org/search/dclk1). The Y‑axis indicates the percentage of patients (maximum 12 patients) with high and medium DCLK1 protein 
expression. DCLK1, doublecortin‑like kinase 1. 

Figure 2. Schematic representation of the isoforms of n DCLK1 in humans. The light blue box represents DCX‑like domains, the green box represents 
ser/pro‑rich domains, the red box represents serine/threonine protein kinase domains and the white box represents different C‑terminal regions. DCLK1‑A 
long is 82.2 KD, including 740 AA, DCLK1‑A short is 81.1 KD, including 729 AA, DCLK1‑B long is 47.7 KD, including 433 AA, and DCLK1‑B short is 46.5 
KD, including 422 AA. CARP is ~56 AA. DCLK1, doublecortin‑like kinase 1; DCX, doublecortin; AA, amino acids.
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Certain studies reported that DCLK1 expression is 
significantly higher in CRC tissue and adenomas compared 
to normal tissue. In addition, increased levels are seen in 
distant metastases and it is closely associated with CRC 
recurrence (36,37). Key evidence demonstrated that DCLK1 
specifically marked CSCs in the intestine, which continu‑
ously produce tumor progeny to prompt polyp growth, but 
there is no apparent effect on normal tissue after deletion of 
these cells (38). Furthermore, overexpression of DCLK1 was 
observed to enhance the percentage of stem‑like human CRC 
cells in vitro (39,40). It has become clear that DCLK1, while 
not a bona fide normal stem cell marker, is instead a key 
marker of differentiated intestinal epithelial tuft cells (6,32), 
which, in the context of mutation and tumorigenesis, may 
identify specific CRC stem cells.

A series of reports evidence that DCLK1 regulates EMT, 
proliferation and CSC maintenance through the Notch, Ras 
and Wnt pathways via interaction with different microRNAs 
(miRNAs/miRs). MiR‑1291 was observed to directly bind to the 
3'‑untranslated region sequence of DCLK1 and then inhibited 
the stemness and cell cycle through the cyclin‑dependent kinase 
inhibitors p21WAF1/CIP1 and p27KIP1 (41). The levels of miR‑137 and 
miR‑15a were inversely correlated with high levels of DCLK1 
detected in CRC with larger tumor size, poor differentiation and 
lymph node involvement (42). Knockdown of DCLK1 expres‑
sion led to downregulation of miR‑200a, miR‑144 and miR‑let7a 
along with downregulation of EMT‑associated transcription 
factors [zinc finger E‑box binding homeobox 1 (ZEB1), ZEB2, 
Snail, Slug and Twist], c‑Myc, KRAS and Notch‑1 in human 
colon cancer cells (43). In a non‑tumorigenic context, a recent 
study indicated that miR‑195 is able to directly interact with 
DCLK1 mRNA, resulting in suppressed function for tuft and 
paneth cells in the small intestinal epithelium by inhibiting 
DCLK1 translation (44).

In CRC cell lines, Notch pathway‑regulated markers 
of CRC CSCs [DCLK1, LGR5, aldehyde dehydrogenase 1 
family member A1 (ALDH1) and CD44] by JAK2, STAT3 
and ERK1/2 phosphorylation and increased expression of 
Jagged 1 to promote stemness (45). On the basis of the above 
findings, researchers have proposed potential therapeutics 
to suppress proliferation, colony formation and reduce the 
number of DCLK1+ cells via the Notch pathway (46,47). The 
Wnt pathway promotes elongator acetyltransferase complex 
subunit 3 expression and SOX9 translation, which in turn 
support LGR5(+)/DCLK1(+) intestinal cancer stem cells in 
response to intestinal regeneration after radiation‑induced 
injury (28). Furthermore, β‑catenin nuclear translocation is 
increased by overexpression of RNA binding motif protein 
3, which induces stemness in DCLK1(+)/LGR5(+)/CD44(+) 
CRC cells (48). Wnt/β‑catenin pathway and pluripotency 
transcription factors c‑Myc, KLF transcription factor 4, OCT4 
and SOX2 are activated by commensal‑polarized macro‑
phages through a microbiome‑induced bystander effect in 
E. faecalis‑colonized IL10 knockout mice, leading to increases 
in the number of DCLK1(+)/CD44(+) cells through gene muta‑
tion, chromosomal instability and endogenous transformation 
to promote tumorigenicity (35). Basic research indicated that 
compounds, such as γ‑mangostin present in the mangosteen 
(Garcinia mangostana) fruit, WNT5A agonist FOXY5 and 
niclosamide, are able to regulate chemotherapy resistance and 
cancer stemness by decreasing the number of DCLK1‑positive 
cells (21,49,50). KRAS mutation was observed to upregulate 
DCLK1 protein levels, which was reversed by inhibiting 
KRAS expression (51).

