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Abstract. Breast cancer is the most prevalent type of cancer 
among women worldwide. The heterogeneous nature of breast 
cancer poses a serious challenge for prognostic prediction and 
individualized therapies. Recently, ferroptosis, an iron‑depen‑
dent form of programmed cell death, has been reported to 
serve a significant role in the regulation of the biological 
behavior of tumors. Several studies have revealed the prog‑
nostic significance of the ferroptosis‑related gene (FRG) 
model; however, additional efforts are required to elucidate 
the details. Moreover, genes that modulate ferroptosis may 
be promising candidate bioindicators in cancer therapy. The 
present study systematically assessed the expression profiles 
of FRGs to reveal the relationship between FRGs and the prog‑
nostic features of patients with breast cancer based on data 
obtained from the Gene Expression Omnibus and Molecular 
Taxonomy of Breast Cancer International Consortium. Using a 
non‑negative matrix factorization clustering method, patients 
with breast cancer were classified into two sub‑groups (cluster 1 
and cluster 2) based on the expression of FRGs. Furthermore, 
Cox regression, and least absolute shrinkage and selection 
operator methods were used to construct a risk score formula 
comprised of nine genes, which stratified patients with breast 
cancer into two risk groups. Patients belonging to the high‑risk 
group exhibited significantly shorter overall survival (OS) time 
compared with patients in the low‑risk group. The prognostic 
value of this signature was further verified in the training and 
validation cohorts. The results for univariate and multivariate 
Cox regression analyses indicated that risk score acted as an 
independent predictor for OS. Subsequently, a nomogram 

was constructed. Receiver operating characteristic analysis 
further confirmed that the resulting nomogram exhibited 
powerful discriminatory ability. Functional analysis revealed 
that the immune environment differed notably between the 
two groups and indicated an association between ferroptosis 
and breast cancer proliferation, migration and drug resistance. 
Taken together, the present study demonstrated that FRGs 
were significantly associated with breast cancer progression, 
and thus could be used as novel biomarkers for prognostic 
prediction and individualized treatment of patients with breast 
cancer.

Introduction

In previous years, a gradual increase has been detected in the 
annual incidence of breast cancer worldwide. Notably, breast 
cancer can be divided into several subtypes according to the 
presence of receptors on the cell surface (1). In 2018, there 
were >2,000,000 new cases of breast cancer and >620,000 
deaths associated with breast cancer worldwide (2). Previous 
studies have reported that 20‑30% of patients with breast 
cancer are diagnosed with distant metastases at the time of 
primary diagnosis, and 25% of primary non‑metastatic cases 
eventually result in metastases. Despite development being 
made in diagnostic and therapeutic methods, the prognosis of 
patients with breast cancer remains unsatisfactory, particularly 
concerning metastatic breast cancer (3). Moreover, the issues 
of drug resistance and heterogeneity in breast cancer are often 
attributed to treatment failure and tumor recurrence (4). In 
previous studies, several markers have been used for the diag‑
nostic and prognostic prediction of breast cancer. For example, 
phosphorylated‑STAT3 expression has been reported to be 
associated with the survival and mammographic density of 
patients with breast cancer (5). In addition, ceruloplasmin has 
been shown to be correlated with immune infiltration and may 
serve as a prognostic biomarker in breast cancer (6). However, 
a single biomarker does not show better predictive perfor‑
mance compared with previously existing predictive models, 
thus it is urgent to explore new multi‑gene models to improve 
diagnostic and prognostic predictions in patients with breast 
cancer. Furthermore, identification of novel and effective 
therapeutic targets and predictive models using biomarkers 

A novel ferroptosis‑related gene signature for overall survival 
prediction and immune infiltration in patients with breast cancer

YAN ZHANG1,2,  YIRAN LIANG1,  YAJIE WANG1,  FANGZHOU YE1,  XIAOLI KONG1  and  QIFENG YANG1,3,4

1Department of Breast Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 
Shandong 250012; 2Department of Breast Surgery, Jinan Central Hospital, Cheeloo College of Medicine, 

Shandong University, Jinan, Shandong 250013; 3Pathology Tissue Bank, Qilu Hospital of Shandong University; 
4Research Institute of Breast Cancer, Shandong University, Jinan, Shandong 250012, P.R. China

Received May 8, 2022;  Accepted August 3, 2022

DOI: 10.3892/ijo.2022.5438

Correspondence to: Professor Qifeng Yang, Department of Breast 
Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong 
University, 107 Wenhua Xi Road, Jinan, Shandong 250012, 
P.R. China
E‑mail: qifengy_sdu@163.com

Key words: breast cancer, ferroptosis, gene signature, prognosis, 
immune microenvironment



ZHANG et al:  ROLE OF FERROPTOSIS‑RELATED GENE SIGNATURE IN BREAST CANCER2

may contribute to the comprehensive elucidation of the poten‑
tial mechanisms involved in the development and progression 
of breast cancer, which would further aid in improving the 
overall survival (OS) rate in patients with breast cancer.

It has previously been reported that various cancer 
treatment methods can induce cell‑specific programmed 
cell death, which is known to be closely associated with 
tumor development and progression (7). Ferroptosis, a novel 
form of programmed cell death first identified in 2012 (8), 
has gained increasing attention as a potential therapeutic 
pathway for cancer treatment. Ferroptosis is characterized by 
iron‑dependent lipid peroxide accumulation, which differs 
from traditional apoptosis, autophagy or necrosis in terms of 
morphology, biochemistry and genetics (8). Numerous genes 
have previously been identified as markers, inducers or inhibi‑
tors of ferroptosis (9‑11), collectively called ferroptosis‑related 
genes (FRGs), such as GPX4, CISD1 and NRF2. Previous 
studies have identified a pivotal role of ferroptosis in tumor 
progression and therapeutics (12‑14). Although the sensitivity 
of different types of tumor cells towards ferroptosis are diverse, 
a combination of erastin (an inducer of ferroptosis) and chemo‑
therapeutics could improve curative effects in various types of 
cancer, such as ovarian cancer (15), lung cancer (16) and breast 
cancer (17). Moreover, ferroptosis has been reported to be 
associated with the prognosis of various types of cancer, and 
ferroptosis‑related prognostic models have been constructed 
in glioma (18), melanoma (19) and renal cell carcinoma (20), 
further indicating the potential value of FRGs as prognostic 
markers and therapeutic targets in human cancer. Several 
reports have shown that ferroptosis is strongly associated with 
breast cancer (21,22), indicating that ferroptosis may be consid‑
ered an important biomarker in breast cancer. However, single 
genes alone cannot comprehensively predict the diagnosis 
and survival of patients with breast cancer. Hence, additional 
efforts are required to establish ferroptosis‑related predictive 
models for prediction and treatment of breast cancer to further 
improve the prognosis of patients with breast cancer.

