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Abstract. The use of immune checkpoint inhibitors (ICIs) 
has been demonstrated in the treatment of numerous types of 
cancer and ICIs have remained a key focus of cancer research. 
However, improvements in survival rates only occur in a subset 
of patients, due to the complexity of drug resistance. Therefore, 
further investigations are required to identify predictive 
biomarkers that distinguish responders and non‑responders. 
Combined therapeutics involving ICIs and other modalities 
demonstrate potential in overcoming resistance to ICIs; 
however, further preclinical and clinical trials are required. 
Concurrently, prompt recognition and intervention of 
immune‑related adverse events are crucial to optimize the 
use of ICIs in clinical treatment. The present study aimed to 
review the current literature surrounding the mechanisms and 
application of ICIs, with the aim of providing a theoretical 
basis for clinicians.
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1. Introduction

Cancer is a major public health concern worldwide. 
According to the American Cancer Society, it was estimated 
that 1.9 million new cases and 610,000 cancer‑related deaths 
occurred in the United States in 2022, posing a serious threat 
to human health (1). Conventional cancer treatments include 
surgery, radiotherapy, chemotherapy and targeted therapy; 
however, certain types of advanced or metastatic cancer 
are difficult to cure using traditional treatments, and novel 
tools and approaches are required. Research has shown that 
the immune system serves a pivotal role in maintaining the 
stability of the internal environment (2); however, cancer 
cells often escape surveillance and destruct the host immune 
system (3). Therefore, research has focused on the develop‑
ment of immunotherapy that inhibits tumor‑induced immune 
tolerance and restores the immune response against tumor 
cells. Unlike conventional cancer treatments which mainly 
act on cancer cells, immunotherapy indirectly promotes 
cancer control through activating the antitumor immune 
responses of the patient (4,5). The concept of antitumor 
immunotherapy has been around for over a century, starting 
with Coley's toxins and Erlich's hypothesis that the immune 
system suppresses cancer development (4), but it has devel‑
oped rapidly in the past two decades and is currently a major 
focus in cancer therapy.
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Among the different types of cancer immunotherapy, 
immune checkpoint inhibitors (ICIs) demonstrate a broad 
impact. ICIs are monoclonal antibodies (mAbs) that specifi‑
cally target the inhibitory receptors on T cells, known as 
immune checkpoint molecules. These act as negative co‑regu‑
lators that inhibit further T‑cell activation and are essential for 
the maintenance of self‑tolerance (4). Tumor cells often escape 
host immunity through immune checkpoint dysregulation, and 
ICIs are immunomodulators that reinforce antitumor immune 
responses (6‑10). Moreover, ICIs have demonstrated notable 
outcomes in multiple tumor types (11), either as a single treat‑
ment or combined with conventional treatments. ICIs may be 
used in both advanced and metastatic cancer, either as adju‑
vant or neoadjuvant treatment in the early stage of cancer (12). 
Notably, ICIs are considered revolutionary in cancer treatment, 
highlighted by the 2018 Nobel Prize in Physiology or Medicine 
awarded jointly to James Allison and Tasuku Honjo, for their 
discovery of cancer treatment via suppression of negative 
immune regulation (12). The present review aimed to summa‑
rize the current knowledge and novel advances regarding the 
mechanisms and applications of various ICIs. This study may 
provide a theoretical basis for further associated research and 
the application of immunotherapy.

