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Abstract. Genetic alterations drive tumor onset and progres‑
sion. However, the cross‑talk between tumor cells and the 
benign components of the surrounding stroma can also 
promote the initiation, progression and metastasis of solid 
tumors. These cellular and non‑cellular stromal components 

form the tumor microenvironment (TME), which co‑evolves 
with tumor cells. Their dynamic and mutualistic interactions 
are currently considered to be among the distinctive hallmarks 
of cancer. Biochemical and physical cues from the TME serve 
an essential role in regulating tumor onset and progression. 
They are also associated with resistance to treatment and 
poor prognosis in patients with cancer. Therefore, a deep 
understanding of the TME is vital for developing potent 
anticancer therapeutics and improving patient outcomes. The 
present review aims to review the biology of both cellular 
and non‑cellular constituents of the TME and novel findings 
regarding their contribution to core as well as emerging cancer 
hallmarks. The present review also describes key TME markers 
that are either targeted in interventional clinical trials or serve 
as promising potential anticancer therapies. Understanding 
TME components and their intercellular interactions is key 
toward identifying the mechanisms of progression and treat‑
ment resistance. Such understanding is of utmost significance 
for personalized and effective cancer therapy strategies.
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1. Introduction

Cancer develops from genetically altered cells with a high 
proliferation rate and the ability to disseminate from a 
primary location to invade distant sites (1). In the past, scien‑
tists assumed that cancer progression and invasiveness were 
solely determined by factors within tumor cells (1,2). However, 
focus is now put on cancer‑supporting components, which 
have been demonstrated to aid tumor cells in manifesting 
the disease (3,4). It is now widely established that the tumor 
microenvironment (TME) components contribute to different 
cancer hallmarks and are thus recognized as possible cancer 
therapy targets (2,5‑7). These components include cells of the 
stroma [cancer‑associated fibroblasts (CAFs), endothelial cells 
(ECs), pericytes and immune cells] in addition to non‑cellular 
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components, such as the extracellular matrix (ECM), extra‑
cellular vesicles (EVs) or exosomes, and the microbiome, 
collectively forming the TME (5,8,9).

Oxygen levels, metabolites, nutrients and pH have also 
been acknowledged as factors that may be controlled by the 
TME (10,11). The immunosuppressive and metabolically 
stressed nature of the TME serves an instrumental role in 
exacerbating the aggressiveness of cancer cells (11). For 
instance, interactions between tumor and stromal components 
may result in additional modifications of the TME cells, ECM 
remodeling and angiogenesis, thus leading to metastasis (12).

Cross‑talk between cancer cells and TME components 
may also decrease the efficacy of antitumor treatments, 
contributing to drug resistance (13). Accordingly, an improved 
understanding of the biological and chemical nature of the 
TME paves the way for the development of therapeutic strate‑
gies for more efficient targeted cancer therapy. The present 
review aims to discuss TME components and their molecular 
features, and how they modulate cancer hallmarks. It also 
reviews key factors of the TME for targeted cancer treatment, 
with a focus on current TME pathways and mediators targeted 
in interventional clinical trials.

2. Composition of the TME

TME refers to all non‑cancer cellular components surrounding 
tumor cells, and non‑cellular components exerting 
tumor‑supporting roles (2,6). Stromal cells of the TME 
include CAFs, ECs lining the blood vessels and immune cells 
(Fig. 1) that are recruited by cancer cells from neighboring 
tissue stroma (5). Interactions of TME stromal cells with 
cancer cells create a protective environment that promotes 
tumor growth in both cases (2,5). Tumor‑associated stromal 
cells not only physically support cancer cells but also secrete 
growth factors, cytokines, chemokines and ECM proteins with 
tumor‑promoting properties (14,15). In addition to stromal 
cells, scientists have identified the ECM, the microbiome and 
cell messengers referred to as EVs as non‑cancerous constitu‑
ents of the TME (10,16‑18).

Stromal cells
CAFs. Fibroblasts are the prevalent cell type in connective 
tissue stroma and the primary source for ECM and basement 
membrane proteins (15,19). Most fibroblasts within tumors 
differentiate into CAFs (15,20). CAF activation is driven by 
different stimuli, such as inflammation (Fig. 1), ECM stiff‑
ness and other physiological stresses (19,21). CAFs are a 
highly heterogeneous cell population and, to the best of our 
knowledge, their origin remains unclear (15). While it was 
earlier hypothesized that most CAFs originate from local 
fibroblasts that are activated and reprogrammed to support 
tumor growth (22), some groups have demonstrated that CAFs 
originate from mesenchymal stem cells, specifically bone 
marrow‑derived stem cells located in the bones (23‑25). Others 
attribute their origin to the human adipose tissue‑derived stem 
cells found in the adipose tissues (26‑28). This emphasizes the 
remarkable plasticity of cancer, enabling it to employ different 
sources to promote growth and progression (27).

CAFs differ from normal fibroblasts both functionally 
and phenotypically (15). Generally, CAFs express an array of 

different proteins, such as vimentin, α‑smooth muscle actin 
(αSMA), platelet‑derived growth factor receptor α/β (PDGFR 
α/β) and fibroblast activation protein (FAP) (15). However, 
studies have identified CAF subtypes lacking the expression of 
these markers (29,30). Accordingly, stromal cells that are nega‑
tive for epithelial, endothelial and leukocyte markers having 
elongated morphology might be considered to be CAFs (19). 
Using transcriptomic analysis, a number of groups have iden‑
tified different subpopulations of CAFs (28,31). For instance, 
in pancreatic ductal adenocarcinoma (PDAC), three CAF 
subtypes have been identified: i) Myofibrotic CAFs showing 
myofibroblastic features with high expression of αSMA and 
other contractile proteins and low IL‑6 expression; ii) inflam‑
matory CAFs (iCAFs) with low αSMA expression and high 
expression of cytokines involved in inflammation (such as 
IL‑6); and iii) antigen‑presenting CAFs highly expressing 
major histocompatibility complex II (MHC II) family 
genes (30‑33). Tumor‑supporting CAFs secrete MMPs, cyto‑
kines, chemokines and angiogenic factors that can stimulate 
the proliferation of tumor cells and enhance angiogenesis (34). 
CAFs also alter ECM signaling and stiffness by upregulating 
ECM components, such as collagen type I and III, and fibro‑
nectin (30). Accumulation of fibrous connective tissues is 
referred to as desmoplasia and is associated with increased 
hypoxia, neoangiogenesis and drug resistance (30,35).

ECs. Given their role in angiogenesis, ECs form the inner 
lining of the blood vessels and remain the most extensively 
studied cells of the TME (36). Typically, blood vessels enable 
the exchange of oxygen, nutrients, wastes and immune cells 
between the circulatory system and body tissues (36). Due to 
the increased metabolic and nutritional requirements of tumor 
cells, ECs branch from pre‑existing vasculature to form new 
blood vessels (37). Newly formed vessels are structurally 
and functionally abnormal because of their leaky nature and 
dissimilar chaotic branching that increase the interstitial fluid 
pressure rendering a hypoxic and acidic environment (38). 
Tumor vascularization, caused by hypoxia, involves vascular 
ECs and other TME cell types, including pericytes and 
bone marrow‑derived precursor cells (39,40). The pro‑ and 
anti‑angiogenic molecules secreted by cells determine the 
transformation of normal angiogenic processes to tumor 
angiogenesis (37,41). While thrombospondin‑1 and Endostatin 
are major anti‑angiogenic factors (42), VEGF‑A secreted by 
cancer cells can stimulate the formation of new vasculature 
that, in turn, supplies tumor cells (Fig. 1) (37). In addition, 
platelet‑derived growth factor β (PDGFβ) recruits pericytes 
to the tumor vasculature aiding blood vessel formation and 
maturation (43).

Infiltrating immune cells (IICs). Tumor cells and CAFs 
secrete chemoattractant factors that recruit various immune 
cells to their niche (6). TME IICs include immunosuppres‑
sive and antitumor immune cells of myeloid lineages, such 
as macrophages, myeloid‑derived suppressor cells (MDSCs), 
neutrophils, mast cells and dendritic cells (DCs), and lymphoid 
lineages, such as B and T lymphocytes, and natural killer cells 
(NKs) (14,44).

Activated macrophages can be polarized into two main 
subtypes: Pro‑inflammatory M1 and anti‑inflammatory 
M2 (45). Tumor‑recruited macrophages infiltrating the TME 
constitute the tumor‑associated macrophages (TAMs), the 
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most abundant immune cells of the TME (46,47). Data indi‑
cate that TAMs are mainly of the M2 subtype, and thus, are 
tumor‑promoting (45,48). TAMs secrete cytokines and soluble 
factors that contribute to tumor progression by influencing 
angiogenesis, cell migration, invasion and metastasis (2). The 
presence of TAMs is associated with poor prognosis in most 
cancer types (49).

MDSCs represent a unique category of immunosuppressive 
myeloid cells that are abundant in the TME (50,51). Chronic 
inflammation in cancer disturbs normal myelopoiesis, and 

thus, differentiation and maturation of immature myeloid cells 
(IMCs) are impaired (52). This disturbance drives the genera‑
tion of MDSCs from IMCs (52). MDSC are subdivided in two 
main subsets according to their origin and phenotypical and 
morphological characteristics. These subsets are the granulo‑
cytic polymorphonuclear neutrophils‑MDSCs and monocytic 
MDSCs (53).