The tumor immune microenvironment is typically 
comprised of immune cells and immune‑related molecules 
that are present around the tumor (23,24), highlighting the 
significant role of the immune system in tumor‑stroma inter‑
actions and the response towards immunotherapy. In recent 
years, the association between immune cells and immune 
molecules with iron metabolism has gained considerable 
attention (25). Various types of immune cells, including Th1 
cells, natural killer (NK) T cells and macrophages, have 
previously been shown to be associated with the maintenance 
of iron homeostasis (26). Notably, ferroptosis in tumor cells 
can increase the expression of tumor antigens that bind 
immune cells, which further promotes the antitumor efficacy 
of immunotherapy (27). However, the role of ferroptosis in 
immunotherapy of breast cancer has not been fully elucidated.

In the present study, a ferroptosis‑related prognostic model 
was constructed based on mRNA expression profiles and clin‑
ical data of patients with breast cancer obtained from the Gene 
Expression Omnibus GSE20685 cohort (28). The model was 
further validated using data from the Molecular Taxonomy 
of Breast Cancer International Consortium (METABRIC) 
cohort (29). Moreover, gene signature characteristics in the 
tumor microenvironment were evaluated using single‑sample 

gene set enrichment analysis (ssGSEA) and immune infiltra‑
tion analysis. The results of the present study may provide 
novel therapeutic targets for the management of breast cancer. 
Additionally, the present study may assist in improving clinical 
outcomes of patients with breast cancer when subjected to 
personalized treatment.

Materials and methods

Data collection. The expression profiling of FRGs and the 
corresponding clinical information of 327 patients with 
breast cancer, including their age, TNM stage and survival 
information, were obtained from the GSE20685 database 
(https://www.ncbi.nlm.nih.gov/geo/) and used as the training 
cohort. Moreover, the gene expression and clinical informa‑
tion of 1,904 patients with breast cancer from the METABRIC 
database were downloaded from cBioPortal (https://www.
cbioportal.org/) as previously reported (30), which was used 
as the validation cohort. FRGs were identified from the 
GeneCards database (https://www.genecards.org/), FerrDb 
database (http://www.zhounan.org/ferrdb/) and other related 
literature (31,32). Consequently, a total of 314 FRGs were 
included in the analysis.

Identification of breast cancer subclasses. A filtering proce‑
dure was first conducted according to a previous study (31). 
The low median absolute deviation (MAD) value, a robust 
statistic to measure the statistical deviation, was calculated 
for each candidate gene. The genes with a MAD value <0.5 
were excluded. Subsequently, R software was used for further 
analysis (33), and the R packages were downloaded from 
the R website (https://cran.r‑project.org/mirrors.html). The 
non‑negative matrix factorization (NMF) clustering method 
was applied using the ‘NMF’ R package (34) with the default 
parameters ‘nrun=10’ and ‘seed=1’. The best cluster number 
was selected as the coexistence correlation coefficient k=2 (35). 
T‑distributed stochastic neighbor embedding (t‑SNE) analysis 
was then performed to validate the distribution of different 
groups using the ‘Rtsne’ R package (https://github.com/jkrijthe/
Rtsne). The related parameters were: dims=2, perplexity=10, 
verbose=F, max_iter=500, check_duplicates=F. Moreover, 
principal components analysis (PCA) was performed to assess 
the differences in expression between the subtypes.

Establishment and validation of the prognostic predic-
tive signature. Univariate Cox regression analysis was first 
performed to screen the genes related to OS in patients with 
breast cancer using the ‘survival’ package in R software 
(https://github.com/therneau/survival). Genes that were 
P<0.05 were considered statistically significant and were 
incorporated into the subsequent least absolute shrinkage and 
selection operator (LASSO) Cox regression using the ‘Glmnet’ 
package in R software (36). The related parameters were: lasso 
family=‘cox’, maxit=1000, nfold=10, α=1. Subsequently, based 
on the multivariate Cox regression analysis for these genes, 
a prognostic signature was constructed. The prognostic risk 
score was calculated based on the regression coefficients (β) in 
the multivariate Cox regression model and the expression levels 
of the genes. The risk score calculation was as follows: Risk 
score=(‑0.854 x expression of YWHAE) + (‑0.852 x expression of 
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CD44) + (‑0.683 x expression of HILPDA) + (‑0.284 x expression of 
IFNG) + (‑0.272 x expression of MYB) + (0.511 x expression 
of DBN1) + (0.554 x expression of HES1) + (0.652 x expres‑
sion of HSPB1) + (1.107 x expression of SLC11A2). Receiver 
operating characteristic (ROC) analysis was performed to 
determine the optimal cut‑off value, in order to divide the 
patients with breast cancer into the high‑ and low‑risk groups. 
Kaplan‑Meier (K‑M) survival analysis followed by log‑rank 
test were performed to evaluate the prognosis between two 
groups in both the training cohort and validation cohort. 
Moreover, the time‑dependent ROC curves were used to vali‑
date the sensitivity and accuracy of the prognostic signature on 
OS in two cohorts.

Establishment of the nomogram model. Univariate Cox regres‑
sion analysis was performed to evaluate the prognostic values 
of the clinical information (i.e., age, grade and TNM stage) 
and risk score. Subsequently, multivariate Cox regression 
analysis was applied to determine the independent prognostic 
factors to predict the survival of patients with breast cancer. 
By combining the TNM stage and risk score, a nomogram 
was constructed using the survival rate and the ‘RMS’ 
R package (https://github.com/harrelfe/rms). The related 
parameters were: cmethod=‘KM’, method=‘boot’, u=time, 
B=1000. According to the nomogram, the total point of each 
patient was calculated. The calibration curve was employed 
to evaluate the consistency between the actual and predicted 
survival rates. ROC curve analysis was applied to validate the 
sensitivity and specificity of the nomogram compared to that 
of a single independent predictor for predicting OS. Decision 
curve analysis (DCA) was performed using the ‘RMDA’ 
package (http://mdbrown.github.io/rmda/) with the parameters 
‘family=binomial(link=‘logit’)’ to evaluate the clinical predic‑
tive effect obtained by the nomogram compared to a single 
independent prognostic predictor.