2. Tumor‑immune interactions

During the tumor immune response process, T lymphocytes 
act as the final effector cell, and the activation of T cells 
requires two signals. The first signal originates from the 
specific recognition of antigen‑major histocompatibility 
complex (MHC) complexes by T‑cell receptors (TCRs). 
The second signal originates from the interaction between 
co‑stimulatory molecules on the surface of T cells with the 
corresponding ligands. Co‑stimulatory signals are required to 
enhance the antigen receptor signals that induce transcription 
factor activation and PI3K activation, thereby ensuring full 
activation of T cells (13). Compared with these activating 
co‑stimulatory molecules, certain inhibitory molecules exist 
on the surface of T cells that downregulate activation signals. 
These inhibitory receptors function to prevent T‑cell prolif‑
eration and cytokine production, in order to prevent excessive 
immune responses that can lead to destructive inflammatory 
or autoimmune conditions (14,15). Moreover, the strict regula‑
tion between co‑stimulatory and inhibitory molecules serves a 
critical role in immune homeostasis. Co‑stimulatory molecules 
include CD28, 4‑1BB and inducible co‑stimulator (CD278), 
and inhibitory molecules include cytotoxic T lymphocyte 
associated antigen‑4 (CTLA‑4) and programmed death‑1 
(PD‑1), which are both categorized as immune checkpoint 
molecules (15). Notably, immune checkpoint molecules refer 
to ‘brake’ proteins that inhibit the activation of immune cells 
(Fig. 1). Tumor cells often inhibit the effects of T cells through 
the immune checkpoint pathway, leading to immune escape.

3. ICI therapy for the treatment of cancer

CTLA‑4 and anti‑CTLA‑4 therapy. In 1987, the CTLA‑4 
gene was initially discovered in mice by Brunet et al (16) and 
the human CTLA‑4 gene was cloned the following year (17). 
Krummel and Allison (17) confirmed the function of CTLA‑4 

as a negative regulator of T‑cell activation; this was the first 
immune checkpoint molecule described (17). CTLA‑4, also 
known as CD152, is a transmembrane receptor on T cells. In the 
early stages of T‑cell activation, CTLA‑4 is induced and binds 
to the same co‑stimulatory ligands (B7‑1 and B7‑2) expressed 
on antigen‑presenting cells (APCs) as CD28. Compared with 
CD28, CTLA‑4 possesses a higher avidity and affinity for the 
ligands, thereby preventing the CD28‑dependent co‑stimula‑
tion signal required for T‑cell activation (18‑20). CTLA‑4 has 
been shown to interact with the serine/threonine phosphatase 
PP2A, which blocks Akt activation and downstream signals 
of T cells, and CTLA‑4 may also reduce the formation of the 
ζ chain of TCR associated protein kinase 70 kDa (ZAP‑70) 
microcluster, thus limiting T‑cell activation. In addition, 
CTLA‑4‑associated SHP‑2 has phosphatase activity toward 
the RAS regulator p52, thereby affecting the downstream RAS 
pathway. All of these effects can lead to the suppression of 
T‑cell activation, which is critical for immunologic tolerance 
in physiological conditions (21). Notably, the biallelic genetic 
deletion of Ctla4 leads to lymphoproliferation disorders with 
early lethality in mice (22,23).

CTLA‑4 not only prevents the activation of self‑reactive 
T cells, but also other T cells, by binding to the ligand for 
CD28. In addition, CTLA‑4 exerts inhibitory effects that are 
mediated through regulatory T cells (Tregs). Tregs express 
high levels of CTLA‑4 on the cell surface, and specific loss of 
CTLA‑4 leads to an increased susceptibility to autoimmune 
diseases. This indicates that Treg‑derived CTLA‑4 is required 
to maintain immunologic tolerance (24,25). Moreover, Tregs 
directly remove the co‑stimulatory ligands, B7‑1 and B7‑2, 
from the surface of APCs via trans‑endocytosis. CTLA‑4 
promotes T‑cell motility through antagonizing the forma‑
tion of microclusters, thus reducing the T cell/APC dwell 
times (26). In addition, CTLA‑4 negatively regulates the 
immune response through inhibiting the maturation and 
antigen presentation of APCs (27), and inducing the produc‑
tion of indolamine‑2,3‑dioxygenase (IDO) by APCs (28). As 
CTLA‑4 was the first immune checkpoint molecule to be 
discovered, the associated regulatory mechanisms have been 
extensively studied. However, further investigations into the 
function of downstream signal components are crucial, and 
future studies should focus on evaluating CTLA‑4‑mediated 
regulation of T‑cell activity.

