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Abstract. Adenoid cystic carcinoma (ACC) usually arises in 
the salivary glands, and is a rare tumor, accounting for 1% of 
all head and neck cancer cases. According to estimates, there 
are 3‑4.5 cases of ACC for every one million individuals. 
Numerous studies have reported the association between ACC 
and microRNAs (miRNAs/miRs). miRNAs are endogenous, 
non‑coding small RNAs, 19‑25 nt in length, that can regulate 
target gene expression at the post‑transcriptional level. The 
aberrant expression of miRNAs may be associated with the 
prognosis and treatment of patients, as well as with tumorigen‑
esis and tumor development. miRNAs are becoming reliable 
biomarkers for disease detection due to their varied charac‑
teristics, and miRNA target‑based therapies are increasingly 
being used in clinical practice. The present review provides a 
brief introduction to ACC and the biogenesis of miRNAs. A 
summary of the miRNAs that have been validated by in vitro 
or in vivo studies is then presented, describing their role in 
ACC.
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1. Introduction

Adenoid cystic carcinoma (ACC) is an aggressive malignancy 
that usually arises in the salivary glands; it represents 10% of 
salivary gland tumors and 1% of head and neck cancer cases. 
According to estimates, there are 3‑4.5 cases of ACC for every 
one million individuals. Although ACC affects individuals of all 
ages, its peak occurrence is between the ages of 40 and 60 years, 
and there is a slight female preponderance (60% female and 40% 
male) (1). ACC is the most common malignant tumor of the minor 
salivary glands, and is also not uncommon in the sublingual, 
submandibular and parotid salivary glands. The lungs, cervix and 
skin, as well as the glandular tissue of the breast, lacrimal glands, 
paranasal sinuses and nasopharynx, are examples of uncommon 
locations of this type of tumor (1). A number of factors are 
considered to be potential causes of ACC, particularly exposure 
to ionizing radiation (2). Notably, an increased incidence of 
subsequent salivary gland cancer has been observed in women 
diagnosed with breast cancer. However, the associations between 
smoking, alcohol consumption and ACC remain unclear (2).

2. Clinical features

Pain, facial nerve dysfunction and nerve ending invasion 
are features found in the majority of patients with ACC (3). 
In a previous study, 30% of patients with ACC were shown 
to have ulcerations, 48% exhibited pain and 98% reported 
a mass; the duration of symptoms ranged from 1 month to 
4 years (4). The symptoms of ACC may differ, depending on 
the location of the tumor. The tumor represents a mass in the 
major salivary glands, and facial nerve palsy may occur when 
the tumor is located in the parotid gland. Tumors are usually 
common in the palate, and thus ulcerations and fistula can 
also be observed. When the tumor occurs in the larynx, the 
first presenting symptom may be dyspnea; however, in tumors 
occurring in the nose and paranasal sinuses, epistaxis and eye 
symptoms, as well as deep facial pain and nasal obstruction, 
may be the forefront symptoms (4). With an occurrence rate of 
16.1‑72.7%, the common malignant feature of ACC is distant 
metastasis (DM). The lungs are the most common metastatic 
site, accounting for 74.5‑94.4% of cases of metastasis (5).

3. Histopathology and diagnostic imaging

With regard to ACC, according to the histological appear‑
ance, ‘cylindromas’ are the initial histopathological term. 
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A minimal cytoplasm and angulated hyperchromatic nuclei 
can be noted in ACC cells, and the affected tissue is usually 
eosinophilic or clear. Although myoepithelial differentiation 
predominates, ACC exhibits biphasic differentiation with 
both myoepithelial and secretory glandular elements (6). ACC 
exhibits different ratios of the three distinct growth patterns 
known as solid, tubular and cribriform. Of these, cribriform is 
the most frequent subtype (7).

The preferred test for identifying bone invasion patterns in 
ACC is computed tomography. Heterogeneous bone remod‑
eling and enhancement are often observed in low‑grade ACC, 
while in high‑grade ACC, ‘worm’‑like and osteolytic lesions, 
adjacent bone compression resorption‑like changes and bone 
destruction are more commonly observed (8).

Magnetic resonance imaging is the primary method for 
demonstrating the involvement of the skull base. A ‘dural tail 
sign’ is displayed, while tumor cells spread along nerves to the 
anterior cranial fossa, and then consequently affect the dura 
mater. Soft meningeal enhancement, nodular enhancement or 
dural thickening >5 mm is usually suggestive of dural infiltra‑
tion (5,8,9).

4. Treatment

The therapeutic strategy for ACC depends on the tumor stage 
and grade. Regardless of the primary tumor site, surgery is 
the standard of care for non‑metastatic ACC. The primary 
goal is a complete surgical excision (10). Irrespective of prior 
treatment, in the setting of distant metastatic disease, and 
resectable, recurrent locoregional disease, the appropriate 
treatment is specified by the American Society of Clinical 
Oncology guidelines (5). Under these circumstances, if the 
metastatic disease does not exhibit rapid progression or is 
considered imminently lethal, treatment should include appro‑
priate surgical reconstruction and rehabilitation, and palliative 
care. In the case that complete surgical resection is feasible and 
if following primary tumor treatment, the time to pulmonary 
relapse is >36 months, the surgical treatment of oligometastatic 
disease should also be considered. According to the literature, 
patients treated with post‑operative radiotherapy exhibit better 
local control (9,11).