Estimation of immune infiltration. The estimation of stromal 
and immune cells in malignant tumor tissues using expression 
data (ESTIMATE) algorithm was applied to the GSE20685 
and METABRIC cohorts to calculate the immune score, 
stromal score and tumor purity, which reflected the enrich‑
ment of immune and stromal cell gene signatures (37). The 
CIBERSORT analysis was performed in two cohorts to assess 
the infiltration levels of 22 human immune cell subpopula‑
tions using the ‘CIBERSORT’ R package with the parameters 
‘perm=100’ and ‘QN=TRUE’ (38). Subsequently, the fractions 
of 16 immune cells and the scores of 13 immune‑related 
functions in two cohorts were respectively calculated using 
the ssGSEA with the ‘GSVA’ R package (39). The related 
parameters were: method=‘ssgsea’, kcdf=‘Gaussian’, abs.
ranking=TRUE. To predict whether each subgroup could 
benefit from immunotherapy, the similarity of the gene expres‑
sion profiles was calculated between the subgroups and the 
previously published data from patients with melanoma treated 
with immunotherapy based on the SubMap analysis (40).

Prediction of potential drugs based on drug‑gene 
correlation analyses. The drug z‑scores and the corresponding 
gene expression of the NCI‑60 cancerous cell lines were 
downloaded from the CellMiner database (https://discover.nci.

nih.gov/cellminer/loadDownload.do) (41). A higher z‑score 
is indicative of higher sensitivity to the corresponding drug. 
Subsequently, the Pearson correlation between gene expres‑
sion and drug sensitivity was analyzed. To perform this, the 
‘impute’ (https://bioconductor.org/packages/impute/) and 
‘limma’ R packages (42) were used for data processing, and 
the ‘ggplot2’ (https://ggplot2.tidyverse.org) and ‘ggpubr’ 
(https://rpkgs.datanovia.com/ggpubr/) R packages were used 
for visualization. The drug information was obtained from the 
DrugBank database (https://www.drugbank.ca/).

Cell culture. The human breast cancer cell lines MDA‑MB‑231 
(HTB‑26), MDA‑MB‑468 (HTB‑132), MCF‑7 (HTB‑22) 
and T47D (HTB‑133) were obtained from the American 
Type Culture Collection. The cells were cultured in DMEM 
(Macgene Biotechnology) supplemented with 10% FBS (Gibco; 
Thermo Fisher Scientific, Inc.) and 1% penicillin‑streptomycin 
(Macgene Biotechnology) in a standard humidified incubator 
supplied with 5% CO2 at 37˚C.

MTT assay. Erastin (10 or 20 µM; cat. no. HY‑15763) and ferro‑
statin‑1 (Fer‑1; 10 µM; cat. no. HY‑100579) were purchased 
from MedChemExpress. A total of 3x103 cells were plated 
into 96‑well plates and incubated overnight. After treating the 
breast cancer cells (MDA‑MB‑231, MDA‑MB‑468, MCF‑7 
and T47D) with the reagents erastin, ferrostatin‑1, paclitaxel 
(MedChemExpress), doxorubicin (MedChemExpress) or 
tamoxifen (MilliporeSigma) at the indicated concentrations 
for 48 h at 37˚C, 20 µl 5 mg/ml MTT was added to each 
well, and the cells were further incubated for 4 h at 37˚C, 
after which 200 µl DMSO was added. The absorbance was 
measured at 490 nm using a microplate reader (Bio‑Rad 
Laboratories, Inc.).

Migration assay. A Transwell system (24 wells; pore size, 
8 µm; a polycarbonate membrane) was used for the in vitro 
migration assays. The breast cancer cells (MDA‑MB‑231, 
MDA‑MB‑468, MCF‑7 and T47D) were pretreated with 
10 µM erastin with or without 10 µM ferrostatin‑1 for 24 h at 
37˚C. DMSO was used as vehicle. Subsequently, 1x105 cells 
were suspended in 200 µl serum‑free medium and added to the 
upper chamber, and 700 µl medium supplemented with 20% 
FBS was added to the lower chamber. Cells were incubated for 
24‑48 h, after which the cells that had attached to the lower 
surface were fixed with methanol for 15 min and stained with 
0.2% crystal violet for 20 min at room temperature. Finally, 
the migrated cells were imaged using a light microscope 
(Olympus Corporation) and quantified.

Reactive oxygen species (ROS) analysis. A reactive oxygen 
species assay kit (cat. no. S0033S; Beyotime Institute of 
Biotechnology) was used to detect cellular ROS levels. 
MDA‑MB‑231 and MDA‑MB‑468 cells were plated in a 
6‑well plate. When cell density reached 80%, the cells were 
treated with 10 or 20 µM erastin or 10 µM ferrostatin‑1 for 
24 h at 37˚C. The treated cells were collected and washed three 
times with PBS. Serum‑free DMEM supplemented with 2 µM 
DCFH‑DA (1:5,000; Beyotime Institute of Biotechnology) was 
added to the cells and incubated at 37˚C for 30 min. After 
incubation, the cells were washed and resuspended in 300 µl 
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PBS, and ROS accumulation in 10,000 cells was detected using 
a flow cytometer (BD Accuri™ C6 Plus Flow Cytometer) and 
BD Accuri C6 Plus software (BD Biosciences) with an exci‑
tation wavelength of 488 nm and an emission wavelength of 
525 nm. Analysis was performed using FlowJo version 10.6.2 
(FlowJo LLC).