Neutrophils, also referred to as tumor‑associated neutro‑
phils, possess immunosuppressive activity (54). Neutrophils 
are also polarized into two subsets: Antitumor N1 and 

Figure 1. Mechanisms of TME stromal cell activation and the complexity of the TME organization. This schematic highlights the multiple mechanisms that can 
contribute to the activation of TME CAFs, macrophages and Treg cells, and to the increased neovasculature in tumors. Adapted from ‘Tumor Microenvironment 2’, 
by BioRender.com (2022). Retrieved from https://app.biorender.com/biorender‑templates/t‑5f63a4bebecfd300b1f68c0c‑tumor‑microenvironment‑2. CAF, 
cancer‑associated fibroblast; CCL, CC‑chemokine ligand; CXCL, CXC‑chemokine ligand; FGF, fibroblast growth factor; GM‑CSF, granulocyte‑macrophage 
colony stimulating factor; PDGF, platelet‑derived growth factor; TME, tumor microenvironment; Treg, regulatory T.
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tumor‑promoting N2 (54). IICs include mast cells capable of 
releasing soluble factors that enhance EC proliferation and 
promote tumor angiogenesis (50). DCs are antigen‑presenting 
cells (APCs) capable of producing pro‑inflammatory cytokines 
and chemokines and promoting T cell stimulation (50,55). 
However, DCs in the tumor exhibit abnormal antigen‑presenting 
capabilities, and thus, are dysfunctional (56).

Among the lymphoid lineage of IICs, different types of 
T cell populations infiltrate the TME (44). Cytotoxic T cells 
can eliminate malignant cells, and thus, are associated with a 
good cancer prognosis (44,57). This is the case of the antigen 
recognizing cytotoxic memory T cells that are positive for 
CD8 and produce IL‑2 and IFNγ (2). CD4+ T helper (Th) cells 
are divided into different subtypes: The pro‑inflammatory Th1 
lineage, anti‑inflammatory Th2 cells and the immunosuppres‑
sive regulatory T (Treg) cells (2). The ratio of Th1 to Th2 cells 
in cancer is associated with tumor stage and grade (50,58,59). 
B cells are also present at the invasive borders of tumors and 
in the lymph nodes and lymphoid structures neighboring the 
TME (2). In breast and ovarian cancer, the presence of B cells 
is associated with a good prognosis (60). On the other hand, 
the presence of immunosuppressive regulatory B cells is 
associated with skin cancer and may promote lung metastasis, 
suggesting a type‑specific effect of B cells on cancer (61). 
Finally, NKs are cytotoxic lymphocytes capable of killing 
tumor cells without antigen presentation (50). NKs control 
tumor growth by providing innate immunity to the sites of 
transformed tumor cells and inducing cytotoxicity (62,63).

Overall, TME stromal cells, namely CAFs, ECs and 
IICs, and their secretome contribute to the growth and 
development of tumors (14,15). Notably, the complexity of 
interactions between cancer and TME cells demonstrates 
remarkable tumor mass heterogeneity (64). In their review, 
Koppensteiner et al (65) discussed how negative anticancer 
immune responses may result from the interactions between 
CAFs and T cells. On the other hand, Mun et al (66) reviewed 
the positive and negative relationships between immune 
and stromal cells of the TME. Despite the advancement in 
technologies capable of studying the TME at the single‑cell 
level (67), a detailed understanding of all tumor‑TME connec‑
tions remains largely lacking. Therefore, anticancer strategies 
that only target one cell population are inadequate, and need 
to be fully updated in line with such rapid discoveries in TME 
biology.

ECM. The ECM is a dynamic network of intercon‑
nected macromolecules in which the cells reside (10,68). 
It comprises minerals, an array of extracellular proteins, 
glycosaminoglycans, and other proteoglycans (PGs) and poly‑
saccharides (10,68). The main components include collagens, 
elastins, fibronectins, laminins, hyaluronic acid (HA), heparan 
sulfate, chondroitin sulfate and keratan sulfate (10,68). This 
intricately organized structure forms a supportive substrate that 
serves as a biological scaffold for surrounding cells and as an 
anchor for cell attachment to the ECM (at focal adhesions and 
hemidesmosomes) (69‑71). The ECM also regulates cell‑cell 
and cell‑matrix bidirectional signal transduction, including 
transport and mechano‑transduction (16,72). This is partly due 
to the ECM being a reservoir for EVs and soluble bioactive 
effectors, such as cytokines, growth factors, chemokines and 

enzymes (73‑75). ECM components and ECM‑associated 
factors collectively make up the ECM ‘matrisome’, which is 
responsible for regulating transport, proliferation, motility, 
survival, homeostasis and other fundamental cellular mecha‑
nisms (76‑79).

The ECM is present in all tissues and organs in the body, 
including tumors and the TME (68). Its organization is both 
cell‑specific and tissue‑specific (80). The ECM composi‑
tion within tumors is heterogeneous and accounts for up to 
60% of the tumor mass (10). Both cancer cells and stromal 
cells contribute to the production of the tumor ECM (77,81). 
However, CAFs remain the primary source of ECM in the 
TME (10,20,74,82). Cancer ECM differs from normal tissue 
ECM in composition, organization, density, and physical and 
biochemical properties (68). These differences are also noted 
across tumors of different metastatic potentials (83,84). For 
instance, primary and pre‑metastatic cancers increase ECM 
production (74,85‑88). This TME fibrotic response, clinically 
termed desmoplasia, results in a substantial accumulation 
of collagens, fibronectins and PGs in benign and malignant 
tumors (89,90). Collagen and collagen‑processing enzymes, 
laminins, integrins, MMPs and HA are among the most 
enriched ECM proteins in tumors (10,62,78,81,91,92).

On the other hand, the shift between low and high 
molecular weight PGs in different solid tumors illustrates 
the association between the composition of the ECM and 
cancer grade (93). Similarly, the tumor environment favors the 
increase in collagen type I, III or V at the expense of collagen 
type IV in breast, ovarian, lung and ductal carcinoma (94‑96).

Finally, the crosslinking of collagen, and other fibril‑
lary proteins, such as elastins, renders the ECM denser and 
stiffer (10,74,91,97‑99). Changes in the ECM may be induced 
by proteases (MMPs and cathepsins) or nonproteolytic 
enzymes (heparanases and hyaluronidases) secreted by tumor 
and stromal cells, by oxygen free radicals produced by IICs, or 
as a response to hypoxia and acidosis (16,77,100).

The upsurge in the production of ECM components with 
altered properties, in turn, reduces the diffusion of nutrients 
and metabolites, and modulates cytokine secretion (79,83,101). 
This creates a hypoxic tumor‑promoting environment capable 
of stimulating proliferation, tumor growth, epithelial‑to‑mesen‑
chymal transition (EMT), aggressiveness, resistance to cell 
death, evasion from the immune system, and invasion and 
tumor dissemination, among others (10,97,102). Overall, this 
highlights the need for potent ECM‑targeting therapies.

EVs. EVs are cell messengers, which mediate the signaling 
cross‑talk between a cell and its environment (103‑105). 
Cancerous and non‑cancerous cellular constituents of 
the TME, including the microbiome, communicate with 
one another by secreting soluble factors and/or releasing 
EVs (75,103,105‑110). Therefore, EVs are an integral and func‑
tional non‑cellular component of the TME (75,103,111,112). 
Briefly, EVs are membrane‑enclosed particles subdivided 
into exosomes, microvesicles and oncosomes depending 
on their size, biogenesis, function, etc. (105,113). Exosomes 
are intraluminal vesicles destined for exocytosis (105). 
They exhibit a classic dish or saucer‑like morphology with 
diameters ranging between 30 and 100 nm (17,114,115). As 
the name suggests, intraluminal vesicles are formed by the 
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inward budding of endosomal membranes inside the lumen 
of endosomes (17,114‑116). Unlike exosomes, microvesicles 
are the products of the outward budding and fission of the 
plasma membrane (105,117,118). Their diameters range 
between 100 and 1,000 nm (105). By contrast, oncosomes are 
cancer‑specific large EVs with diameters ranging between 1 
and 10 µm (105,118,119). They shed off the ‘non‑apoptotic 
membrane blebs’ of amoeboid cancer cells (105,120). All 
aforementioned biogenesis processes simultaneously result 
in the packaging of various cytosolic materials inside the 
EVs (105). Therefore, the cargo of EVs can comprise lipids, 
proteins and nucleic acids, such as DNA, mRNA, microRNA 
(miRNA), long non‑coding RNA (lncRNA) and circular RNA 
(circRNA) (17,114‑116,121,122).

Studies have demonstrated that all types of cells secrete 
EVs (75,103‑106,117,123). However, the data suggest that 
cancer cells secrete more EVs than normal cells and that the 
load of EVs can increase with cancer grade and aggressive‑
ness (124‑126). For instance, hypoxic solid tumors secrete 
more EVs than non‑hypoxic tumors and control the composi‑
tion of the released EVs (126). The differential expression 
of wild‑type or mutant p53 also impacts the secretion, size, 
and RNA and protein load of cancer‑derived EVs (127,128). 
This is in line with reports demonstrating that the molecular 
composition of EVs and their effect on cancer hallmarks and 
response to chemotherapy depends primarily on the origin of 
the secretory cells (104,110,121,126,129‑133). Furthermore, 
emerging evidence has revealed that EVs derived from 
different cell types exhibit distinct content profiles (131). 
Researchers could even differentiate between EVs origi‑
nating from various subtypes of the same lineage, namely 
between the exosomes of lymph node metastasis‑derived 
LNCaP (lymph node carcinoma) and VCaP (vertebral) pros‑
tate cancer cell lines (134).