Currently, microRNAs (miRNAs/miRs) are attractive 
molecular biomarker candidates, as they can be repeatedly 
extracted from a variety of biological samples, and are often 
stable and tolerant in a wide range of storage conditions. In 
addition, miRNAs can be easily detected and accurately 
quantified by a variety of widely used standard techniques, 
such as small RNA sequencing, microarrays and reverse tran‑
scription‑quantitative PCR (12). Furthermore, miRNAs could 
be used as alternative therapeutic targets. The combination 
of miRNA therapeutics and chemotherapy, radiotherapy and 
immunotherapy has exhibited promising results (13). Thus, the 
development of new forms of miRNAs may provide significant 
clinical benefits for cancer patients; however, further research 
is needed in this field (13).

5. Biogenesis of miRNAs

As vital post‑transcriptional regulators of gene expression, 
miRNAs are part of a large family of RNAs, 21 nt in length, 

and have significantly improved our understanding of the 
post‑transcriptional regulation of gene expression. miRNAs 
control the activity of 50% of protein‑coding genes in 
mammals, according to research (14).

The biogenesis and maturation of miRNAs first occurs 
in the nucleus, and subsequently, with the aid of proteins 
and enzymes, biogenesis and maturation occur in the cyto‑
plasm (15). Briefly, as long primary transcripts (pri‑miRNAs), 
miRNAs are initially produced by RNA polymerase II in the 
nucleus. Drosha and Dicer, two enzymes from the RNase III 
family, are bound by pri‑miRNAs, which fold into hairpin 
structures. In the nucleus, the microprocessor complex is 
formed by Drosha with DGCR8 microprocessor complex 
subunit, and the 70 nt precursor miRNA (pre‑miRNA) hairpin 
is then liberated by the primary transcript. The mature 
miRNA/miRNA duplex is produced by Dicer when exportin‑5 
exports pre‑miRNA to the cytoplasm (Fig. 1) (16,17).

To construct the RNA‑induced silencing complex 
(RISC), transactivation‑responsive RNA‑binding protein and 
Argonaute 2 are bound by mature miRNAs. Although related 
to RISC, inactive strands are degraded, and other active strands 
remain within the RISC (18). Through partial complemen‑
tary sequences, miRNAs can recognize target mRNAs. The 
miRNA/mRNA complexes cannot complete protein synthesis 
when miRNAs undergo partial base pairing with target 
mRNAs (19). miRNAs can not only promote translational 
repression, by deadenylating the target mRNA poly‑A tail, but 
can also promote target mRNA degradation. miRNA‑based 
translational repression is often overwhelmed by the process 
of mRNA destabilization in a rapid manner. Dysregulated 
miRNAs can affect various intracellular signaling pathways 
via these two mechanisms of miRNAs, and thus influence the 
development of diseases, including cancer (20).

Since mature miRNAs regulate the expression of 
multiple target genes, the dysregulation of miRNAs may 
cause abnormal gene expression profiles in cells, which 
may then lead to organ injury or even to cancer  (20). 
Furthermore, miRNAs can be well preserved in a variety of 
specimens, such as formalin‑fixed tissue blocks, urine and 
blood plasma or serum. Compared with proteins, miRNAs 
are more measurable due to their increased sensitivity (12). 
There is currently increasing interest in creating miRNAs 
as biomarkers for various molecular diagnostic applications, 
such as autoimmune diseases, cardiovascular diseases and 
cancer. miRNA profiling has therefore gained interest from 
researchers in a variety of biological and medical research 
fields (21,22).

Increasingly, studies have indicated that miRNAs and the 
biogenesis machinery have a critical influence on the devel‑
opment of cancer (23,24). For instance, the dysregulation of 
miRNA biogenesis enzymes, tumor‑suppressor miRNAs and 
miRNAs with oncogenic functions are related to the develop‑
ment of cancer (25). Therefore, miRNAs are crucial for cancer 
research. As aforementioned, miRNAs are becoming reliable 
biomarkers for disease detection due to their varied charac‑
teristics (they can be repeatedly extracted from a variety of 
biological samples, and are often stable and tolerant in a wide 
range of storage conditions), and miRNA target‑based thera‑
pies are increasingly being used in clinical practice; however, 
further research is warranted in this area.
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In the present review, through a preliminary literature 
search, a large amount of literature reporting on miRNAs, as 
well as ACC, was identified; however, no studies were iden‑
tified that summarize the mechanisms of miRNAs in ACC. 
The present review thus aimed to summarize the miRNAs 
that have been experimentally validated and have pathogenic 
mechanisms in ACC. It is hoped that the present review may 
provide a basis for future research on miRNAs in ACC.