Pancreatic cancer. DCLK1 marks a small subpopulation 
of morphologically and functionally distinct pancreatic 
cancer cells, which promote tumorigenesis in multiple mouse 

Figure 3. Self‑renewal of the intestinal epithelium. Intestinal epithelial cells include ISCs, Paneth cells, enterocytes, goblet cells, tuft cells and enteroendocrine 
cells. At the base of the crypt, ISCs reside in a quiescent state (+4 position) and active state (+1 to +4 positions) interspersed with Paneth cells. To maintain 
homeostasis, and particularly in response to stimulation by injury from bacteria or pathogens and hypoxia, crypt base ISCs proliferate and then differentiate 
along the crypt‑villus axis and move up, fully replacing the intestinal epithelium in short order. ICSs, intestinal stem cells. 



INTERNATIONAL JOURNAL OF ONCOLOGY  61:  137,  2022 5

models (52,53). In normal adult pancreas, DCLK1 is expressed 
in ductal epithelial cells and islet cells (54) and it is upregulated 
in murine and human pancreatic intraepithelial neoplasia (55). It 
is co‑expressed with neurogenin‑3 and somatostatin, and pancre‑
atic stem cell markers, but not with insulin and glucagon, which 
mark pancreatic α cells (24). DCLK1‑positive cells isolated by 
flow cytometry injected into nude mice give rise to nodules with 
a hyperplastic appearance (56). Acetylated tubulin (AcTub), a 
marker of differentiation of specific pancreatic intraepithelial 
neoplasia, is frequently co‑expressed with DCLK1 and regulates 
epithelial‑mesenchymal transformation of pancreatic cancer 
cells. AcTub and DCLK1‑marked cells demonstrate a typical tuft 
cell morphology with prominent microvilli at the apical surface 
of the cell and lead to increased size and number of spheroids 
in cancer self‑renewal assays (53,57). Furthermore, these cells 
express high levels of ABL proto‑oncogene 1, non‑receptor 
tyrosine kinase and insulin‑like growth factor 1 receptor, which 
are drug targets in clinical cancer therapy (58,59). DCLK1 
was also reported to be a marker of a population of pancre‑
atic cancer‑initiating cells with morphological and molecular 
features of gastrointestinal tuft cells (53), which drive pancreatic 
tumor growth by immune cell‑derived IL17, which in turn regu‑
lates POU class 2 homeobox 3, ALDH1A1 and IL17 receptor 
C (60). In the pancreas, DCLK1 marks pancreatic tuft and acinar, 
but rarely islet cells. DCLK1+ tuft cells expand in response to 
chronic injury or chronic inflammation, and DCLK1+ epithelial 
cells are a source of acinar‑ductal metaplasia after Kras‑G12D 
mutation. These findings indicated that DCLK1+ pancreatic 
cells may act as pancreatic intraepithelial neoplasia stem cells, 
but whether or not these arise from pancreatic DCLK1+ tuft 
cells or DCLK1+ acinar cells is a matter of debate (5,61).