Statistical analysis. Statistical analyses were performed 
using R, SPSS version 19.0 (IBM Corp), and GraphPad Prism 
version 8 (GraphPad Software, Inc.). Data from at least three 
independent experiments are presented as the mean ± standard 
deviation. χ2 test was used to evaluate the differences in clini‑
copathological features between the two clusters of patients 
with breast cancer. K‑M survival analysis and the log‑rank test 
were performed to evaluate differences in the OS between the 
two groups. Univariate, LASSO and multivariate Cox regres‑
sion analyses were performed to identify the independent 
prognostic factors. ROC curve analysis was performed to 
assess the sensitivity and specificity of the prognostic model. 
Unpaired Student's t‑test was used to analyze the differences 
between unpaired breast cancer tissues and normal tissues in 
the databases. Comparisons in datasets containing multiple 
groups were analyzed using a one‑way ANOVA followed by a 
post‑hoc Dunnett's test. Pearson correlation analysis was used 
to evaluate the correlation between gene expression and drug 
sensitivity. P<0.05 was considered to indicate a statistically 
significant difference.

Results

Classification of patients with breast cancer based on FRGs. 
A flow chart of the study procedure is shown in Fig. 1A. 
Following filtration using MAD, a total of 171 genes were 
subjected to NMF analysis to identify different groups of 
patients with breast cancer. To identify the optimal k‑value, 
cophenetic correlation coefficients were calculated. For k=2, 
the consensus matrix heatmap maintained a clear and sharp 
boundary, indicating that the samples exhibited stable and 
robust clusters (Figs. 1B and S1). Consequently, the patients 
with breast cancer were divided into two clusters, designated 
as cluster 1 and cluster 2. In particular, 187 and 140 samples 
were included in cluster 1 (C1) and cluster 2 (C2), respec‑
tively. The results of t‑SNE analysis evidently confirmed 
that these two clusters were largely in concordance with 
two‑dimensional coordinate systems (Fig. 1C). PCA analysis 
also indicated that patients with breast cancer belonging to 
different clusters were distributed in two directions (Fig. 1D). 
Furthermore, survival analysis demonstrated that patients 
with breast cancer in cluster 2 exhibited a shorter survival 
time compared with patients in cluster 1 (Fig. 1E). The study 
further analyzed the association between expression of FRGs 
and the clinical status of each patient in the two clusters 
(Fig. 1F; Table SI). The results indicated significant differ‑
ences in the ferroptosis‑related molecular features between 
the two patient clusters. Clinical characteristics of these two 
clusters are presented in Table SII. A χ2 test revealed that 
there were more patients with an advanced TNM stage in 
cluster 2, suggesting that the expression of FRGs was closely 
associated with tumor progression of patients with breast 
cancer.

Identification of prognostic FRGs in breast cancer. The 
study further evaluated the prognostic role of FRGs in breast 
cancer. In the training cohort, 62 genes were identified to be 
associated with OS, using univariate Cox regression analysis 
(P<0.05; Table SIII). Furthermore, 37 genes were considered 
to be associated with the prognosis of breast cancer, based 
on the results of LASSO regression analysis (Fig. 2A). 
Multivariate Cox regression analysis was further performed, 
and nine genes were finally selected for the construction of a 
prognostic model on the basis of expression levels and regres‑
sion coefficients (Fig. 2B and C; Table I). The risk scores for 
each patient were calculated, and the patients were classified 
into low‑risk and high‑risk groups based on the optimal 
cut‑off value. The results revealed that high‑risk patients had a 
significantly shorter OS and higher mortality rates compared 
with the low‑risk patients with breast cancer (Fig. 3A and B). 
Notably, the area under the curve (AUC) values were recorded 
to be 0.670, 0.705 and 0.742 in the time‑dependent ROC at 
3, 5 and 10 years, respectively (Fig. 3C), which indicated 
significant specificity and sensitivity of the prognostic signa‑
ture in the prediction of OS. The METABRIC database was 
further used as an external validation cohort to validate the 
predictive efficiency of the developed prognostic model. To 
clarify the classification of the patients with breast cancer 
into high‑risk and low‑risk groups, risk scores for the patients 
from METABRIC were calculated, using the aforementioned 
formula. In concordance with previous results, patients with 
breast cancer in the high‑risk group exhibited a significantly 
lower OS and higher mortality rate compared with the patients 
in the low‑risk group (Fig. 3D and E). Moreover, AUC values 
of 0.573, 0.578 and 0.574 were recorded for the 3‑, 5‑ and 
10‑year OS, respectively (Fig. 3F).

Construction and validation of a predictive nomogram for 
patients with breast cancer. Univariate and multivariate Cox 
regression analyses were performed to evaluate whether the 
prognostic value of the nine gene model in the prediction of 
OS was independent of other traditional clinicopathological 
parameters. The results of the analysis indicated that the 
TNM stage and risk score of the prognostic signature acted as 
independent predictors of OS (Fig. 4A). C‑index was recorded 
to be 0.75. To quantify prediction results for individual 
survival probability at 3, 5 and 10 years, a survival nomogram 
prediction model was constructed (Fig. 4B). The calibration 
curves showed an optimal agreement consistency between 
observed and predicted OS rates at 3, 5 and 10 years (Fig. 4C). 
Moreover, AUCs were recorded to be 0.778, 0.775 and 0.794 
with the nomogram for 3‑, 5‑ and 10‑year OS, respectively. 
The model was considered to be superior to a single inde‑
pendent predictive factor (Fig. 4D), which demonstrated the 
superior predictive value of the nomogram. To further evaluate 
the importance of the nomogram in clinical decision‑making, 
DCA was performed. DCA is a novel reliable evaluation tool 
that is used to quantify the clinical value of a nomogram (43). 
The results of DCA indicated that the nomogram provided 
optimal clinical decision‑making benefits at 3, 5 and 10 years 
compared with a single independent predictive factor (Fig. 4E). 
Additionally, these results indicated that the nine‑FRG prog‑
nostic model served as a reliable prognostic indicator for 
patients with breast cancer.
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The present study also evaluated the mRNA expres‑
sion patterns of these FRGs in breast cancer according to 
METABRIC database. The expression of HILPDA, IFNG, 
MYB, DBN1, HES1, HSPB1 and SLC11A2 was signifi‑
cantly higher in breast cancer tissues compared with those 

in normal tissues. By contrast, the expression levels of 
YWHAE and CD44 were significantly reduced in breast 
cancer tissues as compared with in normal tissues (Fig. S2). 
These results indicated that several prognostic FRGs may 
serve an oncogenic role in breast cancer; however, the 

Figure 1. Identification of breast cancer subclasses using NMF consensus clustering in the ferroptosis set. (A) Flow chart of the study. (B) NMF clustering 
using 171 ferroptosis‑related genes when k=2. (C) t‑SNE analysis of the GSE20685 cohort. (D) Principal components analysis plot of the GSE20685 cohort. 
(E) Survival analysis of patients in clusters 1 and 2 in the GSE20685 cohort. (F) Heatmap showing the association between the expression of ferroptosis‑related 
genes and the clinical status of the two clusters of patients with breast cancer. NMF, non‑negative matrix factorization; t‑SNE, T‑distributed stochastic 
neighbor embedding; METABRIC, Molecular Taxonomy of Breast Cancer International Consortium.
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specific mechanisms regulated by these genes require 
further study.