6. miRNAs in ACC

In ACC, the molecular mechanisms underlying the molecular 
alterations responsible for oncogenic activity remain elusive. 
There are a number of studies reporting the association 
between miRNAs and ACC. For example, Kiss et al  (26) 
found that miRNA profiles in breast and salivary ACC 
(SACC) differed from those in corresponding normal tissues. 
miR‑9‑5p is considered to be a potential biomarker and thera‑
peutic target  (27). miR‑6835‑3p, miR‑4676, miR‑1180 and 
certain other miRNAs are related to the overall survival and 
recurrence‑free survival of patients with ACC (28). miR‑20a 
and miR‑17 have been shown to be associated with the poor 
outcomes of patients (29). miR‑375, miR‑150 and miR‑455‑3p 
have been identified as aberrantly expressed miRNAs in 
SACC (30). Zhao et al (31) suggested that miR‑29a‑3p may 
bind with AKT serine/threonine kinase 2, and has an influence 
on lacrimal gland ACC (LACC). The present review discusses 
the miRNAs that have been validated by in vitro or in vivo 
studies, and describes their role in ACC (Table I).

miR‑130a. miR‑130a is located on chromosome 11 (32). As 
previously demonstrated, miR‑130a is aberrantly expressed in 
a number of types of cancer; for instance, it is overexpressed 

in esophageal cancer tissue (33), osteosarcoma (34), non‑small 
cell lung cancer (35), basal cell carcinoma (36), adult T‑cell 
leukemia (37) and gastric cancer (38), although it is under‑
expressed in chronic lymphocytic leukemia  (39), prostate 
carcinoma (40), glioblastoma (41), hepatocellular carcinoma 
cells (42), ovarian cancer (43), breast cancer (44) and cervical 
cancer (45).

As a member of a transcription factor family, MYB 
proto‑oncogene, transcription factor (MYB) is associated 
with human malignancies, such as melanoma, pancreatic and 
esophageal cancer (46). N‑myc downstream‑regulated gene 2 
(NDRG2), a tumor suppressor gene, can inhibit metastasis, 
attenuate tumor progression and increase tumor sensitivity 
to anticancer drugs. In various aggressive tumors, NDRG2 is 
suppressed and its expression is related to patient prognosis (47). 
It has been found that NDRG2 expression is downregulated in 
SACC tissue samples, and in mouse models, it may promote the 
metastasis and growth of xenograft tumors. According to the 
literature research, by targeting NDRG2, miR‑130a can suppress 
NDRG2 expression (48). In SACC samples, miR‑130a expres‑
sion has been inversely linked to NDRG2 in vitro or in vivo; the 
overexpression of miR‑130a can increase SACC proliferation 
and invasion. In addition, miR‑130a‑modulated cell invasion, 
colony formation and proliferation are reversed by the restora‑
tion of NDRG2 expression. Furthermore, through binding to the 
miR‑130a promoter, MYB activates the expression of miR‑130a, 
and then leads to NDRG2 downregulation (48). On the whole, 
the MYB/miR‑130a/NDRG2 axis may present an effective 
strategy for the treatment of SACC.

miR‑21. miR‑21 is located on chromosome 17q23.2  (49). 
miR‑21 can affect cell proliferation through a variety of 
targets, including phosphatase and tensin homolog (PTEN), 

Figure 1. Biogenesis of miRNA. Step A: miRNAs are initially produced by RNA polymerase II or III in the nucleus, and transcribed into pri-miRNA. Step B: 
Drosha and Dicer are bound by the pri‑miRNAs; this microprocessor complex is formed by drosha with DGCR8, and then pre‑miRNA is liberated. Step C: 
Exportin‑5 exports pre‑miRNA to the cytoplasm. Step D: The mature miRNA/miRNA duplex are produced by dicer. Step E: Inactive strands are degraded. 
Step F: The incorporation of the mature strand into RISC. The gene expression is suppressed by RISC with Step G: mRNA degradation or Step H: translational 
repression, then regulates cellular function. Step I: In addition, exosomes can package miRNAs. Step J: Exosomes are then compartmentalized into an MVB. 
Step K: The plasma membrane is fused by the MVB, and then miRNA-containing exosomes are transferred to recipient cells and influence gene regulation. 
miRNA, microRNA; pri‑, primary; pre‑, precursor; RISC, RNA-induced silencing complex; mRNA, messenger RNA; MVB, multivesicular body; 3'UTR, 
3'‑untranslated region; ORF, open reading frame; DGCR8, DGCR8 microprocessor complex subunit. 
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sprouty RTK signaling antagonist 2 and programmed cell 
death protein 4 (PDCD4)  (50). miR‑21 is overexpressed 
in various human tumors, such as oral, prostate, breast and 
colorectal cancer (51‑54). These findings indicate that miR‑21 
may play a vital role in tumorigenesis.