EV cargo commonly includes type‑specific and or 
stage‑specific cancer biomarkers (117). For instance, EVs 
isolated from patients with ovarian cancer express distinct 
protein and miRNA sets compared with those found in 
cancer‑free individuals (114). Similarly, specific RNA 
classes are particularly abundant in EVs of patients with 
triple‑negative breast cancer compared with those with 
hormone receptor‑positive breast cancer (124,135). Several 
other non‑coding RNAs have been demonstrated to serve a 
role in tumor development (136). The long non‑coding lymph 
enhancer‑binding factor 1‑antisense RNA1 has been found 
to act as a tumor promoter in a number of malignant tumors; 
however, it acts as a tumor suppressor in myeloid cancer (137). 
Furthermore, circ0021205 is a non‑coding circRNA that 
promotes cancer progression in cholangiocarcinoma and 
non‑small cell lung cancer (NSCLC) (138). In patients with 
colorectal cancer (CRC), upregulated miRNA‑7062‑5p 
inhibits G protein‑coupled receptor 65, thus promoting osteo‑
clast genesis during bone metastasis (139). Long intergenic 
non‑coding RNA (LINC)02257 is a survival‑associated 
enhancer RNA serving important immunotherapy roles in a 
number of cancer types (140). In lung adenocarcinoma, the 
LINC00987/A2M axis acts as an effective tumor suppressor, 
as well as a biomarker for the evaluation of the tumor 
immune microenvironment or the prognostic and therapeutic 
potential (141).

Further observations have revealed that the expres‑
sion of the polymerase I and the transcript release factor 
glioma biomarker in EVs is positively associated with tumor 
grade (142). The clinical expression of programmed cell death 
ligand‑1 (PD‑L1) in EVs is associated with diverse cancer 
types, including melanoma and colon cancer (143‑145). Finally, 
researchers have reported that both surgery and radiation 
treatments change the composition of EVs, thus demonstrating 
the close association between tumors and their TME (132,142). 
These data collectively highlight the growing interest in EVs 
as promising targets cancer for diagnosis, prognosis and treat‑
ment.

Microbiome. The microbiome is a component of the TME, 
which has become a subject of interest in cancer research 
recently (18,146). By definition, the microbiome represents 
‘the characteristic microbial community occupying a reason‑
ably well‑defined habitat, which has distinct physico‑chemical 
properties’ (146). In principle, only the microbial community 
present in or around the tumor tissues can strictly be labeled as 
the microbiome of the TME (18). However, microbes at distant 
sites from tumors (such as the gut) have also emerged as 
critical modulators of cancer onset and progression (147‑153). 
Therefore, this section reviews the composition and role of all 
microbes with direct or indirect effects on cancer to overcome 
the shortcomings of the TME‑centric view and highlight 
the importance of the different layers of cancer environment 
beyond the immediate spatial boundaries of tumors (i.e., 
at the level of what is now known as the tumor organismal 
environment) (154). The microbiome is: i) A fingerprint for 
tumors; ii) a major factor in the pathology of the disease; 
and iii) a diagnostic tool to predict the response to treatment 
of patients (150,151,155‑164). Researchers have reported 
substantial differences in the microbiome composition of 
normal tissues compared with tumor tissues (162,163,165‑173). 
These observations have revealed tumor‑type specific, tumor 
subtype‑specific and grade‑specific bacteria spanning several 
major phyla (162,163,165‑173). Furthermore, the data suggest 
that the majority of bacteria of the tumor microbiome of 
different solid tumors are intracellular (165).

The hypoxic nature of tumors contributes to the abun‑
dance of anaerobic bacteria, which are unable to survive in an 
oxygen‑rich environment (174). The anaerobic Fusobacterium 
genus is particularly abundant in various carcinomas, 
including oral, colorectal and bladder cancer (168,171,173‑175). 
For instance, several species of Fusobacterium, namely, 
F. nucleatum, F. mortiferum and F. necrophorum, have 
been identified in metastatic colon cancer tissues, while 
F. nucleatum and F. periodonticum are a signature of oral 
cancers (174,175). Further highlighting the tumor‑specificity, 
the Bacteroides depleted in colon cancers were, by contrast, 
profuse in rectal tumors (175,176). In addition, rectal 
tissue sample analysis revealed a distinct microbiome in 
cancer tissues compared with normal tissues (176,177). 
Phascolarctobacterium, Parabacteroides, Desulfovibrio 
and Odoribacter species are abundant in tumors, whereas 
Pseudomonas, Escherichia, Acinetobacter, Lactobacillus and 
Bacillus species are primarily found in healthy tissues (176). 
Similarly, the microbiome of the breast cancer TME indicated 
the enrichment in specific microbes (Actinobacteria, Listeria 
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spp, Haemophilus influenzae, Anaerococcus, Caulobacter and 
Streptococcus) and the depletion of others (Propionibacterium 
and Staphylococcus) (164,177). Interestingly, in lung cancer, 
the genera Streptococcus and Staphylococcus exhibit the 
same expression trend as that observed in breast cancer (163). 
Specifically, Streptococcus and Neisseria genera thrive 
in cancer, unlike Staphylococcus and Dialister, which 
favor normal tissues (163). Different microbes, including 
Fusobacterium, Streptococcus and Bacteroides, are also 
differentially expressed in bladder cancer, prostate cancer and 
other cancer types (171,172,178).

Finally, mycoplasma species, such as the Mycoplasma 
hyorhinis, also exhibit disparate manifestation in tumor 
tissues compared with normal tissues, and are associated with 
tumor‑promoting properties, resistance to treatment and poor 
prognosis (179‑186). These reports emphasize the importance 
of identifying and characterizing the different genera of the 
tumor microbiome to determine potential biomarkers and 
therapeutic targets (146,154,163,176,177).

3. Cancer hallmark capabilities of TME stromal cells

In 2000, Hanahan and Weinberg (187) proposed a conceptual 
categorization to organize the distinctive key traits of cancer. 
They noticed that all cancer cells acquire six fundamental 
functional capabilities, which they named ‘The Hallmarks of 
Cancer’ (187). These fundamental hallmarks are: Sustaining 
proliferative signaling, evading growth suppressors, resisting cell 
death, enabling replicative immortality, inducing angiogenesis, 
and activating invasion and metastasis (Fig. 2). Due to the remark‑
able progress in cancer research, Hanahan and Weinberg (187) 
incorporated additional ‘emerging cancer hallmarks’, which 
are: Evading immune destruction and reprogramming energy 
metabolism (Fig. 3). In addition, ‘enabling characteristics’ that 
facilitate acquisition of fundamental and emerging hallmarks, 
were also introduced. These are: Genome instability and 
mutation and tumor‑promoting inflammation (Fig. 3) (4,188). 
TME stroma markedly contribute to cancer hallmarks (6). The 
reciprocal communications between TME components and 
cancerous cells mediate cancer development (5). This section 
reviews the various mechanisms by which TME stromal cells 
influence cancer hallmarks and highlights the complexity of 
cancer targeting.

Sustained proliferative signaling. The mutational capabilities 
of cancer cells have been recognized as the core factor for 
sustaining cancer proliferative signaling (187). Stromal cells 
serve an important role in augmenting oncogenic mutations, 
and thus, the hyperproliferation of cancer cells by driving 
mitogenic signals (Fig. 2) (6,7,187).

Different CAF subtypes exhibit diverse functions and affect 
multiple cancer hallmark capabilities (30). CAFs secrete mito‑
genic epithelial growth factors (EGF), fibroblast growth factors 
(FGF), hepatocyte growth factors (HGF) and other signaling 
proteins that drive cancer cell proliferation (189‑191). HGF 
secretion results in the activation of mesenchymal epithelial 
transition factor (a HGF receptor), and thus, the activation of 
the MAPK and PI3K/AKT survival signaling pathways (192). 
These pathways are also activated by CAF‑secreted vascular 
cell adhesion molecule 1 (VCAM1) and promote the 

proliferation of lung cancer cells (193). Furthermore, leptin, 
a cytokine secreted by CAFs, binds to its receptor, activates 
MAPK/ERK1/2 and PI3K/AKT signaling pathways, and 
promotes proliferation of cancer cells in NSCLC (194).

Angiogenic vascular cells (AVCs) also directly support 
cancer hyperproliferation. Experimentally stimulating 
angiogenesis results in increased proliferation of cancer 
cells (195,196). These ECs secrete growth‑promoting factors 
that influence multiple hallmarks, including proliferation, 
invasion and metastasis (further described subsequently) (197). 
Similarly, IICs stimulate neoplastic cell proliferation by 
secreting mitogenic growth factors, such as TNF‑α, ILs, 
chemokines, heparins and histamine, in addition to EGF, FGF 
and TGF‑β [reviewed in (198)]. Additionally, IICs secrete 
metallo‑ and serine proteases that cleave and modify the ECM 
leading to chronic paracrine and juxtacrine mitogenic activity 
sustaining cell proliferation (199).

Evading growth suppressors. Adhesion molecules at 
cell‑cell and cell‑ECM connections transmit extrinsic 
growth‑suppressing signa ls  to cancer cel l  cycle 
machinery (5,187). As aforementioned, disruption of adhe‑
sion molecules is induced by IIC‑secreted metallo‑ and 
serine proteases and heparinase, which cleave and modify 
the ECM (10). ECM modifications disrupt the transmission of 
antigrowth signals and the formation of growth‑suppressing 
adhesion complexes (200‑202).