Comparison of immune infiltration between high‑risk and 
low‑risk patients with breast cancer. To evaluate the tumor 
heterogeneity between high‑risk and low‑risk groups, stromal 
score, immune score and tumor purity were calculated for both 
training and testing sets, using the ESTIMATE algorithm. 
The results indicated that the high‑risk group exhibited higher 
tumor purity and lower immune score in the training and 
testing sets, whereas no significant differences were recorded 
between the stromal scores of the two groups (Fig. 5). In view 
of the significant differences recorded in the immune score for 

the two groups, the present study further evaluated immune 
infiltration patterns for the 22 immune cell types in the patients 
with breast cancer using the CIBERSORT algorithm. This 
may further aid in the characterization of the immunological 
landscape.

Patients with breast cancer belonging to the high‑risk 
group exhibited higher ratios of M2 macrophages and resting 
mast cells, and lower ratios of memory B cells, CD8 T cells, 
T cells, activated CD4 memory T cells and resting NK cells in 
the GSE20685 cohort (Figs. 6A, S3A and B). Moreover, regu‑
latory T cells (Tregs) were enriched in the high‑risk group, 
whereas CD8 T cells, resting CD4 memory T cells, activated 
CD4 memory T cells, γδT cells, resting NK cells, activated NK 

Figure 2. Identification of the FRGs closely associated with the prognosis of breast cancer. (A) LASSO Cox regression analysis was performed to construct the 
FRG‑based risk score model. Partial likelihood deviance was determined by plotting the 10‑fold cross‑validation against the log (λ), and the optimal values 
are indicated by the two dotted vertical lines (left panel). The LASSO coefficient profiles of the 62 FRGs in breast cancer are indicated by the different colored 
curves (right panel). (B) Multiple Cox regression analysis. Forest plot of the associations between the expression of the FRGs and the survival of breast cancer. 
(C) Regression coefficients of the prognostic FRGs in breast cancer. FRG, ferroptosis‑related gene; LASSO, least absolute shrinkage and selection operator.
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cells and activated mast cells were found to be enriched in the 
low‑risk group in the METABRIC cohort (Fig. S3C and D). 
Although no significant differences were observed for M2 
macrophages in the METABRIC cohort, the infiltration 
ratio was found to be relatively higher in the high‑risk group 
compared with in the low‑risk group. These results suggested 
that the poor prognosis of high‑risk patients may be partly 
attributed to the immunosuppressive microenvironment.

To further analyze the immune status of the two groups, 
the ssGSEA algorithm was used to analyze the enrichment 
of additional types of immune cells, and related functions 
or pathways. The results of the analysis indicated that the 
high‑risk group was associated with universally lower immune 
cell infiltration in the GSE20685 cohort (Figs. 6B and S3E). 
This was consistent with the lower immune scores recorded 
for the high‑risk group. Moreover, the functions of antigen 
presentation, cytokine‑cytokine receptor interaction, cytolytic 
activity, immune activation and immune surveillance were 
found to be at lower levels in the high‑risk group (Figs. 6C 
and S3E). Comparative analysis in the METABRIC cohort 
confirmed the differences recorded for antigen‑presenting 
cells, checkpoint molecules, macrophages, neutrophils and 
Treg cells between the two risk groups (Fig. S4A‑C). The 
results of the study revealed that these FRGs may partly 
regulate tumor progression via modulation of the patterns of 
immune cell infiltration. However, further studies are needed 
to elucidate the underlying mechanisms.

Previous studies have reported the importance of check‑
point inhibitor‑based immunotherapies (44,45). The results 
of the present study also revealed a substantial difference in 
the expression of several immune checkpoints between the 
high‑risk and low‑risk groups in the two cohorts (Figs. 7A, B, 
S5A and B). Considering abnormal immune infiltration patterns 
and differential expression of several immune checkpoint genes 
in the high‑risk and low‑risk groups, the study further assessed 
the probability of responding to immunotherapy. SubMap anal‑
ysis was used to compare expression profiles of the two breast 
cancer sub‑classes with a published dataset (40), which consisted 
of 47 patients with melanoma that were subjected to treatment 
involving programmed cell death protein‑1 (PD‑1) immune 
checkpoint inhibitor, or cytotoxic T‑lymphocyte‑associated 

protein‑4 (CTLA‑4) immune checkpoint inhibitor. The results 
of the SubMap analysis (46) indicated that the expression profile 
of the low‑risk group was significantly correlated with the PD‑1 
response group (P=0.023976), which indicated that patients in 
the low‑risk group would exhibit promising responses toward 
anti‑PD‑1 therapy (Fig. 7C).