The role of miR‑21 in ACC has also been investi‑
gated. In 2015, Jiang  et  al  (55) found that through the 
miR‑21/PDCD4/STAT3 pathway, miR‑21 may regulate 
SACC progression. In SACC cell lines and tissue samples, 
miR‑21 was shown to be overexpressed and to enhance the 
cellular capacity for migration and invasion. As a tumor 
suppressor gene, PDCD4 is the direct target of miR‑21, 
and miR‑21 can suppress PDCD4. It was also found that, in 
SACC samples, the low expression of PDCD4 and the high 
expression of phosphorylated (p‑)STAT3 were linked to the 
high expression of miR‑21. In a study by Wang et al (56), 
miR‑21 inhibitor reduced lung metastatic SACC cell resis‑
tance to simvastatin, which was found be effective against 
the growth of various types of cancer, including breast (57), 
anaplastic thyroid (58), and lung (59) cancer. Yan et al (60) 
also indicated that PDCD4, PTEN and B‑cell lymphoma‑2 
(Bcl‑2) may be the potential targets of miR‑21, and through 
modulation of PDCD4 and Bcl‑2 expression, miR‑21 can 
suppress cell apoptosis, and increase cell proliferation and 
metastasis. miR‑21 thus has potential for use as a therapeutic 
target in SACC.

miR‑93‑5p. miR‑93 is derived from the paralogue of the 
miR‑17‑92 cluster. SMAD family member 7, vascular endo‑
thelial growth factor A, STAT3, SRY‑box transcription factor 
4, AKT serine/threonine kinase 3, erb‑b2 receptor tyrosine 
kinase 2, cyclin B1 and p21 are identified targets of miR‑93, 
suggesting that through diverse mechanisms, miR‑93 may 
function as a tumor suppressor (61). miR‑93‑5p is associated 
with a variety of cancer types, including epithelial ovarian 
carcinoma (61), colorectal cancer (62), gastric cancer (63) and 
hepatocellular carcinoma (64).

As part of the Sin3A‑histone deacetylase co‑repressor 
complex, breast cancer metastasis suppressor 1 like 
(BRMS1L) may suppress target gene transcription  (65). 
As a mediator downstream of the p53 pathway, BRMS1L 
can also inhibit the invasion and migration of cancer cells, 
which are critical processes in cancer metastasis (66). In 
LACC, miR‑93‑5p enhances cell tumorigenesis by targeting 
BRMS1L  (67). In LACC tissues, it has been found that 
miR‑93‑5p expression is increased, and miR‑93‑5p can 
prevent the apoptosis of LACC cells; with the overexpres‑
sion of miR‑93‑5p, an evident enhancement of the invasion 
and migration of LACC cells has been observed  (67). 
miR‑93‑5p targets BRMS1L, and miR‑93‑5p can then 
inhibit the protein expression of BRMS1L. When BRMS1L 
expression is increased, the invasive and migratory potential 
of LACC cells is significantly inhibited (67). Mutated Wnt 
pathway components can also affect cancer and multiple 
growth‑related pathologies. It has also been indicated that 
through BRMS1L, miR‑93‑5p can regulate Wnt signaling; 
the elucidation of the exact mechanisms involved may result 
in the development of effective treatment strategies that may 
markedly decrease the morbidity and mortality of patients 
with LACC (67).

miR‑103‑3p. According to the literature, miR‑103a‑3p func‑
tions as an oncogene; in gastric cancer, endometrial carcinoma 
and hepatocellular carcinoma, miR‑103a‑3p expression is 
upregulated (68). In SACC, by targeting tumor protein D52 
(TPD52), miR‑103a‑3p promotes metastasis (69). Unlike in 
healthy tissues, miR‑103a‑3p expression is high in SACC 
tissues. By assessing the clinicopathological features of 
52 patients with SACC, the high expression of miR‑103a‑3p 
was found to be associated with lung metastasis and local 
regional recurrence (69). When miR‑103a‑3p expression was 
knocked down, cell migration was suppressed, and cell func‑
tions may be affected via the epithelial‑mesenchymal transition 
process. TPD52, a member of the TPD52‑like protein family, 
is mapped to chromosome 8q21. TPD52 exerts differential 
effects on various tumor types. In breast and prostate cancer, 
the expression of TPD52 is high (70,71), while in lung cancer 
and liposarcoma, low expression is observed (72,73). TPD52 
may promote cell invasion, migration, proliferation and 
survival; however, research also suggests that TPD52 may act 
as a suppressor in the progression of tumors. Compared with 
that in SACC tissues, TPD52 expression is markedly higher in 
healthy tissues, and in SACC, TPD52 may be the direct target 
of miR‑103a‑3p. As previously demonstrated, when TPD52 is 
overexpressed, the migration of SACC‑LM (highly metastatic) 
cells is significantly suppressed, suggesting that the migration 
of SACC cells is inhibited by TPD52; miR‑103a‑3p overex‑
pression decreases TPD52 expression in SACC cells when the 
cellular expression of TPD52 is excessive (69).

These findings indicate that the metastatic properties of 
SACC are maintained by the feedback regulation between 
TPD52 and miR‑103a‑3p. In summary, the miR‑103a‑3p/TPD52 
axis may be critical in SACC pathogenesis, and may provide 
further insight into potential therapeutic targets or novel 
biomarkers.

miR‑222. Encoding on chromosome X (Xp11.3), miR‑221 
and miR‑222 are highly homologous, functioning as a cluster 
(miR‑221/222). Acting as an oncogene, this cluster may 
overcome the status of cell quiescence and may promote 
cell proliferation, survival and metastasis (74). miR‑222 is 
involved in colorectal, gastric, prostate, pancreatic, liver and 
breast cancer, and thus has potential for use as a diagnostic and 
prognostic biomarker (75).