Notably, f ibroblasts natural ly exhibit extr insic 
growth‑suppressing capabilities to maintain epithelial homeo‑
stasis (15). In the TME, CAFs secrete high amounts TGF‑β 
and ECM components [reviewed in (203)], thus stimulating 
mechanical remodeling of the ECM. Therefore, it was hypoth‑
esized that CAFs may acquire a ‘loss‑of‑function’ phenotype 
as they are reprogrammed to sustain cancer hallmarks (5). 
TME components can also affect tumor growth‑suppressing 
signals by regulating cell cycle check points (204). The TME 
of renal cell carcinoma (RCC) exhibits FGF‑dependent degra‑
dation of p27Kip1, a cyclin‑dependent kinase inhibitor (204). 
This leads to enhanced tumor cell proliferation (Fig. 2) (204).

Resisting cell death. Cancer cells foster an intrinsic ability to 
resist cell death programs, mainly apoptosis (187). Stromal 
cells of the TME confer an additional protective mechanism 
for cancer cells to resist cell death and targeted cytotoxic 
therapy (Fig. 2) (6). CAFs mediate cancer cell survival by 
secreting survival factors [insulin‑like growth factor 1 (IGF‑1) 
and insulin‑like growth factor 2 (IGF‑2)] (15). CAFs also form 
neoplastic ECM that selectively transmits survival signals and 
promotes epithelial cell migration (199).

The prominent role of CAFs in resisting cell death is 
demonstrated by the contribution of CAFs to chemoresis‑
tance (15). CAFs co‑cultured with NSCLC cell lines have 
been demonstrated to resist apoptosis and enhance chemore‑
sistance (205,206). This is achieved by the secretion of stromal 
cell‑derived factor‑1 (SDF‑1) and the expression of exosomal 
miRNA‑103a‑3p, which lead to Bcl‑xL upregulation and BCL2 
antagonist/killer 1 downregulation, respectively (205,206). 
In a separate study, Sun and Chen (207) demonstrated 
that CAF‑secreted C‑C motif chemokine ligand (CCL)5 
upregulated HOX transcript antisense RNA (HOTAIR) 
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Figure 2. Contributions of TME components to fundamental hallmarks of cancer. This schematic illustrates the contribution of TME cell types to: i) Sustained 
proliferative signaling; ii) evading growth suppressors; iii) resisting cell death; iv) enabling replicative immortality; v) inducing angiogenesis; and vi) activating 
invasion and metastasis. Created with BioRender.com. APCs, antigen presenting cells; AVCs, angiogenic vascular cells; BAK1, BCL2 antagonist/killer 1; CAFs, 
cancer‑associated fibroblasts; CCL, CC‑chemokine ligand; ECs, endothelial cells; ECM, extracellular matrix; EMT, epithelial‑to‑mesenchymal transition; 
FGF, fibroblast growth factor; HOTAIR, HOX transcript antisense RNA; IGF, insulin growth factor; IICs, infiltrating immune cells; lncRNA, long non‑coding 
RNA; MDSCs, myeloid‑derived suppressor cells; Mig, monokine induced by IFN‑γ; MIP, macrophage inflammatory protein; miRNA, microRNA; MDSC, 
myeloid‑derived suppressor cells; MSC, mesenchymal stem cells; PDGF, platelet‑derived growth factor; SDF, stromal cell‑derived factor; TAMs, tumor‑activated 
macrophages; TANs, tumor‑activated neutrophils; TME, tumor microenvironment; VCAM1, secreted vascular cell adhesion molecule 1.
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lncRNA expression. HOTAIR, in turn, inactivated the 
caspase‑3/BCL‑2 signaling pathway in these cells conferring 
chemotherapy resistance in NSCLC cells (207). Additionally, 
the chemotherapeutic drug, cisplatin, induces CAF‑secreted 
IL‑11 in lung adenocarcinoma (208). IL‑11 activates the IL‑11 
receptor/STAT3 anti‑apoptotic signaling pathway (208). 
The monokine induced by IFN‑γ factor is a CAFs‑secreted 
chemokine that has also been demonstrated to upregulate the 
expression levels of Bcl‑2 and protect Tca8113tongue squa‑
mous cell carcinoma cells from heat‑induced apoptosis (209).

Tumor vascularization induced by AVCs reduces apoptosis, 
thus increasing cancer cell proliferation (5). This phenotype is 
altered by the administration of vascular disrupting agents that 
increase cell death in treated cancer (210). Binding of IICs to 
cancer cells can also inhibit detachment‑induced apoptosis (5). 
TAMs, on the other hand, express α4‑integrin that binds 
VCAM1 expressed on breast cancer cells (211). This interac‑
tion initiates a signaling pathway that activates anti‑apoptotic 
PI3K/AKT signaling and resists apoptosis (211). In addition, 
IICs secrete cytokines, leading to cell death resistance (212). 
For instance, TAM‑secreted IL‑10 is associated with elevated 
Bcl‑2 expression via upregulation of the IL‑10/STAT3/bcl‑2 

anti‑apoptotic signaling pathway (212). This leads to increased 
proliferation and is associated with drug resistance of breast 
cancer (212).

Enabling replicative immortality. Shortening of telomeric 
DNA obstructs cellular replication and triggers senescence 
or apoptosis (5). Cancer cells, however, need to insure limit‑
less replication as a defense mechanisms to overcome normal 
senescence caused by telomere shortening (4,5). Therefore, 
cancer cells activate telomerases that stabilize telomere length 
and confer replicative immortality (4,213). This critical trait 
occurs in >90% of cancers (213). Telomerase activation is 
enhanced by the upregulation of the human telomerase reverse 
transcription (hTERT) gene (214). The pH of the hypoxic TME 
can selectively induce human telomerase (215). At present, 
there is little evidence for the contribution of TME stromal 
cells to stabilizing telomeres in cancer cells (5). For instance, 
bone marrow‑derived mesenchymal stem cells (MSCs) of 
multiple myeloma secrete IL‑6 and macrophage inflammatory 
protein (MIP)‑1α (216). Li et al (216) provided evidence of a 
positive association between IL‑6 and MIP‑1α secretion and 
the elongation of telomere length. MSCs may thus facilitate 

Figure 3. Contributions of TME components to emerging hallmarks of cancer and enabling characteristics. This schematics illustrates the contribution of TME 
components to: i) Evading immune destruction; ii) reprogramming energy metabolism; iii) genome instability and mutation; and iv) tumor‑promoting inflam‑
mation. Created with BioRender.com. APCs, antigen presenting cells; CAFs, cancer‑associated fibroblasts; DCs, dendritic cells; ECs, endothelial cells; HEVs, 
high endothelial venules; IICs, infiltrating immune cells; MLH1, mutL homolog 1; MMR, mismatch repair; NK, natural killer cell; PMS2, PMS1 homolog 2, 
mismatch repair system component; TAMs, tumor‑activated macrophages; TME, tumor microenvironment; Treg, regulatory T.
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multiple myeloma development (216). Further research is 
required to investigate whether other TME cellular compo‑
nents can regulate telomerase activity and enable replicative 
immortality.

Inducing angiogenesis. Angiogenesis in chronic inflamma‑
tion is illustrated by constitutive activation of pro‑angiogenic 
factors (37). In tumors, it is regulated by different components 
of the TME, such as CAFs, ECs, different IICs and pericytes, 
which secrete angiogenesis‑inducing factors (Fig. 2) (2,5,6,37). 
Myeloid cells secrete soluble mediators that impact EC 
survival and new vessel remodeling (50). For instance, TAMs 
control tumor angiogenesis by producing VEGF‑A (50,217), 
the bioavailability of which depends on TAM‑secreted 
MMP‑9 (218). Mast cells, on the other hand, secrete VEGF, 
histamine and heparin, thus regulating tumor angiogen‑
esis (50). Mast cells also secrete proteases, such as MMP‑9 
and tryptase, which in turn activate pro‑angiogenic signaling 
pathways (218‑220). In addition to the secretion of pro‑angio‑
genic factors, CAFs synthesize ECM proteins that sequester 
angiogenic growth factors and ECM‑degrading enzymes (15). 
For example, in hepatocellular carcinoma, CAFs secrete 
VEGF, regulating the enhancer of zeste homolog‑2/vasohibin 
1 pathway, thus promoting angiogenesis (221). CAFs also 
regulate tumor angiogenesis by secreting chemoattractants for 
myeloid cells (5,222). Additionally, pericytes promote angio‑
genesis in glioma by expressing periostin, which regulates 
both growth and branching of blood vessels (223).