Association between ferroptosis, proliferation, migration 
and drug resistance in breast cancer. Erastin, an inducer of 
ferroptosis, is known to bind and inhibit voltage‑dependent 
anion channels (VDAC2/VDAC3) to trigger iron‑dependent 
cell death (8). The present study further evaluated the effects 
of erastin on the development and progression of breast cancer. 
The results indicated that erastin treatment could inhibit breast 
cancer cell proliferation and promote the accumulation of 
ROS in a dose‑dependent manner (Figs. 8A, B, S6A and B). 
Moreover, ferrostatin‑1, a ferroptosis inhibitor, reversed the 
inhibition in cell viability and decreased ROS production 
induced by erastin (Figs. 8C, D, S6C and D). Furthermore, the 
migratory ability of breast cancer cells treated with vehicle or 
erastin was evaluated. When compared with vehicle‑treated 
breast cancer cells, the migratory ability of erastin‑treated 
breast cancer cells was inhibited. In comparison, ferrostatin‑1 
treatment could partially rescue the migratory ability of breast 
cancer cells (Figs. 8E and S6E). The present study also evalu‑
ated the effect of erastin on drug resistance of breast cancer 
cells. Notably, erastin treatment significantly increased the 
cytotoxicity of chemotherapeutics (paclitaxel and doxorubicin) 
and hormonal agents (tamoxifen). In comparison, ferrostatin‑1 
attenuated the activities of these drugs (Figs. 8F and S6F). 
These results indicated that erastin inhibited proliferation, 
migration and drug‑resistance of breast cancer cells, which 
was mediated via induction of ferroptosis.

Novel treatment against FRGs in breast cancer. To screen 
potential molecular‑targeted drugs for breast cancer, the 
present study further analyzed the correlation between 
the expression of FRGs and drug sensitivity on the basis of 
NCI‑60 drug z‑scores and gene expression profiling data of 
cancer cell lines obtained from the CellMiner database. The 
statistically significant correlations between the drug z‑scores 
and gene expression (P<0.05) are listed in Table SIV. In 
general, a higher z‑score is indicative of the higher sensitivity 
of the cells towards the corresponding drug. The representa‑
tive Pearson's correlation dot plots are presented in Fig. S7. 
The drugs that were associated with at least four FRGs were 
selected for potential therapeutic regimens. Subsequently, 
seven FRG‑related drugs were identified, which may be repur‑
posed for breast cancer. The detailed information regarding 
correlation coefficients and drug applications obtained from 
DrugBank are listed in Table SV. In particular, nelarabine, 
which is known to be associated with MYB, HES1, SLC11A2, 
HILPDA and YWHAE, is used in acute T‑cell lymphoblastic 
leukemia. This may be repurposed to treat breast cancer.

Discussion

Ferroptosis is a novel oxidative, iron‑dependent form of 
cell death, which has attracted considerable attention in 
recent years. Previous studies have shown that regulation of 

Table I. P‑values and regression coefficients of the nine 
ferroptosis‑related genes.

Gene P‑value Coefficient

YWHAE 0.0013b ‑0.854
CD44 0.0006c ‑0.852
HILPDA 0.0008c ‑0.683
IFNG 0.0268a ‑0.284
MYB 0.0422a ‑0.272
DBN1 0.0436a 0.511
HES1 0.0169a 0.554
HSPB1 0.0002c 0.652
SLC11A2 0.0133a 1.107

aP<0.05, bP<0.01, cP<0.001.
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ferroptosis can modulate cell proliferation, migration and drug 
resistance in various types of cancer (47,48). Additionally, it 
has been shown to serve a crucial role in tumor progression 
and cancer therapeutics. However, the role of ferroptosis 
in breast cancer has not been fully elucidated. The present 
study systematically investigated the expression of FRGs, and 
analyzed their association with OS and immune infiltration in 
breast cancer.

Several prognostic models based on FRG signatures have 
been constructed to explore prognosis‑related biomarkers and 

predict the prognosis of various types of cancer. A previous 
study developed a 13‑gene prognostic model (49), wherein 
AUCs were recorded to be 0.819, 0.815 and 0.891 for 1‑, 
3‑ and 5‑year survival rates of patients with acute myeloid 
leukemia. In another study, five FRGs were used to construct 
a prognostic model with an AUC of 0.816, and the nomogram 
exhibited good performance in the prediction of 3‑year 
survival rate of patients with thyroid cancer (50). However, 
the effect of FRGs in prognostic prediction for patients with 
breast cancer has not been fully evaluated. The present study 

Figure 3. K‑M survival analysis, risk score distribution and time‑dependent ROC curves of the prognostic model in the patient data from GSE20685 and 
METABRIC cohorts. (A) K‑M survival curves indicated that the OS in the high‑risk group was markedly poorer than that in the low‑risk group (P<0.001) 
in the GSE20685 database. (B) Distribution of risk scores under different gene expression characteristics in breast cancer in the GSE20685 database. 
(C) Time‑dependent ROC curve analysis measuring the predictive performance on OS in the GSE20685 database. (D) K‑M survival curves indicated that the 
OS in the high‑risk group was markedly poorer than that in the low‑risk group (P<0.001) in the METABRIC database. (E) Distribution of risk scores under 
different gene expression characteristics in breast cancer in the METABRIC database. (F) Time‑dependent ROC curve analysis measuring the predictive 
performance on OS in the METABRIC database. K‑M, Kaplan‑Meier; OS, overall survival; ROC, receiver operating characteristics; AUC, area under the 
curve; METABRIC, Molecular Taxonomy of Breast Cancer International Consortium.
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established a ferroptosis‑related prognostic model of breast 
cancer based on the GSE20685 database and the model was 
further validated using data from the METABRIC database. 

Moreover, the results for univariate, LASSO and multivariate 
regression analyses assisted in the identification of a novel 
prognostic model that consisted of nine FRGs. The nine‑FRG 

Figure 4. Construction and validation of the predictive nomogram. (A) Univariate and multivariate Cox regression analysis confirmed that the prognostic 
signature and TNM stage were independent prognostic predictors. (B) Nomogram for predicting the OS of patients with breast cancer at 3, 5 and 10 years. 
(C) Calibration curves of the nomogram for OS prediction at 3, 5 and 10 years. (D) ROC curves to evaluate the predictive ability of the nomogram. (E) Decision 
curve analysis determined that the nomogram could obtain the optimal net benefit at 3, 5 and 10 years. OS, overall survival; ROC, receiver operating charac‑
teristic; AUC, area under the curve.
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prognostic model classified patients with breast cancer into 
high‑risk and low‑risk groups. Survival analysis demonstrated 
that prognosis of patients included in the high‑risk group 
was poorer compared with that in the low‑risk group. ROC 
analysis further confirmed the accuracy and sensitivity of the 
gene signature. It has previously been reported that the clini‑
copathological parameters age and TNM stage are commonly 
used for clinical decision‑making and prognostic prediction 
in breast cancer (51). These clinical features were included 
in the present study to perform univariate and multivariate 
regression analysis, and the results indicated that TNM stage 
and risk score acted as independent prognostic indicators 
for OS. Subsequently, a novel prognostic nomogram was 
constructed based on these two parameters, to estimate 3‑, 
5‑ and 10‑year survival rates in patients with breast cancer. 
The AUCs of the nomogram were recorded to be higher than 
those of FRGs or the TNM stage alone, which was sugges‑
tive of the stability and reliability of the nomogram in the 
prediction of the survival rate in patients with breast cancer. 
AUCs were recorded to be 0.778, 0.775 and 0.794 with the 
nomogram for 3‑, 5‑ and 10‑year OS, respectively, which had 
a higher predictive effect for breast cancer than a single factor. 
However, given the incompleteness of the clinical information 
obtained, the predictive nomogram was not further validated 
in the validation dataset. A previous study also used similar 
methods and did not validate the nomogram in the valida‑
tion dataset, demonstrating the feasibility and validity of the 
present study (14). These results indicated that the nine‑FRGs 
prognostic model served as a reliable prognostic indicator for 
patients with breast cancer.