In oral squamous cell carcinoma, miR‑222 expression 
is positive (76). As previously demonstrated, in ACC, when 
miR‑222 was knocked down, the proliferation and migration 
of ACC cells was inhibited, and apoptosis was significantly 
induced (77). Moreover, the expression of p53 upregulated 
modulator of apoptosis (PUMA) was increased (77). Belonging 
to the Bcl‑2 protein family, PUMA is a BH3‑only protein; 
PUMA gene mutation or absence may result in reduced rates 
of apoptosis, suggesting that PUMA plays a crucial role in the 
process of apoptosis (78). miR‑222 and PUMA expression are 
negatively regulated; thus, the elaboration of their association 
is essential for the study of ACC (77).

miR‑155. As one of the most multifunctional miRNAs, 
miR‑155 is related to inflammation, immunological modula‑
tion and tumor development  (79). miR‑155 is involved in 
several types of cancer, including gastric  (80), lung  (81), 
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kidney (82) and breast (83) cancer, and head and neck squa‑
mous cell carcinoma  (84). The expression of miR‑155 in 
malignant pathologies suggests its possible use as a diagnostic 
biomarker (85).

As demonstrated in the study by Liu et al (86), miR‑155 
plays a critical role in the invasion and growth of SACC. 
Compared with that in normal tissues, miR‑155 expression 
in ACC is markedly increased. By knocking down miR‑155, 
cell proliferation was inhibited, indicating that, in SACC, 
miR‑155 may promote cell proliferation and facilitate cell 
cycle progression, which suggests the promoting effects of 
miR‑155 on SACC carcinogenesis. Indeed, the knockdown 
of miR‑155 markedly inhibited the invasive ability of SACC 
cells, and in nude mice, the silencing of miR‑155 inhibited the 
pulmonary metastasis of SACC cells. In addition, there was a 
correlation between miR‑155 and the EGFR⁄NF‑κB pathway. 
The EGFR ⁄ NF‑κB pathway plays a role in the growth and 
metastasis of several malignant tumors. EGFR overexpression 
can induce metastasis, invasion, angiogenesis and tumorigen‑
esis (87‑89). The EGFR ⁄ NF‑κB pathway may be related to 
the effects of miR‑155 on ACC carcinogenesis. The mecha‑
nisms underlying the interactions between EGFR⁄NF‑κB and 
miR‑155 warrant further investigations. In addition, through 
the ubiquitin‑like modifier activating enzyme 2 pathway, 
miR‑155 affects SACC metastasis (90).

miR‑320a. As a member of the miR‑320 family, miR‑320a is 
located on chromosome 8p21.3 (91,92). It has been found that 
miR‑320a expression is decreased in various tumors, and by 
downregulating target gene expression, miR‑320a may func‑
tion as a tumor suppressor (93). For instance, in hepatocellular 
carcinoma, by targeting high mobility group box 1, miR‑320a 
could function as a suppressor of tumor and play a critical role 
in the invasion‑metastasis cascade (94). In breast cancer, by 
modulating the expression of Rab protein Rab11a, miR‑320a 
could also function as a tumor suppressor and biomarker (95). 
By targeting ras association domain family 8, miR‑320a 
enhanced the proliferation and invasion of epithelial ovarian 
cancer cells (96). In summary, miR‑320a plays a critical role 
in cancer.

In the study by Sun et al (97), it was found that in highly 
metastatic ACC cells in the lungs, miR‑320a was the most 
markedly downregulated miRNA. The cells were then 
transfected with miRNA mimics to increase miR‑320a 
expression, and this markedly inhibited the adhesion, invasion 
and migration of SACC cells. This indicated that, in SACC 
cells, reduced miR‑320a expression can result in enhanced 
invasiveness. Based on a series of measurements, integrin 
β3 (ITGB3) was considered to be the target of miR‑320a. 
ITGB3 has been found in variety of cancer types, such as 
breast cancer (98), nasopharyngeal carcinoma (99) and human 
non‑small cell lung cancer (100). In SACC cells, by targeting 
ITGB3, miR‑320a could regulate cell invasiveness (97). In 
addition, through in vivo experiments, the overexpression of 
miR‑320a in ACC cells was found to suppress metastasis to the 
liver or lungs of tumor‑bearing mice, which suggested that the 
metastasis of ACC xenografts was suppressed by miR‑320a 
overexpression (97). Furthermore, miR‑320a overexpression 
reduced IGTB3 expression, and by silencing ITGB3, miR‑320a 
inhibited SACC metastasis (97). In summary, in metastatic 

SACC cells, miR‑320a is downregulated, which leads to the 
overexpression of ITGB3, and the upregulation of ITGB3 
enhances cell invasion and metastasis. miR‑320a may thus be 
a promising therapeutic target and prognostic biomarker for 
SACC.

miR‑140‑5p. miR‑140‑5p has been reported to function as 
a tumor suppressor in hypopharyngeal, biliary tract and 
colorectal cancer (101). Rothman et al (102) demonstrated that 
the downregulation of miR‑140‑5p regulated cellular prolif‑
eration and migration in hepatocellular carcinoma, and lung 
and breast cancer. These findings indicate that miR‑140‑5p 
plays a vital role in cancer.