Activating invasion and metastasis. A key feature of cancer 
cells is the ability to spread throughout the body by invasion 
and metastasis (187). Cancer cells and tumor stromal cells 
can mediate local invasive growth or seeding metastases 
at distant sites (2,6,7). Tumor vasculature upregulation of 
VEGF loosens tight junctions between ECs and reduces 
pericyte coverage (62,224). This impairs vascular integrity 
and facilitates cancer cell intravasation into circulation (62). 
Hypoxia, induced by hypoxia‑inducible factors, then triggers 
tumor dissemination and metastasis (224,225). Furthermore, 
pericytes in the TME activate TGF‑β receptors (226). The 
subsequent TGF‑β response initiates an autocrine activation 
loop (226). Analysis of the secretome of these activated peri‑
cytes has revealed upregulation of IGF‑binding protein‑3, a key 
paracrine factor that has been demonstrated to promote cancer 
cell migration and invasion (226). Additionally, proteases 
secreted by TAMs and mast cells remodel ECM components, 
promoting tissue invasion and dissemination (227,228). Soluble 
factors secreted by IICs also contribute to this hallmark. For 
instance, TNF‑α, secreted by IICs, activates downstream JNK 
and NF‑κB signaling cascades, ultimately enhancing MMP‑2 
and MMP‑9 activity (229). Equally importantly, IICs mediate 
cancer metastasis by inhibiting the expression of metastasis 
suppressor genes. For example, IICs inhibit maspin, a serine 
protease inhibitor, which normally acts as a tumor suppressor 
by increasing cell adhesion to extracellular matrix. Thus, 
maspin inhibition negatively regulates tumor migration and 
invasion (230,231).

Platelets also exhibit invasion and metastasis‑promoting 
functions by physically associating with cancer cells, inducing 
EMT, enabling extravasation and forming secondary tumors 

at metastatic sites (232). Different components within the 
ECM might also initiate or enhance EMT‑like processes (10). 
Collagen reorganization, PG expression and protease‑medi‑
ated ECM macromolecule degradation affect cell invasion and 
metastasis (16). Finally, CAFs are also implicated in activating 
invasion and metastasis (15). CAF‑derived effectors, such as 
HGF and TGF‑β, trigger/activate c‑Met signaling and EMT, 
respectively, mediating tumor invasion and metastasis (233). 
In breast cancer cells, IGF‑1 and CXCL12 secreted by CAFs 
stimulate cancer metastasis to the bone (234). ECM proteins 
and remodeling enzymes produced by CAFs are also consid‑
ered to support cancer invasion by modifying the structure 
and function of the ECM (7). One study revealed that cancer 
cells circulate in the blood alongside CAFs derived from 
the primary tumor (235). It has also been suggested that 
CAF‑derived signals may control organ‑specific metastasis 
of breast tumors (236). Therefore, CAFs are promising targets 
in pre‑clinical therapeutic strategies in patients with breast 
cancer (236).

Evading immune destruction. Effective destruction of cancer 
cells necessitates an influx of immune cells, including Treg 

cells, NKs and NK T cells (5,187). However, tumor vascu‑
lature is considered to attenuate the influx of immune cells, 
rendering them incapable of killing cancer cells (5). This is 
partly mediated by high endothelial venules (HEVs), which 
typically support the homeostatic trafficking of immune cells 
during routine immune surveillance (43). Absence of HEVs 
in tumor vasculature allows cancer cells to evade immune 
destruction (237‑239).

In the TME stroma, ECs cross‑present tumor antigens and 
stimulate the development of a tolerizing, hence immunosup‑
pressive, environment (240). CAFs are also essential factors 
that allow the tumor to evade immune destruction (Fig. 3). 
CAF‑derived interleukins (IL‑4 and IL‑6) and chemokines 
(TGF‑β and CXCL8) recruit M2 macrophages and inhibit 
cytotoxic T lymphocytes (CTLs) and NK cells (240,241). 
Among the intricate tumor‑promoting roles of CAFs is the 
ability to act as APCs to T cells (20). In addition to ECs and 
CAFs, IICs serve an important role in enabling cancer to avoid 
immune destruction (44). IICs prompt immunosuppressive 
activity that blocks the antitumor effect of CTLs and NK 
cells (14). Among these IICs are TAMs, which lack cytotoxic 
activity, and release immunosuppressive factors and suppress 
CD8+ T cell proliferation (242‑244). CCL22 secreted by 
TAMs recruits Treg cells, which enable cancer cells to evade 
immune destruction (245). Treg cells can also be recruited by 
other cytokines, such as CCL2 and TGF‑β, secreted by mast 
cells and other immunosuppressive IICs (50,246). Treg cells can 
suppress B cells, NK/T cells, CD4+/CD8+ T cells, monocytes 
and DCs (247). Treg cells suppression can be direct through cell 
contact or immunosuppressive soluble mediators or indirect by 
suppressing APCs (14). In particular, Treg‑induced inhibition 
of CD4+ T cells is mediated by inhibition of receptor‑induced 
calcium, nuclear factor of activated T‑cells and NFκB 
signaling (50,247). Tumors expressing high levels of immu‑
nosuppressive cytokines are often associated with decreased 
CD8+ T cell populations and poor survival (242). Reciprocal 
communication occurs between IICs and other TME stromal 
cells where M2 macrophages secrete EGF, FGF and TGF‑β 
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to support CAF survival and activation (240). Finally, TAM, 
MDSC and mast cell secretion of MMP9, FGF2, PDGFβ and 
VEGF prompts EC survival and angiogenesis (240).

Reprogramming energy metabolism. Metabolic differ‑
ences between normal and cancer cells have long been 
observed (4,248). However, scientists have revealed that 
tumors are metabolically heterogeneous and can be grouped 
into different metabolic phenotypes (249‑251). This hetero‑
geneity is likely to stem from differences in glycolytic and 
mitochondrial reprogramming (249‑253).

Advancements in physiologic magnetic resonance imaging 
of tumors have demonstrated that metabolic phenotypes 
remain flexible and can switch depending on the surrounding 
TME conditions and the nature of the exchanged signaling 
molecules (254). Therefore, the plasticity is contingent on 
the availability of nutrients and anaplerotic molecules (255). 
Consequently, interactions between cancer cells and 
pro‑tumorigenic TMEs can reprogram tumor metabolism and 
fuel cancer cell proliferation (Fig. 3) (255).

Substantial evidence indicates that tumors can reshape 
TME metabolism and even the patients' organismal metabo‑
lism and homeostasis (256‑258). For instance, cancer cells 
can induce aerobic glycolysis in TME CAFs and stromal 
cells through the reverse Warburg effect (259). Tumor‑derived 
metabolites can also exert immunosuppressive effects that 
block the activation and differentiation of various immune 
cells of the TME (260,261). In return, CAFs and other TME 
stromal components supply cancer cells with the nutrients 
required to sustain tumor metabolism and growth (260).

In summary, most findings highlight the ability of the 
metabolism to reshape the TME, whereby cancer cells turn the 
normal TME into a permissive tumor‑promoting environment 
and a nutrient factory to be used for efficient energy produc‑
tion (259,262). Therefore, it is crucial to review the metabolic 
features of TME components and to identify critical factors 
behind metabolic reprogramming.

Cancer cell metabolism. Cell metabolism refers to the set of 
chemical reactions that sustain the normal functions of cells, 
including: i) Production of macromolecule building blocks; 
ii) energy harvesting; and iii) the elimination of metabolic 
wastes (248,263). Cells rely on nutrient uptake and degrada‑
tion to generate ATP, the energy currency of cells (248,263). 
Cancer cells are fast replicating cells with high anabolic and 
catabolic energy requirements (4). These cells can rewire 
their metabolism to maintain sufficient ATP production and 
ensure proliferation and survival (264‑266). Metabolism 
reprogramming is achieved by a complex interplay of various 
signaling pathways, which can be intrinsically triggered by 
oncogenes or extrinsically influenced by the inhospitable 
TME (264,267‑269). One such mechanism is the significant 
increase in glucose uptake, typically observed in positron 
emission tomography scans of patients (270). Another major 
metabolic difference between normal and cancer cells is the 
fate of glucose. Normal cells harvest glucose energy through 
aerobic respiration, a four‑stage process that combines glycol‑
ysis, pyruvate oxidation, the tricarboxylic acid (TCA) cycle 
and oxidative phosphorylation (OXPHOS) (248,263). In this 
route, glucose is oxidized into carbon dioxide and water.

On the other hand, cancer cells switch to aerobic glycolysis, 
which converts glucose into pyruvate and then lactate via the 
lactate dehydrogenase enzyme (248,265). This phenomenon, 
also known as the Warburg effect or the Warburg pheno‑
type, is commonly stimulated by energy demands of rapid 
proliferation and/or hypoxia (251,270,271). To the best of our 
knowledge, it is still unclear whether the Warburg effect is a 
cause or consequence of carcinogenesis (272). However, this 
phenotype allows faster ATP production than OXPHOS and 
may provide a selective advantage for cells, specifically in the 
hypoxic TME (273,274).

Another important benefit of aerobic glycolysis is that the 
generated glycolytic metabolites facilitate the biosynthesis 
of sugars, amino acids, nucleotides and fatty acids critical 
for rapid cell proliferation (248). These advantages explain 
why high amounts of aerobic glycolysis have been detected 
in proliferating cells and progressive cancer types (270,275). 
The TCA cycle is also active in these cells, with the resulting 
substrates rerouted for use in de novo synthesis pathways, 
particularly lipogenesis (276).

Cancer cells heavily rely on the uptake and metabolism 
of glutamine as an alternative carbon source to glucose (276). 
Glutamine, the amide derivative of glutamate, is one of the most 
abundant nutrients in the plasma (255,276). Glutaminolysis 
converts glutamine to lactate and NADPH (255,276). In 
normal cells, glutamine is used as a nitrogen source to synthe‑
size nucleotides and other non‑essential amino acids (264). 
However, in cancer cells, glutamine metabolism exceeds the 
needs of cells for de novo proteins and nucleotides produc‑
tion (276). Instead, the data suggest that glutamine metabolism 
allows the cells to use glucose‑derived carbon and TCA cycle 
intermediates as precursors for fatty acid synthesis (276). 
This is achieved by continuous replenishment of the TCA 
cycle intermediates (mainly oxaloacetate) through a set of five 
chemical reactions, which combined, form the anaplerosis 
process (276).