In zebrafish and mouse models, it has been confirmed 
that DCLK1+ cells are enriched in pancreatic intraepithelial 
neoplasia and their expansion is an early event in KRAS‑induced 
pancreatic tumorigenesis (52,62). In an established KRAS 
transgenic mouse model of pancreatic cancer, DCLK1‑positive 
CSC‑like cells increased, while at the same time, knockdown of 
DCLK1 expression in human pancreatic cells reduced c‑Myc 
and KRAS through a let‑7a miRNA‑dependent mechanism (43). 
In clinical tissue samples of PDAC, KRAS and TP53 mutations 
were indicated to be associated with DCLK1 gene overexpres‑
sion, which may contribute to the migration, proliferation 
and colony formation abilities of pancreatic cancer cells (63). 
Mutation of KRAS in DCLK1+ pancreatic cells does not affect 
cell quiescence or longevity but contributes functionally to the 
pathogenesis of pancreatic cancer (24). In 2019, Qu et al (64) 
reported that DCLK1‑α‑long increases invasion and drug resis‑
tance by activating the PI3K/AKT/MTOR signaling pathway 
through increasing KRAS activity in pancreatic and duodenal 
homeobox Pdx1CreKRASG12D transformation‑related protein 
53R172H mouse models and in the human pancreatic cancer 
cell lines AsPC‑1 and MiaPaCa‑2. The hepatocyte growth 
factor/c‑MET axis is necessary for the expression of DCLK1 in 
tumor cells and the recent two papers indicated that it is strongly 
associated with tumor immune escape, including the promotion 
of M2‑macrophages and decrease of CD4+ and CD8+ T cells 
in PDAC (26,65). It facilitates pancreatic cancer progression 
by mediating the interaction between PCSCs and stromal 
pancreatic stellate cells (66). Overall, despite these complex 
and emerging findings, overwhelming evidence has indicated 

that DCLK1 is a vital pancreatic CSC‑like marker, which is 
upregulated and closely associated with precancerous lesions, 
tumorigenesis and invasion (67‑70).

Gastric cancer and esophageal cancer. In human normal 
stomach tissue, stem cells are located in the isthmus of gastric 
glands and DCLK1‑positive cells were originally located in 
the gastric stem cell zone. These DCLK1‑positive cells were 
not able to be labeled by bromodeoxyuridine, which was 
consistent with static stem cells lacking typical cell prolif‑
eration ability, suggesting that DCLK1 may be a marker of 
quiescent stem cells (71). The expression of DCLK1 in gastric 
cancer tissues was significantly higher than that in adjacent 
normal tissue and significantly correlated with lymph node 
metastasis and prognosis (72‑75). A recent study suggested 
that long non‑coding RNA small nucleolar RNA host gene 1 
promoted the effects of DCLK1/Notch1 on the EMT process 
through regulating miR‑15b expression (76). Small extracel‑
lular vesicle (exosome) isolated from a DCLK1‑overexpressing 
human gastric cancer cell line promoted the migration of 
non‑transfected gastric cancer cells in a kinase‑dependent 
manner (77). DCLK1 is also a potential biomarker to predict 
the survival of patients with gastric cancer (78).

DCLK1 expression progressively increases from Barrett's 
esophagus to dysplasia and then to esophageal adenocarci‑
noma (2,79). In human esophageal squamous cell carcinoma 
(ESCC) cells, DCLK1‑S induced MMP2 expression via 
MAPK/ERK signaling to activate the EMT (80). Knockdown 
of DCLK1 inhibited the progression of ESCC by regulating 
proliferation, migration and invasion by suppressing the 
β‑catenin/c‑Myc pathway (81). These results indicated 
that DCLK1 levels are associated with the occurrence and 
development of esophageal cancer. In Barrett's esophageal 
adenocarcinoma, the expression of DCLK1 and LGR5 are 
significantly increased in squamous epithelial cells located 
at the gastric spout, which indicates that Barrett's esophageal 
adenocarcinoma probably comes from gastric cancer (82,83).