Survivin (BIRC5), a 142‑amino acid, 16.5‑kDa protein, is 
the smallest member of the family of inhibitors of apoptosis 
proteins (103). Compared with the levels in adult differenti‑
ated tissues, overexpression is noted in tumors; in addition, 
in several human neoplasms, survivin is related to a poor 
prognosis. This apoptotic inhibitor has a notable influence on 
both the inhibition of cell death and the promotion of cancer 
cell survival (104). In SACC, miR‑140‑5p inhibits metastasis 
and progression by targeting survivin (105). miRNA array 
screening identified that miR‑140‑5p expression was decreased 
in SACC, while the overexpression of miR‑140‑5p suppressed 
cell proliferation and invasion, and induced apoptosis, inhib‑
iting tumor growth (105). In SACC tissues, the expression 
of survivin was found to be high and the overexpression of 
survivin was related to a poor prognosis of patients with 
SACC  (105). miR‑140‑5p could target the 3'‑untranslated 
region of survivin directly, and inversely regulate survivin. 
SACC cell proliferation and invasion were suppressed by the 
inhibition of survivin, and the inhibition of survivin could 
also induce cell apoptosis  (105). By contrast, the enforced 
expression of survivin could counteract the tumor suppressive 
effects of miR‑140‑5p. It was also illustrated in SACC that 
miR‑140‑5p functions as a tumor suppressor. By regulating 
survivin expression, miR‑140‑5p has the potential to suppress 
the proliferation and invasion of SACC cells, inducing cell 
apoptosis (105). On the whole, miR‑140‑5p has the potential to 
be a promising target for the treatment of SACC.

miR‑187. The human miR‑187 gene is located at 18q12.2. 
Among the cancer‑related miRNAs, the study of miR‑187 has 
attracted increasing attention in recent years. It has been found 
that the expression of miR‑187 varies markedly in various 
tumor types (106). For instance, in breast cancer, as an inde‑
pendent prognostic factor, miR‑187 may confer an increased 
invasive potential in  vitro  (107). By targeting disabled 
homolog‑2, miR‑187 can regulate ovarian cancer progres‑
sion (108), and by targeting FGF9, miR‑187 can suppress lung 
cancer cell proliferation (109). In summary, miR‑187 plays a 
vital role in cancer.

As a member of the G‑protein coupled receptor superfamily, 
C‑X‑C chemokine receptor type 5 (CXCR5) can evoke inflam‑
matory responses and promote lymphocyte migration (110). It 
has been suggested that in a number of human cancer types, 
CXCR5 is highly expressed and may be associated with tumor 
occurrence, invasion and metastasis (111). In SACC, CXCR5 
induces perineural invasion (PNI) by inhibiting miR‑187 (112). 
In SACC samples, CXCR5 expression is increased, which may 
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result in SACC‑LM cell PNI, invasion and migration, while 
the silencing of CXCR5 attenuates migration, invasion and 
PNI (112). As the main cells of peripheral nerves, Schwann 
cells may be beneficial for the maintenance of axons and may 
be fundamental to the development and survival of nerves. 
The inhibition of the expression of CXCR5 leads to a down‑
regulation of Schwann cell hallmarks (112). As previously 
demonstrated, miR‑187 is the downstream miRNA of CXCR5. 
At the nerve invasion frontier, miR‑187 expression exhibits a 
downward tendency, and by inhibiting miR‑187, CXCR5 can 
promote Schwann cell marker expression. By suppressing 
miR‑187, CXCR5 induces the differentiation of tumor cells 
into Schwann‑like cells, facilitating the PNI of SACC (112). 
Thus, miR‑187 is essential for the study of SACC.

miR‑101‑3p. In various malignancies, miR‑101 is one of the 
downregulated miRNAs, and the genomic loss of miRNA‑101 
may confer a proliferative advantage on cancer  (113). 
miR‑101‑3p expression has been found in various types 
of cancer, including ovarian cancer  (114), cholangiocar‑
cinoma  (115), and gastric  (116), breast  (117) and bladder 
cancer (118).

PIM kinase is a part of the family of serine/threonine 
kinases (119). Pim‑1 is a proto‑oncogene, and the dysregula‑
tion of Pim‑1 may result in tumorigenesis and in malignant 
progression (120). In SACC, miR‑101‑3p can enhance chemo‑
therapeutic sensitivity, and can suppress the proliferation 
and invasion of cells by targeting Pim‑1  (121). Compared 
with that in normal parotid glands, miR‑101‑3p expression 
in ACC tissues is markedly reduced. The overexpression of 
miR‑101‑3p can inhibit ACC cell proliferation and invasion, 
while the silencing of miR‑101‑3p reverses the phenomenon, 
indicating that miR‑101‑3p may play a crucial role in the ACC 
inhibition of progression (121). Moreover, Pim‑1 expression 
is inversely associated with the expression of miR‑101‑3p; 
by directly downregulating Pim‑1, miR‑101‑3p can inhibit 
ACC cell invasion and proliferation (121). In addition, in cells 
treated with cisplatin, miR‑101‑3p expression was markedly 
downregulated, and the expression of Pim‑1 was notably 
increased, indicating that in SACC cells, miR‑101‑3p may 
enhance sensitivity to cisplatin (121). In summary, miR‑101‑3p 
may prove to be a promising therapeutic target for patients 
with ACC.

miR‑98. As part of the mature let‑7 family, miR‑98 was initially 
found to be downregulated in leukemia cell lines (122). In 
nasopharyngeal carcinoma, it was also found that miR‑98 
expression was markedly decreased. In addition, miR‑98 was 
abnormally expressed in various types of cancer, including lung, 
breast, colorectal cancer and glioma. Consequently, miR‑98 is 
widely considered as a tumor suppressor gene (122,123).