Drivers of metabolic reprogramming. Metabolic reprogram‑
ming in the TME is driven by oncogenic alterations in cancer 
cells, as well as by changes in the signaling of normal cells (269). 
Typically, these modifications impact the dynamics underlying 
nutrient uptake and bioenergetic gene expression (269). For 
instance, constitutive activation of the PI3K‑AKT‑mTOR 
signaling pathway has been directly linked to glycolysis stimu‑
lation in cancer cells and in CAFs (269,277,278).

Similarly, there is a clear association between Myc 
transcription factor and the expression of various metabolic 
genes, glycolytic enzymes, and glucose and glutamine 
transporters (279). Specifically, Myc activates glucose and 
glutamine metabolism, as well as purine, pyrimidine, fatty acid 
and cholesterol synthesis (269,280‑282). Oncogenic KRAS 
also triggers TME metabolic reprogramming by upregu‑
lating glycolytic enzyme activity, glutamine metabolism, and 
glucose and lactate transporter expression (283‑285). In addi‑
tion, KRAS stimulates nucleotide biosynthesis by channeling 
glycolytic metabolite intermediates to the pentose phosphate 
pathway (284‑286). Furthermore, KRAS sustains autocrine 
and paracrine signaling by inducing the expression of cell 
surface receptors responsible for upregulating type I cytokine 
receptors (269,287,288). KRAS promotes micropinocytosis 
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and autophagy processes for nutrient scavenging by cancer 
cells (289,290). On the other hand, loss of p53 function in 
cancer cells increases glycolysis, glucose transporters and 
lipid metabolism, among others (291‑294). Overall, cells of 
the TME have several distinct metabolic signatures that are 
directly associated with tumor growth and represent promising 
targets for cancer therapy.

Genome instability and mutation. Genome maintenance in 
normal cells results in a low rate of spontaneous mutations (4). 
Compromised check points and sensitivity to mutagenic 
agents increase the rate of mutation (4). The TME is character‑
ized by hypoxia, low pH and nutrient deprivation (295). These 
conditions contribute to genome instability and mutations 
(Fig. 3) (295). For instance, hypoxia stimulates the downregu‑
lation of mutL homolog 1 and PMS1 homolog 2, mismatch 
repair system component, which are protein members of 
the mismatch repair pathway and required to rectify DNA 
mismatch errors (296,297). Therefore, hypoxia is a major 
factor inducing substantial DNA damage leading to genetic 
instability of solid tumors (295).

In addition to hypoxia, it has been recently shown that a 
novel competing network of competing endogenous RNA can 
regulate genomic integrity (298). Therefore, these genome 
instability‑related lncRNAs may act as biomarkers for genetic 
instability, immunetherapy prognosis and therapeutic sensi‑
tivity in colon adenocarcinoma and colon cancer (298,299).

Tumor‑promoting inflammation. Chronic inflammation is a 
major contributor to cancer, and the inflammatory response 
can be triggered by various factors, including pathogens, 
carcinogen exposure and imbalanced immune regulation 
(Fig. 3) (300). Immune cells can either exert an antitumor or 
protumor activity depending on the polarization state. For 
example, Th1 cells act as antitumor agents, whereas Th17 
subsets of CD4+ T cells act as tumor‑promoters (300,301). 
On the other hand, anti‑inflammatory M2 macrophages and 
N2 neutrophils are both tumor‑promoting cells that secrete 
cytokines, proteases and growth factors, contributing to 
tissue remodeling and angiogenesis, eventually leading to the 
conversion of cells into malignant cells and cancer forma‑
tion (300,301). TAMs, an M2 subtype, produce VEGF‑C 
and VEGF‑D, which leads to peritumoral inflammation and 
lymphangiogenesis in human cervical cancer (302).

CAFs exert pleiotropic functions in immunomodulation 
mainly by secreting a range of pro‑inflammatory factors, which 
recruit and activate IICs (191,303,304). In 2010, Erez et al (191) 
revealed that the CAF secretome causes tumor‑promoting 
inflammation in a NF‑κB‑dependent manner. iCAFs secrete 
various chemokines and cytokines, such as CXC‑chemokine 
ligand (CXCL)1, cyclooxygenase‑2, IL‑1, IL‑6 and SDF‑1, and 
receptors, such as IL 6 receptor α and IL‑6 cytokine family 
signal transducer, which add to the tumor‑promoting inflam‑
matory milieu of the TME (305‑308). In addition to TGF‑β 
production, CAFs secrete thymic stromal lymphopoietin, 
favoring Th2 cell polarization, which is associated with poor 
prognosis (309). Overall, TME‑mediated inflammation influ‑
ences tumor development, invasion, angiogenesis, metastasis 
and immunosuppression (191,305,306). Therefore, targeting 
inflammation may be a promising tool for cancer treatment.

Therefore, cancer development is mediated by TME 
components that contribute to major cancer hallmarks, 
including tumor proliferation, survival, angiogenesis, inva‑
sion and metastasis (2,66,240). Overall, these findings have 
prompted researchers to target TME cells for cancer treatment 
alone or in combination with conventional therapeutic modali‑
ties (9,67,310).

4. Targeting the TME for cancer therapy

Clinical anticancer therapeutic efficiency is limited due to 
several factors, including tumor heterogeneity and the ability 
of cancer cells to develop multidrug resistance (11). Another 
reason for this observation is that cancer cells exhibit different 
responses when moving from bench to bedside translational 
medicine (311). The cross‑talk among tumor cells, stromal cells 
and other TME components adds to the complexity of efficient 
treatment (8). Increasing awareness of the role of the TME in 
tumor development brought about novel cancer therapy strate‑
gies targeting TME components (310). Additionally, combined 
therapies targeting more than one cell type or signaling 
pathway are also being investigated (11). The present review 
highlights the TME cells, signaling pathways and soluble 
factors that are targeted for cancer treatment. It also reviews 
anticancer drugs that are currently in clinical trials or show 
promising results for drug development.

Targeting CAFs. Membrane‑bound serine protease FAP expres‑
sion distinguishes tumor tissues from healthy tissues (30). 
Inhibitors selectively targeting FAP (FAPi) are currently 
in phase I and II clinical trials (http://clinicaltrials.gov). For 
instance, 68Ga‑DOTA‑FAPI is being studied for FAP‑based 
imaging and therapy using gallium‑68 (312,313). FAP is also 
targeted by CD40 agonist (RO7300490) or 4‑1BB agonist 
(RO7122290; phase I/II; NCT04826003; Table I). The latter 
resulted in activation of T and NK cells in the first‑in‑human 
phase I study, suggesting potential antitumor activity (314). 
An early phase I clinical trial is investigating the effect of 
combining FAPi with anti‑neoplastic monoclonal antibodies 
(NCT01722149). More studies are warranted to determine the 
efficiency of targeting FAP‑positive CAFs and tumor cells.

Targeting ECs. One main mechanism for inhibiting angiogen‑
esis is targeting VEGF or VEGFR, alone or in combination 
with chemotherapeutic drugs (315). More than 400 interven‑
tional clinical trials are investigating the anticancer potential 
of VEGF targeting (based on http://clinicaltrials.gov; accessed, 
January 6, 2022). Promising results have been reported with 
the administration of the U.S. Food and Drug Administration 
(FDA)‑approved bevacizumab (Avastin), an anti‑angiogenic 
antibody that targets VEGF, and Bevacizumab‑IRDye800CW, 
its fluorescent form (316,317). Combined administration with 
chemotherapeutic agents resulted in increased overall survival 
or progression‑free survival (PFS) in CRC, NSCLC and breast 
cancer (315). Additionally, therapeutic strategies are currently 
considering the administration of two anti‑angiogenic agents. 
For instance, a phase III trial carried out on patients with 
NSCLC is comparing the efficacy of two anti‑VEGF antibodies, 
LY1008 and bevacizumab (Avastin), combined with the chemo‑
therapeutic drugs paclitaxel and carboplatin (NCT03533127). In 
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addition to VEGF or VEGFR targeting, anti‑angiogenic strate‑
gies include using multi‑receptor tyrosine kinase inhibitors that 
stimulate the inhibition of VEGF, VGEFR, PDGFR or c‑Kit 
(NCT03533127). The FDA‑approved pazopanib (Votrient) is one 
example that inhibits VEGFR1/2/3 and c‑Kit for the treatment 
of patients with soft tissue sarcoma and RCC (318,319). There 
are currently three phase IV clinical trials that target the VEGF 
pathway. Two of these trials studied the effect of everolimus 
(RAD001), an mTOR inhibitor, for the treatment of patients 
with advanced or metastatic RCC and (NCT01206764 and 
NCT01266837). Another study assessed endostatin, an inhibitor 
of tyrosine phosphorylation of VEGFR2 (320) in combination 
with the anti‑mitotic vinorelbine and cisplatin for the treatment 
of patients with NSCLC (NCT02497118). Therapeutic agents 
targeting vascular ECs in interventional clinical trials (in phases 
III and IV) are listed in Table I.