Breast cancer. Serum estradiol levels are an important 
factor of increased risk of postmenopausal breast cancer. 
Haakensen et al (84) detected differentially expressed genes by 
analysis of gene microarrays and indicated that DCLK1 was one 
of six influenced by serum estradiol. DCLK1 gene expression 
was downregulated in breast carcinoma samples compared 
with normal tissue samples but did not exhibit any significantly 
differential expression between invasive breast cancer and ductal 
carcinoma in situ. DCLK1 was not significant as an independent 
factor associated with serum estradiol in a linear regression 
model. A series of subsequent studies on DCLK1 expression in 
breast carcinomas were developed and the clinical results indi‑
cated DCLK1 was associated with clinicopathological features, 
estrogen receptor status and neuroendocrine markers (85). 
A cohort study including 1,132 cases reported that DCLK1 
levels varied in several molecular subtypes. Luminal cancers 
had higher DCLK1 expression than HER2‑overexpression and 
triple negative breast cancers (TNBCs). Elevated DCLK1 was 
associated with a lower histologic grade, absence of lympho‑
vascular invasion, fibrotic foci, necrosis and lower pN stage. 
DCLK1 did not correlate with other breast CSC markers and 
stem cell features, but significant correlations were found with 
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estrogen receptor and neuroendocrine markers. Zhao et al (86) 
used DCLK1 to devise a clinically practical method based 
on immunohistochemistry for the molecular subtyping of the 
mesenchymal subtype TNBC. Specifically, DCLK1 marked 
a mesenchymal subtype enriched in stem cell‑related gene 
signatures and activated JAK/STAT3 pathway, which is highly 
correlated with CSC‑like breast cancer cells (86). In support of 
these findings, Ramamoorthy et al (87) reported that DCLK1 
is downregulated with ALDH and CD133 downstream of the 
Notch signaling pathway, which results in inhibition of TNBC 
stemness. In breast cancer cell lines, silencing of DCLK1 
decreased the levels of Wnt/β‑catenin pathway proteins such 
as β‑catenin, c‑Myc and cyclin D1 to decrease cell migration 
and invasion (88). Further basic studies indicated that DCLK1 
is a molecular regulator of breast cancer proliferation, migra‑
tion, invasion and a degradome‑related metastatic stem‑like 
profile (88‑90). Furthermore, miR‑424‑5p was indicated to 
act as a tumor suppressive miRNA regulating breast cancer 
cell proliferation, migration and invasion via binding DCLK1 
in vitro (90). In combination, these findings suggest that DCLK1 
is a potential therapeutic target in breast cancer, but further 
mechanistic studies are required.

Renal cancer. Only a small number of known markers of 
CSCs in kidney cancers is available. Among these are the 
commonly reported broad CSC markers ALDH, CD44 
and CD133. Ge et al (91) reported that DCLK1 stimulated 
essential molecular and functional characteristics of renal 
CSCs, including expression of ALDH, self‑renewal and 
resistance to approved tyrosine kinase inhibitors sunitinib, 
sorafenib, everolimus and temsirolimus, suggesting that 
DCLK1 is a potential renal CSC marker. Furthermore, they 
indicated that overexpression of DCLK1 was a direct regula‑
tory factor in renal clear carcinoma progression, supporting 
the notion that DCLK1 is a potential CSC target to inhibit 
RCC metastasis in early stages (3). Of note, treatment with 
a DCLK1‑targeted monoclonal antibody was able to inhibit 
tumorigenesis in ACHN renal cancer xenografts, suggesting 
a potential therapeutic strategy for this highly chemoresistant 
cancer (91). In addition, a small‑molecule kinase inhibitor of 
DCLK1, DCLK1‑IN‑1, demonstrated obvious inhibition of 
immune checkpoint ligand programmed death ligand 1 and 
an apparent increase in immune‑mediated cytotoxicity alone 
or in combination with anti‑programmed death 1 therapy by 
suppressing DCLK1 phosphorylation and downregulating 
pluripotency factors and CSC‑ or EMT‑associated markers, 
including c‑MET, c‑MYC and N‑cadherin in RCC cell lines. 
These experimental results were consistent with the analysis of 
clinical populations in which DCLK1 predicted RCC survival. 
In addition, its expression was correlated with reduced CD8+ 
cytotoxic T‑cell infiltration and increased in M2 immunosup‑
pressive macrophage populations (92).