As demonstrated in the study by Liu et al (124), miR‑98 
expression was downregulated in SACC tissues compared with 
that in adjacent normal tissues; in highly metastatic ACC‑M 
cell lines, miR‑98 expression was found to be lower, whereas 
N‑Ras expression was higher. As part of a family of oncopro‑
teins, N‑Ras is commonly mutated in cancer, and mutations in 
N‑Ras can lead to the activation of downstream serine/threo‑
nine kinases, which may enhance cell survival and cellular 
transformation, and promote cell cycle progression (125,126). 

In SACC, miR‑98 is related to N‑Ras, and miR‑98 may 
negatively regulate N‑Ras expression, suggesting that miR‑98 
may target N‑Ras directly (124). miR‑98 overexpression can 
decrease cell clonogenicity and viability, while N‑Ras is 
evidently related to tumor size and clinical phase, suggesting 
that by targeting N‑RAS translation, miR‑98 can function as 
a tumor suppressor (124). In addition, the expression levels of 
p‑AKT and p‑ERK are decreased by the overexpression of 
miR‑98, indicating the inactivation of the RAS/MAPK/ERK 
and PI3K/AKT pathways (124). Thus, the role of miR‑98 in 
SACC may be crucial.

miR‑125a‑5p. miR‑125a‑5p is part of an evolutionarily 
conserved cluster of three miRNA genes within 727 bp of one 
another on chr19q13.41 (127). In several human cancer types, 
including medulloblastoma, and lung, ovarian and breast 
cancer, the expression of miR125a‑5p is downregulated (128). 
In oral squamous cell carcinoma, miR‑125a‑5p expression is 
also markedly downregulated (129). These findings indicate 
that miR‑125a‑5p may function as a tumor suppressor.

The p38/MAPK signaling pathway is considered to 
regulate various physiological processes, including cell 
proliferation, differentiation and apoptosis (130). Recently, 
increasing evidence has suggested that p38 signaling is 
activated during the tumorigenesis of several human malig‑
nancies (131,132). In SACC, by targeting the p38/JNK/ERK 
signaling pathway, miR‑125a‑5p is associated with SACC 
progression  (133). Firstly, it was found that miR‑125a‑5p 
was downregulated in primary SACC tissues, and lower 
miR‑125a‑5p expression levels were positively linked to a 
metastatic phenotype  (133). In SACC cells, miR‑125a‑5p 
downregulation markedly promoted migration and invasion, 
while miR‑125a‑5p overexpression markedly inhibited migra‑
tion and invasion. It was also shown that the inhibition of 
miR‑125a‑5p upregulated the expression of p‑p38/JNK/ERK, 
while the overexpression of miR‑125a‑5p may decrease the 
activation of p‑p38, JNK and ERK; based on this infer‑
ence, miR‑125a‑5p regulates SACC progression through the 
p38/JNK/ERK signaling pathway (133). This suggests that 
miR‑125a‑5p has potential for use as a prognostic biomarker 
and therapeutic target for SACC.

miR‑582‑5p. In prostate cancer, gastric cancer, colorectal 
carcinoma, hepatocellular carcinoma and bladder cancer, 
miR‑582‑5p functions as a tumor suppressor. However, 
miR‑582‑5p does not only always act as a tumor inhibitor. 
miR‑582‑5p can enhance the survival of glioblastoma stem 
cells, and the overexpression of miR‑582‑5p can promote the 
growth of prostate cancer (134).

Forkhead box C1 (FOXC1) plays a critical role in the 
development of normal embryonic tissues and can regulate 
the development of several organs (135). FOXC1 also exerts a 
notable effect on tumor development and metastasis (136). In 
SACC, by targeting FOXC1, miR‑582‑5p can inhibit invasion 
and migration (137). In SACC cell lines and tissues, miR‑582‑5p 
has been found to be significantly downregulated. Following 
the overexpression of miR‑582‑5p by transfection, SACC cell 
invasion and metastasis were inhibited, and proliferation was 
promoted in vitro (137). miR‑582‑5p can target FOXC1, and the 
expression of FOXC1 is inversely related to the expression of 
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miR‑582‑5p. FOXC1 expression is reduced when miR‑582‑5p 
expression is increased, and SACC cell invasion and migration 
are markedly inhibited (137). In addition, in a xenograft tumor 
model, tumorigenesis and lung metastasis were inhibited 
by enhanced miR‑582‑5p expression (137). These findings 
suggest the potential of miR‑582‑5p as a prognostic biomarker 
and therapeutic target for patients with SACC.