Targeting IICs. Given the pivotal role of the immune system 
in cancer, several anti‑inflammatory drugs have been 
designed to inhibit tumor‑promoting inflammation (50). TME 
immune cells within the tumor are targets of several clinical 
phase trials (8,51,315). One approach is the inhibition of 
macrophage recruitment and activation in tumors (9). This 
involves targeting and inhibiting colony‑stimulating factor‑1 
(CSF‑1), a macrophage‑recruiting mediator, and its receptor 
(CSF‑1R) (51). This approach is associated with reduced infil‑
tration of TAMs and MDSCs, and inhibiting tumor progression 
and metastasis (51). At present, there are >50 clinical trials 
targeting CSF‑1 and 16 clinical trials targeting CSF‑1R, 
according to https://clinicaltrials.gov (date accessed, January 
6, 2022). One promising drug, vimseltinib, a CSF‑1R inhibitor 
also referred to as DCC‑3014, has reached a phase III clinical 
trial and is being assessed for its efficacy in treating patients 
with tenosynovial giant cell tumor (NCT05059262). TAMs are 
characterized by the high expression of CD204 (macrophage 
scavenger receptor class A) and folate receptor β (FRβ) on 
their surface (321). TAMs were successfully eliminated using 
an anti‑CD204 antibody and a targeted FRβ‑immunotoxin in 
mice and rat models, respectively (322,323).

Secondly, a promising approach is to target pro‑tumorigenic 
factors secreted by IICs (310). The use of TGF‑β inhibitors and 
immune checkpoint inhibitors (ICIs), such as PD‑L1 antibodies, 
and cytotoxic T‑lymphocyte‑associated protein 4 (CTLA‑4) 
antibodies has been reported in a number of clinical phase 
trials (310,324). These strategies increase the infiltration of T cells 
into the tumor vicinity and the inhibition of Treg cells (8,51,325,326). 
Furthermore, signal transducers and transcription factors that 
mediate tumor growth and survival, such as STAT3 and NF‑κB, 
are targeted (50,51). Prolonged inhibition of NFκB may lead to 
immune deficiency and enhanced acute inflammation (315). 
Consequently, the progress of NF‑κB inhibitor development 
is obstructed in clinical trials (315,327). Pro‑inflammatory 
chemokines and cytokines are also targeted. In in vivo studies, 
receptor antagonists are used to inhibit C‑C chemokine receptor 
2 and CXC chemokine receptor 4 (229). Clinical trials are also 
evaluating inhibitors targeting other cytokines, such as IL‑1, IL‑6 
and TNFα (51,315). One important example is the FDA‑approved 
anakinra, an IL‑1 receptor antagonist used to treat patients with 
pancreatic cancer and metastatic breast, colon and prostate cancer 
(NCT02550327/NCT03233776).

Enhancing the antitumor activity by increasing the 
infiltration of pro‑inflammatory cells is also a promising 
approach (51). For instance, embelin, a small‑molecule 
inhibitor of X‑linked inhibitor of apoptosis protein, induces 
apoptosis and suppresses gastric carcinoma and pancreatic 
cancer in vivo (328,329). Mechanistically, this is achieved by 
increasing the infiltration of pro‑inflammatory immune cells, 
such as Th1 cells, NKs and NK T cells, while decreasing the 
infiltration of immunosuppressive MDSCs and IL‑8‑ and 
IL‑6‑positive immune cells (8,328,329). Therefore, it would 
be interesting to move this research forward in clinical trials.

Another approach is the use of pro‑inflammatory cytokines 
for tumor treatment. One example is the cytokine granulo‑
cyte‑macrophage colony‑stimulating factor (GM‑CSF), which 
stimulates antigen presentation on macrophages and DCs, thus 
enhancing antibody‑dependent cellular cytotoxicity (330). 
GM‑CSF has been evaluated in a number of clinical trials, 
both as a monotherapy or adjuvant (NCT02451488 and 
NCT03686683 for example). A phase IV clinical study is 
testing the neoadjuvant effect of GM‑CSF in cutaneous stage 
L‑III melanoma (NCT02451488; Table III). In addition, one 
active non‑recruiting phase III clinical trial is investigating 
the therapeutic potential of sipuleucel‑T in patients with 
prostate adenocarcinoma (NCT03686683). Sipuleucel‑T is 
an autologous cell product comprising APCs loaded with a 
recombinant fusion protein, PA2024, composed of prostatic 
acid phosphatase linked to GM‑CSF (NCT03686683). Drugs 
targeting CSFs in phase III and IV clinical trials are presented 
in Table II.

In addition to cytokine therapies and ICIs, immunity 
of the TME can be also triggered by adoptive cell therapy 
(ACT) and cancer vaccines (50). During ACT, autologous 
T lymphocytes with antitumor activity are isolated from a 
patient, expanded ex vivo, and then amplified tumor‑resident 
or engineered T cells are transferred back to patients (331,332). 
One promising ACT approach is the chimeric antigen receptor 
(CAR) gene therapy where CAR modified T cells recognize 
various types of antigens regardless of their presentation on 
MHC molecules (333). T cells then mediate tumor killing via: 
i) The perforin and granzyme axis; ii) cytokine secretion; or 
iii) Fas‑Fas ligand axis (334). Currently, there are 48 completed 
clinical trials that used CAR‑T cell therapy on different malig‑
nancies (based on http://clinicaltrials.gov; accessed, January 
6, 2022). One study evaluated CAR‑engineered autologous 
primary human CD8+ T lymphocytes against IL13 receptor 
α2 in 3 patients with recurrent glioblastoma (NCT00730613), 
and reported promising anti‑glioma activity (335). CAR‑T cell 
immunotherapy has shown promise in terms of efficacy, while 
causing minimal toxicity (334,336). However, limitations such 
as tumor heterogeneity and antigen heterogeneous expression, 
as well as the function of T lymphocytes at tumor sites, make 
tumor eradication difficult (336).

In addition to ACT, cancer vaccines are currently inten‑
sively studied as a promising therapeutic approach that 
activates the humoral and cellular immunity of patients with 
cancer (337‑339). An efficient cancer vaccine design depends 
on a good antigen selection, where an ideal antigen should be 
specifically expressed and presented on all cancer cells but not 
normal cells, highly immunogenic and essential for the survival 
of cancer cells (340). After antigen delivery, DCs will uptake 
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these antigens and present relevant antigens on MHC I and 
MHC II to CD8+ and CD4+ T cells, respectively (337). Effector 
T cells then migrate to the TME, recognize and kill cancer cells 
by releasing cytotoxic particles, including perforin, granzymes, 
IFN‑γ or TNF‑α, or by directly inducing apoptosis (341). In 
addition to T cells, B lymphocytes, NK cells and macrophages 
promote tumor eradication (341). Personalized vaccines are 
also gaining interest. There are currently three clinical trials 
that evaluated personalized cancer vaccination in patients 
with glioblastoma (active, not recruiting, NCT00045968; and 
completed, NCT01280552 and NCT00643097) (324). These 
studies reported increased numbers of infiltrating T cells with 
improved PFS (338,339,342). These studies show that immu‑
nization with vaccines has a promising effect in patients with 
cancer.

Targeting the ECM and exosomes. In addition to targeting of 
the cellular components of the TME and their soluble factors, 
TME non‑cellular features are also targeted and evaluated 
in clinical trials. ECM remodeling and increased stiffness 
(desmoplasia), for instance, are targeted to reduce mortality 
in different cancer types (310). FDA‑approved angiotensin 
II receptor antagonists, such as losartan and candesartan, 
increased the survival of patients with gastro‑esophageal cancer 
by inhibiting the TGF‑β signaling pathway and consequently 
reducing collagen I secretion and desmoplasia (343). Losartan 
has also shown clinical benefits in pancreatic cancer phase II 
trials (NCT01821729) when combined with FOLFIRINOX 
and chemoradiation with fluorouracil or capecitabine (344). 
The ECM may be alternatively modified by targeting integrins 
or focal adhesion kinase (FAK) proteins using the FAK inhib‑
itor defactinib (NCT01870609) (345). MMP inhibitors target 
MMPs. However, trials failed clinically mainly because these 
inhibitors exhibit a broad‑spectrum activity that may result in 
secondary side effects (346), and ECM degradation may boost 
cancer progression instead of inhibiting it (310,347,348).

Exosomes are: i) Targeted for reducing vesicle trafficking 
in cancer cells; ii) used as biomarkers for cancer diagnosis; 
or iii) used as vehicles of small interfering RNA for targeted 
therapy (51). Furthermore, the association between non‑coding 
RNA and the TME is gaining interest, especially with respect 
to the TME immune environment (136,349). In this regard, 
Huang et al (350) developed a novel TME‑related lncRNA risk 
model that could be used as a predictor of ICIs and a prognostic 
biomarker in patients with hepatocellular carcinoma.

Targeting the microbiome. Published research has linked the 
gut and intratumoral microbiota to response and toxicity in 
a variety of treatments, including chemotherapy (351). For 
instance, commensal microbes interact with chemothera‑
peutics primarily by modulating drug metabolism and host 
immunity (351,352). Drug activity can either be directly driven 
by microbes or indirectly driven by microbe‑derived metabo‑
lites (352). Therefore, targeting the microbiome may hold 
promise for improving chemotherapeutic efficacy and lowering 
toxicity (18). Retrospective clinical studies on patients with 
PDAC demonstrated that administration of antibiotics to target 
bacteria that produce a long isoform of cytidine deaminase 
resulted in improved gemcitabine response, and thus, overcame 
the intratumoral bacterial‑induced chemoresistance (353‑355).