Liver cancer. To date, DCLK1 has not been identified to be a 
hepatocellular CSC marker. However, the expression of DCLK1 
in chronic hepatitis, cirrhosis and hepatocellular carcinoma was 
significantly increased (93). DCLK1 is mainly expressed in 
epithelial and stromal cells, lymphocytes and bile duct cells of 
liver tissue of patients with chronic hepatitis C virus infection. 
Furthermore, the level of DCLK1 is related to the expression of 

S100A9 protein (94). S100A9 is a key protein of pro‑inflammatory 
signaling by binding to advanced glycation end product receptor 
and toll‑like receptor 4 to activate the NFκB pathway (95). 
Upregulation of DCLK1 may promote the expression of S100A9 
protein, while downregulation of DCLK1 directly reduces the 
expression of S100A9 protein and reduces signal cell infiltration 
of inflammatory cells (96). Ali et al (94) reported that DCLK1 
was overexpressed in liver cells infected with hepatitis C virus 
and further results indicated that DCLK1 was involved in the 
replication of hepatitis C virus. According to recent findings, 
tuft cells express CD300lf (a murine norovirus receptor) and are 
virally induced to proliferate through this receptor to improve 
murine norovirus infection. Although research in this area is 
limited, it is worth considering if tuft cells in the intestine may 
similarly take part in the replication of hepatitis C and other 
viruses (97). Liver tissues from patients with cirrhosis and HCC 
exhibited overexpression of DCLK1, β‑catenin and cleaved 
E‑cadherin. DCLK1‑overexpressing hepatoma cells induced 
high levels of β‑catenin, α‑fetoprotein and SOX9, which led to 
clonogenicity and dedifferentiated phenotypes (98). In HCC 
tumors, DCLK1‑positive cells have characteristics of CSCs and 
co‑express marker proteins CD133, LGR5, Lin28, AFP and 
c‑Myc (99,100). DCLK1 may be a new target for the treatment of 
hepatitis C virus‑induced tumorigenesis. However, the stem cell 
characteristics of DCLK1 in hepatocellular carcinoma require 
confirmation by further research.

All related signaling pathways of DCLK1 in different 
types of cancer are illustrated in Fig. 4.

4. DCLK1, a promising anti‑tumor target

DCLK1 is one of the most important CSC markers due to its 
role in promoting tumorigenesis, metastasis, invasion and drug 
resistance by supporting self‑renewal, stemness properties and 
quiescence, with activating signaling pathways including Wnt, 
Ras and Notch (101,102). DCLK1 represents a more specific 
CSC marker, compared with previously studied markers for 
colorectal, pancreatic and possibly other cancer types, such 
as gastric cancer, esophageal cancer, breast cancer and renal 
carcinoma. Development of drugs targeting DCLK1 has been 
reported, including kinase inhibitors LRRK2‑IN‑1, XMD8‑92 
and DCLK1‑IN‑1; monoclonal antibody CBT‑15 (targeting 
DCLK1's extracellular C‑terminus); and chimeric antigen 
receptor T‑cell therapy (CAR‑T_ CBT‑511) (91,103‑105). 
These drugs exhibited anti‑tumor effects via regulating EMT, 
angiogenesis, proliferation, migration, invasion, apoptosis, cell 
cycle, DNA damage and stemness in several different cancer 
types (106) (Table I).