The prognostic model consisted of nine FRGs that could 
be roughly classified as protective factors (YWHAE, CD44, 
HILPDA, IFNG and MYB) and risk factors (DBN1, HES1, 
HSPB1 and SLC11A2) based on their regression coefficients 
for breast cancer prognosis. YWHAE is a member of the 
14‑3‑3 protein family, which serves as a marker of ferroptosis. 

A previous study reported that YWHAE was overexpressed in 
breast cancer tissues, and its expression was associated with 
poor survival, which could further promote cancer progression 
and chemoresistance in breast cancer cells (52). CD44, a key 
marker of cancer stemness, has previously been reported to 
be negatively associated with ferroptosis. In a previous study, 
CD44 overexpression promoted the stability of SLC7A11, by 
enhancing the interaction between SLC7A11 and OTUB1, 
which in turn resulted in the suppression of ferroptosis in lung 
carcinoma cells (53). HILPDA is known to be an important 
driver of ferroptosis for clear‑cell carcinoma, which can enrich 
polyunsaturated lipids and promote ferroptosis sensitivity 
downstream of HIF‑2α (54). IFNG, released from immuno‑
therapy‑activated CD8+ T cells or radiotherapy‑activated ATM, 
can downregulate the expression of SLC3A2 and SLC7A11, 
which can further assist in the promotion of lipid peroxidation 
and ferroptosis that improve tumor control (27,55). MYB is a 
well‑known transcription factor, which has a critical role in 
cellular metabolism (56,57), including fatty acid metabolism, 
glucose‑induced oxidative stress and cysteine metabolism. It 
has been reported that MYB can transcriptionally upregulate 
CDO1, which can result in a decrease in GPX4 expression, 
leading to increased ferroptosis (58). Although the expression 
of partial protective factors was reported to be upregulated in 
breast cancer tissues in some studies, their expression levels may 
be inconsistent with other databases or cohorts, and the detailed 
role in breast cancer progression requires further exploration. 
Based on a series of integrated analysis, the aforementioned 
five genes were considered as potential protective factors in 
the present study, which may draw a different conclusion from 
the analysis based on single factors. In terms of risk factors, 
DBN1 is an actin‑binding protein, which acts as a ferroptosis 
regulator in pancreatic cancer (32). High DBN1 expression 
has been reported to be significantly associated with a poorer 
prognosis and drug resistance in various types of cancer (59), 
including lung adenocarcinoma and breast cancer. Elevated 

Figure 5. ESTIMATE analyses in the high‑risk and low‑risk groups. Violin plots of the immune score, stromal score and tumor purity from the ESTIMATE 
analysis of the two groups in the (A) GSE20685 and (B) METABRIC datasets. For violin plots, the three lines within the boxes represent the 25th percentile, 
median value and the 75th percentile. The bottom and top of the plots represent the minimum and maximum values. ESTIMATE, estimation of stromal and 
immune cells in malignant tumor tissues using expression data; METABRIC, Molecular Taxonomy of Breast Cancer International Consortium.
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Figure 6. Immune infiltration in patients with breast cancer with different risk scores based on the CIBERSORT and ssGSEA algorithms. (A) Violin plots 
were used to visualize the fractions of different immune cells in the high‑risk and low‑risk groups in the GSE20685 cohort. (B) Violin plots were used to 
visualize the fractions of 16 immune cells in the high‑risk and low‑risk groups in the GSE20685 cohort. (C) Radar maps were used to visualize the scores of 
13 immune‑related functions in the high‑risk and low‑risk groups in the GSE20685 cohort. *P<0.05, **P<0.01, ***P<0.001, high risk group vs. low risk group. 
ssGSEA, single‑sample gene set enrichment analysis.
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HES1 expression has also been previously reported in multiple 
types of cancer, including ovarian cancer (60), non‑small 
cell lung cancer (61) and breast cancer (62). Moreover, it was 
observed that high expression of HES1 was associated with 
a poorer prognosis in patients with breast cancer, and HES1 
overexpression resulted in enhanced proliferation, invasion 
and stemness in breast cancer (62,63). HSPB1 is a member of 
the small heat shock family of proteins, which can be induced 
by erastin treatment in an HSF1‑dependent manner in various 
cancer cells. In particular, HSPB1 can reduce cellular iron 

uptake and lipid ROS production, whereas HSPB1 knockdown 
has been shown to result in enhancement of erastin‑induced 
ferroptosis (64). SLC11A2 is a proton‑dependent iron importer 
of Fe2+, which has previously been shown to be physiologi‑
cally important for cellular uptake of iron. A previous study 
reported higher expression of SLC11A2 in MCF‑7 cells 
compared with in MCF‑12A cells (65). Notably, the present 
study revealed that most of these prognostic FRGs were differ‑
entially expressed between breast cancer tissues and normal 
tissues; however, classical FRGs, such as ACSL4 and GPX4, 