The microbiome has also been recognized for its intri‑
cate interaction with host immunity, and thus, is considered 
a potential therapeutic target to optimize immunotherapy 
responses (310). Gut microbiota, in particular, serve a role 
in modulating immune checkpoint blockade responses in 
multiple cancer types (356‑359). A recent recruiting obser‑
vational study aims to evaluate the effect of the microbiome 
in terms of efficacy and toxicity of ICIs in patients with 
advanced cancer (NCT04107168). The search for biomarkers 
in the gut microbiome has resulted in the identification of 
microbiome signatures that aid in determining when ICIs 
are effective (360,361). According to a study that looked at 
phase II neoadjuvant trials of anti‑programmed cell death 1 
(PD‑1)/anti‑CTLA‑4 antibodies for melanoma, NSCLC and 
sarcoma, patients with high abundance of Ruminococcus were 
reported as responders with a marked increase in B cell signa‑
tures (362). Given that the favorable microbiota signatures 
result in enhanced intratumoral immune infiltrates (357‑359), 
creating an ideal combination of bacteria is a potential 
therapeutic approach to be administered in combination with 
checkpoint blockade.

In addition to targeting the gut microbiome, efforts are 
now being made to target the tumor microbiome in order to 
slow cancer progression and improve the response to cancer 
therapy. For instance, targeting the tumoral microbiome with 
antibiotics results in enhanced response to both chemotherapy 
and ICIs in CRC and pancreatic cancer (181,363,364). The 
intratumoral microbiome can also be targeted by bioengi‑
neered bacteria that can either kill tumor cells directly, or 
create an immune microenvironment that encourages anti‑
tumor immune responses (18). In mice for example, attenuated 
Salmonella strains expressing Vibrio‑derived toll‑like receptor 
5 ligand flagellin elicited an immune response that recruited 
an antitumor immune responses against orthotopic human 
CRC87 lines (365).

A growing body of evidence suggests that the microbiome 
serves a role in determining cancer therapeutic efficacy and 
toxicity (18,351). Laboratory research and clinical trials 
have also shown that microbiota modulation can help with 
cancer treatment (18,366‑368). Therefore, understanding the 
microbiome and its interactions with cancer is critical in 
personalized medicine. Manipulation of the gut microbiota 
may yield novel cancer treatment insights for enhanced cancer 
therapeutic responses. Since the microbiome exhibits complex 
interactions with both the host immunity and cancer cells, it 
would be challenging to identify an optimal bacterial consortia 
and metabolites to affect the TME, as well as to introduce it 
for cancer treatment (18).

In addition to the aforementioned targeted therapeutic 
strategies, combination therapies have gained popularity as 
they result in enhanced efficacy, reduced drug resistance 
and lowered toxicity compared with monotherapy (369). 
Studies are investigating combination regimens that simul‑
taneously affect several targets, thus achieving cooperative 
and synergistic effects (369,370). In this context, therapeutic 
agents targeting multiple stromal cells of the TME have been 
evaluated in interventional clinical trials (Table IV) (51,371). 
For example, the PD‑1/PD‑L1 signaling pathway is 
targeted with anti‑angiogenic interventions targeting 
VEGFR1/2/3, PDGFR or c‑Kit (235), or with tyrosine kinase 
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inhibitors (372‑374). Additionally, anti‑stromal interventions 
are also combined with chemotherapeutics and radiation 
agents (51,315,369,370). Furthermore, to better decide on a 
combination therapy, researchers should fully understand the 
stage of the tumor, as well as the specific state of the TME 
and its immune markers.

5. Discussion

Cancer is a complex disease caused by malignant cells and 
a supporting TME. The cross‑talk between these two main 
entities embodied by bidirectional mediators governs tumor 
progression. Low levels of both oxygen and pH create local 
stress within the TME, triggering a response from, thereby 
activated, stromal cells and the infiltration of more immune 
cells (136). Such communications are not only governed by 
cytokines, chemokines and metabolic products secreted by 
TME stromal cells but other factors such as epigenetic factors 
(such as miRNA), methylation DNA and histone modification 
are also critical (375). Furthermore, an increasing number of 
studies have highlighted the important effects of metabolism on 
the activities of immune cells, and thus, their effect on cancer 
progression (257,260,376). The orchestration of autocrine and 
paracrine communications within the tumor environment may 
expedite ECM stiffness, inflammation and angiogenesis, and 
possibly cancer cell dissemination and metastasis (4). These 
results warrant examining the effect of TME components on 
the outcome of the disease. Such findings urged research to 
investigate the relevance of TME targeting for more efficient 
therapeutic methods. While most studies focus mainly on the 
stromal composition of the TME (64,66), the present review 
provides a comprehensive examination of not only the stromal 
components but also the non‑cellular TME components, 
including the ECM, exosomes and microbiome. The present 
discusses the contribution of cellular and non‑cellular TME 
components to fundamental cancer hallmarks as well as 
emerging hallmarks and enabling characteristics. The present 

review also provides a detailed report on TME cells, signaling 
pathways and soluble factors that can be targeted for cancer 
therapy, highlighting TME components that are currently 
targeted in interventional clinical trials.

TME targeting provides promising strategies to overcome 
the chemotherapeutic resistance of tumor cells. Research 
efforts have resulted in the development of FDA‑approved 
or newly developed TME‑targeted drugs, including 
anti‑angiogenic and anti‑inflammatory agents. Clinical imple‑
mentation of these drugs also shows promising successful 
clinical results (9,51,315). In addition, and with the help of 
large‑scale data mining and bioinformatics analysis, several 
immune‑related gene signatures serving as predictors for 
therapeutic outcomes or biomarkers for prognosis in several 
cancer types have been constructed (136,377‑380).

TME‑targeted strategies may soon become mainstream 
for cancer therapy and can be used in combination with 
conventional antitumor methods. However, further research 
is required to address the time of TME‑targeted drug admin‑
istration and the treatment strategies, since certain studies 
have indicated that TME components may augment tumor 
resistance to cancer therapy (97,181,200,381). For instance, 
CAFs promote resistance to chemotherapy primarily by medi‑
ating EMT, maintaining the stemness of cancer stem cells and 
promoting metabolic reprogramming (382). The augmented 
ECM deposition and increased cytokine secretions mediated 
by CAFs may aid tumor cells in resisting cancer‑therapies and, 
in particular, chemotherapy (383). Furthermore, a growing 
body of evidence suggests that hypoxia‑driven residual 
VEGF and other pro‑angiogenic factors cause resistance to 
VEGF receptor inhibition (381,384). Therefore, combinations 
of medicines targeting these factors may enhance treatment 
outcomes compared with single VEGF pathway blocking 
alone (385).

In addition to the aforementioned concerns, the pharmaco‑
kinetics and biodistribution of TME‑targeted drugs is not yet 
well investigated due to the difficulty of detecting the exact 

Table IV. Therapeutic agents for combinatorial therapy targeting multiple stromal cells of the tumor microenvironment.

Therapeutic strategy Cancer type Status Clinical trial

Simlukafusp alfa (IL‑2 variant targeting FAP‑A) in Head and neck, oesophageal, and Phase II NCT03386721
combination with atezolizumab (anti‑PD‑L1) cervical Cancer
RO7300490 (4‑1BB agonist targeting FAP) and Solid tumors Phase I  NCT04857138
atezolizumab (anti‑PD‑L1 antibody)
Sintilimab (anti‑PD‑1) with IBI305 (anti‑VEGF) with Non‑squamous non‑small cell Phase III NCT03802240
chemotherapeutic pemetrexed and cisplatin lung cancer
Chemotherapeutic PLD with atezolizumab (PD‑L1 Ovarian, fallopian tube and Phase II/III NCT02839707
inhibitor) vs. PLD with bevacizumab (anti‑VEGF) and  peritoneal carcinoma
atezolizumab vs. PLD with bevacizumab
Bevacizumab (anti‑VEGF) with chemotherapeutic Malignant pleural mesothelioma Phase III NCT03762018
carboplatin and pemetrexed vs. bevacizumab with 
atezolizumab (anti‑PD‑1), carboplatin and pemetrexed

Data were acquired from the U.S. National Library of Medicine (http://clinicaltrials.gov; date accessed, January 6, 2022). FAP, fibroblast 
activation protein; PD‑1, programmed cell death 1; PD‑L1, programmed cell death ligand‑1; PLD, pegylated liposomal doxorubicin.
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state of the TME (386). One way to overcome this limitation 
is using 3D cell culture systems to recapitulate the complexity 
of tumor architecture and simulate the TME (387). Another 
method is using animal models that facilitate the recreation of 
a developed tumor in an improved pathophysiologic environ‑
ment (324,388‑390). Tumor tissues obtained from a patient are 
processed into patient‑derived organoids or patient‑derived 
xenografts, which are then functionally and quantitively 
analyzed after treatment [reviewed in (391)]. These methods 
may help identify clinically relevant immune checkpoints 
and predict treatment efficacy (391). Such efforts allow for an 
enhanced pre‑clinical validation of novel cancer methodolo‑
gies towards full integration of immunotherapeutic prediction 
tools (391,392). In addition to combination therapy, nanotech‑
nology also promises good therapeutic prospects (324,393). 
Regarding all discussed interventions and their limitations, 
and arriving at the era of the comprehensive cancer model 
treatment, it is important to treat tumors as a multifactorial 
disease in a stage, tissue/organ and patient‑specific manner.
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