Notch, Wnt/β‑catenin and RAS pathways are closely related 
to DCLK1 in regulating stemness, tumorigenesis, metastasis 
and drug resistance of several different cancer types. At present, 
increasing attention is paid to the energy metabolism of CSCs, 
as the common antitumor treatments aiming to decrease tumor 
size or reduce proliferating tumor cells may fail to target CSCs, 
which accounts for this therapeutic treatment resistance (107). 
Furthermore, the metabolic type for CSCs is primarily domi‑
nated by oxidative phosphorylation but not glycolysis, as CSCs 
consume more oxygen, produce higher levels of ATP and increase 
mitochondrial mass and membrane potential compared with the 
bulk of differentiated cancer cells, which rely on glycolysis. The 
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limited but emerging data in this field suggest the importance 
of further investigation of the relationship between DCLK1 and 
DCLK1+ CSCs and metabolism (108).

Despite promising findings regarding DCLK1‑targeted 
agents, successfully targeting DCLK1 and avoiding toxicity 
and other concerns will require a thorough exploration of 
the roles of DCLK1 in other biological aspects. In 2013, 
Verissimo et al (109) first reported that knockdown of DCL, a 
splice variant of DCLK1, is related to reduced mitochondrial 
activity, which significantly decreased tumor growth in neuro‑
blastoma xenografts. In this study, DCL affected oxidative 
phosphorylation by interacting with the mitochondrial outer 
membrane protein outer membrane protein 25/synaptojanin 2 
binding protein. However, DCL lacks the kinase domain and 
kinase catalytic and autoinhibitory activity present in other 
prominent DCLK1 isoforms (110). However, new evidence 
suggests that DCLK1 may also be important in conditions 
of altered metabolism. First, MCF‑7 breast cancer cells 
deregulated the metabolism by triggering transcriptomic 
reprogramming closely related to DCLK1 levels (111). These 
findings suggest accelerated dedifferentiation towards a more 
stem‑like state and that DCLK1 may be a key part of this 
process. Coincidentally, in a non‑cancer context, an isoform 
of DCLK1, candidate plasticity gene 16 (CPG16; also known 
as DCLK1‑BL or DCLK1‑Short), was identified as a negative 
regulator of insulin gene expression, which was increased by 
long‑term exposure of pancreatic β‑cells to a high‑glucose 
medium (112). In addition, CPG16 suppressed the jun dimer‑
ization protein 2‑mediated upregulation of insulin promoter 
activity in a kinase activity‑dependent manner under glucotoxic 

conditions (113). Of note, Zhao et al (114) reported that 
glycolysis promotes the expression of DCLK1 and maintains 
the CSC and EMT phenotypes via maintenance of low reac‑
tive oxygen species levels in gemcitabine‑resistant Patu8988 
pancreatic cancer cells. Together, these findings suggest that 
DCLK1 may be a key target of glucose metabolism inhibiting 
drugs such as metformin, which may be helpful in decreasing 
the incidence of cancer. The limited but emerging data in this 
field suggest the importance of further investigation of the 
relationship between DCLK1 function and metabolism.

5. Conclusion and future directions

DCLK1 as a marker of tuft cells and CSCs is closely related 
to tumorigenesis and metastasis in various cancer types, 
including gastrointestinal, breast, renal and other cancers. 
The DCLK1 isoforms have different functions in the devel‑
opment and progression of the above cancers. Furthermore, 
the evidence for the emergence of tumors related to various 
signaling pathways has been linked to DCLK1 in the litera‑
ture (e.g. Notch, WNT and RAS signaling pathways). Several 
drugs have been developed by targeting the genetic or kinase 
activity of DCLK1, and in the future, metabolic regulation via 
glycolysis and regulation of insulin expression by targeting 
DCLK1 is worthy of further study.

It is well known that DCLK1 expression is obviously 
significant in melanoma, testicular cancer, lymphoma and 
endometrial cancer (9), besides the above ones, but only a 
small number of studies have been performed on them until 
now. Thus, by including these data, it is esteemed that other 
groups in these specific subfields of oncology may become 
aware of and consider researching DCLK1 in their respective 
projects.
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