In addition to the aforementioned miRNAs, there are also 
some experimentally validated miRNAs. For instance, by the 
regulation of the miR‑146b‑5p/ATP‑citrate lyase axis, cancer 
susceptibility candidate 9 can facilitate the malignant pheno‑
types of SACC cells (138). By targeting mTOR, miR‑144‑3p 
inhibits the proliferation and induces the apoptosis of SACC 
cells  (139). By targeting PTEN, miR‑23b‑3p may exert a 
critical effect by enhancing angiogenesis and local vascular 
microleakage  (140). In SACC, miR‑5191 expression has 
been found to be downregulated; an increase in the expres‑
sion of miR‑5191 led to the inhibition of tumorigenesis 
and pulmonary metastasis, indicating that miR‑5191 was 
associated with an improved prognosis (141). The expres‑
sion of miR‑338‑5p/3p was also lower in SACC cell lines, 
and may impair motility and invasion by targeting the γ2 
chain gene (142). Through sponging with miR‑143‑3p, long 
non‑coding RNA ADAMTS9 antisense RNA 2 can promote 
SACC cell migration and invasion (143). From the aforemen‑
tioned summarized findings, it can be seen that miRNAs 
have a critical influence on the development of ACC, and 
can be used as biomarkers and therapeutic targets; some 
miRNAs are associated with a good prognosis, while others 
have opposite functions. Thus, further research on miRNAs 
in ACC is necessary. Among the miRNAs aforementioned, 
miR‑6835‑3p has hardly been reported in other cancer 
types, and perhaps it may be a unique biomarker, as well as 
a therapeutic target for ACC; however, further research into 
this miRNA is required in order to fully understand its func‑
tions. In addition, miR‑5191 has rarely been reported in other 
cancer types, and thus the study of this miRNA in ACC may 
also prove useful.

7. Conclusions and future perspectives

There is strong evidence in support of the role of miRNAs 
in a number of cancer types, including ACC. Along with the 
alterations of miRNA biogenesis mechanisms, alterations 
in the levels of miRNA several upstream targets, including 
mutated protein controls, transcription factors and epigenetic 
controls, can also lead to alterations in miRNA levels. Thus, 
the dysregulation of miRNAs may lead to oncogenic or 
tumor‑suppressive effects, consequently influencing the onset, 
progression and diffusion of ACC (144).

The incidence of PNI in ACC is ~43.2%, and PNI may be 
an independent factor associated with a poor prognosis. DM 
is common, with an incidence of 40‑50%. The natural history 
of ACC is defined by a disease‑free window followed by treat‑
ment failure, locoregional recurrence and distant metastasis, 
with a guarded prognosis and propensity for indolent progres‑
sion. Thus, the early diagnosis of ACC is essential (5).

As there are still some limitations to the currently available 
diagnostic methods, and a better prognosis is often achieved 
from an early and accurate diagnosis, new diagnostic and 

prognostic biomarkers are being developed using miRNAs 
for patients with ACC  (145). As also aforementioned in 
the summary of relevant miRNAs, each miRNA exhibits 
alterations in expression, and the majority of these affect 
tumor cell invasion, metastasis and proliferation; some can 
also influence tumor development by affecting their targets, 
and some can affect the therapeutic effects of certain drugs. 
Thus, miRNAs can be used as biomarkers for the diagnosis 
of ACC and to predict the prognosis of patients with ACC.

In addition, several studies have reported that other 
miRNAs also play a role in the diagnosis, progression and 
prognosis of ACC (146‑148). In bodily fluids, these miRNAs 
are circulating and their stability can be easily maintained. 
Thus, miRNAs can be non‑invasive, promising, affordable, 
easily accessible and novel testing tools for patients with ACC 
with a personalized management plan. In addition, as miRNAs 
control multiple target genes, the combination of several 
miRNAs may enhance sensitivity; compared with individual 
miRNA assays, circulating and multiple miRNA‑based 
profiles may present a considerable and effective diagnostic 
and prognostic tool. This may reveal how each miRNA 
affects tumor development and elucidate the biological effects 
of miRNA regulation on the multistep process leading to 
ACC (144,145,149).

Under conditions of DM or symptomatic locoregional 
recurrence, surgery and radiotherapy are not available treat‑
ment options for patients with ACC, but chemotherapy is 
then suitable for the disease; thus, future studies are required 
to focus on the development and delivery of miRNA‑based 
drugs (150). Further attention needs to be paid to the control 
of the off‑target effects of miRNA therapeutics, improvements 
in miRNA delivery and the optimization of miRNA‑based 
drug stability. Moreover, in order to improve non‑miRNA 
treatment, more efforts need be focused on the use of such 
non‑miRNA treatments (radiotherapy and chemotherapy) 
linked to miRNAs, which play a critical role in the regulation 
of the treatment response (151).

In conclusion, the present review provides a brief intro‑
duction into ACC and the biogenesis of miRNAs. miRNAs 
that have been validated by in vitro or in vivo studies are 
presented, and their role in ACC is described. Various 
miRNAs exhibit differential expression and regulation in 
ACC, and can function as either tumor suppressor genes or 
oncogenes. The present review may provide the basis for 
future research, which is required to examine the role of 
miRNAs in ACC.
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