Figure 7. Expression of immune checkpoint genes in patients with breast cancer with different risk scores. Box plots showing the expression of several immune 
checkpoint genes in the high‑risk and low‑risk groups in the (A) GSE20685 and (B) METABRIC cohorts. (C) SubMap analysis for immunotherapeutic prediction 
in the training set. The nominal P‑value is indicated by the color‑coded bar, where pink refers to a smaller nominal P‑value and green refers to a larger nominal 
P‑value. METABRIC, Molecular Taxonomy of Breast Cancer International Consortium. *P<0.05, **P<0.01, ***P<0.001, high risk group vs. low risk group.
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Figure 8. Erastin treatment suppresses proliferation, migration and drug resistance of breast cancer cells. Cells were treated with 10 or 20 µM erastin. Erastin 
treatment inhibited the (A) proliferation and (B) enhanced ROS accumulation in MDA‑MB‑231 and MDA‑MB‑468 cells in a dose‑dependent manner. Cells 
were treated with 10 µM erastin with or without 10 µM ferrostatin‑1. Ferrostatin‑1 (C) attenuated the suppression of cell proliferation and (D) reduced the 
production of ROS induced by erastin. (E) Cells were treated with 10 µM erastin with or without 10 µM ferrostatin‑1. Erastin treatment decreased the migra‑
tory ability of breast cancer cells relative to those of vehicle‑treated cells, and ferrostatin‑1 attenuated the suppression in cell migration induced by erastin. 
Scale bar, 200 µm. (F) Cells were treated with 10 µM erastin with or without 10 µM ferrostatin‑1, PTX or DOX (indicated concentrations). Erastin treatment 
enhanced the chemotherapeutic‑induced cell death, whereas ferrostatin‑1 attenuated the inhibitory effect of erastin on cell viability. **P<0.01, ***P<0.001. 
ROS, reactive oxygen species; PTX, paclitaxel; DOX, doxorubicin.
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were not included in the FRGs model. It was hypothesized that 
on the one hand, ACSL4 and GPX4 may have little indepen‑
dent prognostic value, independent of the FRGs model. On the 
other hand, genes in the FRGs model are potentially upstream 
and downstream of the key ferroptosis genes, partly replacing 
the functions of the key ferroptosis genes in the model for 
breast cancer. Therefore, in general, as crucial components 
associated with tumor progression or modulating treatment 
sensitivity, these nine FRGs have considerable potential as 
therapeutic targets or biomarkers in breast cancer.

Immunotherapy, involving immune checkpoint inhibi‑
tors, cyclin‑dependent kinase inhibitors and dendritic cell 
vaccines, is widely applied in the treatment of various types 
of cancer (66). However, it has been reported that immunosup‑
pressive mechanisms may be initiated during the development 
and progression of several types of cancer, to circumvent 
antitumor immune responses (67). These immunosuppressive 
mechanisms include the increased infiltration of immu‑
nosuppressive cells and molecules, and the enrichment of 
low‑immunogenic cancer cells. The results of the present 
study obtained from the two datasets revealed that there 
was a considerable difference in the types of immune cells 
and the infiltration ratio of immune cells between high‑risk 
and low‑risk groups, indicating that the FRGs may regulate 
tumor progression partly via modulation of the patterns 
of immune cell infiltration. The low‑risk group exhibited 
a higher immune score, and it was enriched with multiple 
immune cells and immune‑related pathways. This further 
indicated that patients in the low‑risk group may exhibit a 
better immune status and immune function. Notably, a higher 
proportion of M2 macrophages and Treg cells indicated that a 
stronger immunosuppressive effect may be responsible for the 
poor prognosis in the high‑risk group. Moreover, increased 
expression of several immune checkpoints indicated that 
patients in the low‑risk group may benefit more from immune 
checkpoint inhibitors, as indicated by the SubMap analysis. 
Previous studies have also highlighted the promising role of 
ferroptosis in cancer immunotherapy. In particular, GPX4 
may facilitate activation of stimulator‑of‑interferon genes, 
which can further promote the initiation of an innate immune 
response against microbial infection and tumors (68). CD8+ 
T cells have been reported to enhance sensitization towards 
ferroptosis, via secretion of IFNγ in cancer cells (27). 
Therefore, targeting the tumor ferroptosis pathway in combi‑
nation with immunotherapy may serve as a novel therapeutic 
strategy for cancer management. However, further investiga‑
tion is required to elucidate the immunomodulatory role of 
ferroptosis in antitumor immunity.

Erastin is a classical inducer of ferroptosis, which can 
directly bind to VDAC2/VDAC3 to alter the permeability 
of the outer mitochondrial membrane, thus leading to a 
decreased rate of NADH oxidation and increased ROS produc‑
tion, thereby inducing ferroptosis (69,70). The present study 
revealed that erastin treatment could inhibit the proliferation 
and migration of breast cancer cells, which was mediated via 
induction of ferroptosis. Notably, these effects could be attenu‑
ated by ferrostatin‑1 treatment. It has previously been reported 
that resistance to chemotherapeutics can result in therapeutic 
failure and a poor prognosis in patients with breast cancer (71). 
The present study demonstrated that erastin treatment could 

increase the sensitivity of breast cancer cells towards chemo‑
therapeutics and hormonal agents, which indicated that a 
ferroptosis inducer may be used as a potential combinatorial 
treatment strategy for the treatment of breast cancer. The 
underlying mechanisms responsible for drug sensitivity should 
be investigated in the future.

The present study has some limitations. First, with the 
continuous advances in ferroptosis research, an increasing 
number of FRGs may be identified and analyzed in the 
future, leading to different analysis results and prognostic 
models. Second, limited by the clinical information 
available in the databases used, stratification analysis by 
molecular subtypes, therapies or clinical stage could not be 
performed. Third, the predictive model needs to be validated 
in large‑scale studies before application in clinical practice. 
Fourth, non‑tumor cell lines were not used to evaluate the 
cytotoxicity of the ferroptosis inducer. Finally, future in vivo 
and in vitro studies need to be conducted to validate the 
study, and further explore the specific function and mecha‑
nism of genes in the model.

In conclusion, the present study identified a novel prognostic 
model based on nine FRGs. This model could independently 
predict the prognosis of patients with breast cancer. In addi‑
tion, the present study provided novel insights into the roles of 
ferroptosis in the progression and treatment of breast cancer, 
and revealed an important avenue that may be utilized for the 
treatment of breast cancer. Further investigations are required 
to elucidate the functional roles and underlying mechanisms of 
these FRGs in breast cancer.
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