Following the discovery of the role of CTLA‑4 in immune 
suppression, research has focused on restoring the antitumor 
function of T cells through inhibiting the binding of CTLA‑4 
to B7. Using animal models (29), anti‑CTLA‑4 immuno‑
globulin (Ig)G1 mAb was developed in 1999, and later named 
ipilimumab. In 2010, ipilimumab was successfully used in the 
treatment of metastatic melanoma in a phase III clinical trial. 
Results of this study demonstrated that the median overall 
survival (OS) among patients receiving ipilimumab alone 
was 10.1 months (30). Subsequently, the United States Food 
and Drug Administration (FDA) approved ipilimumab as a 
first‑line drug in the treatment of advanced melanoma in 2011; 
this was the first approved immunotherapy drug (Table I). 
After 4 years, ipilimumab was approved as an adjuvant 
treatment for stage III melanoma. In addition, the efficacy 
of ipilimumab has been demonstrated in other solid tumors, 
including lung, renal, pancreatic and prostate cancer (31‑33). 



INTERNATIONAL JOURNAL OF ONCOLOGY  63:  86,  2023 3

However, the effects of ipilimumab in these solid tumors have 
been reported to be limited, and this may be due to low tumor 
immunogenicity and a potently immunosuppressive tumor 
microenvironment (TME) (34). In addition to ipilimumab, 
tremelimumab is currently undergoing clinical trials in a 
variety of tumors as an additional CTLA‑4 blockade (11,35). 
In 2015, tremelimumab was granted orphan drug qualification 
by the FDA in the treatment of malignant mesothelioma. In 
2020, in combination with durvalumab, tremelimumab was 
also used to treat hepatocellular carcinoma (HCC). As well 
as regulating T‑cell activation, CTLA‑4 blockade may limit 
the penetration of Tregs into the TME, to prevent Tregs from 

inhibiting the activity of cytotoxic T cells and enhancing 
antitumor activity. However, associated research is limited at 
present (36,37).

PD‑1 and anti‑PD‑1 therapy. In 1992, PD‑1 was initially 
identified by Ishida et al (38) at Kyoto University. In 1999, 
preclinical data established the central role of PD‑1 in immune 
suppression (39). In the same year, Dong et al (40) discovered 
the third member of the B7 family, B7‑H1. Freeman et al (41) 
later confirmed that B7‑H1 is programmed cell death‑ligand 
1 (PD‑L1) that binds to PD‑1. PD‑1, which belongs to the 
CD28 Ig superfamily, is induced transiently on activated 

Figure 1. Summary of the T‑cell coinhibitory molecules and downstream pathways. ‘‑’ in red circles indicates the inhibition of T‑cell proliferation, survival 
and cytokine production. APC, antigen‑presenting cell; PD‑1, programmed death‑1; PD‑L1, programmed cell death‑ligand 1; CTLA‑4, cytotoxic T lympho‑
cyte associated antigen‑4; LAG‑3, lymphocyte activation gene‑3; MHC‑II, major histocompatibility complex‑II; Tim‑3, T‑cell immunoglobulin mucin‑3; 
Ceacam‑1, carcinoembryonic antigen cell adhesion molecule 1; HMGB1, high‑mobility group box 1; VISTA, V‑domain immunoglobulin suppressor of T‑cell 
activation; PSGL‑1, P‑selectin glycoprotein ligand‑1; IGSF‑11, immunoglobulin superfamily member 11; TIGIT, T‑cell immunoglobulin and immunoreceptor 
tyrosine‑based inhibitory motif domain; BTLA, B‑ and T‑lymphocyte attenuator; HVEM, herpes virus entry mediator.
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Table I. FDA‑approved immune checkpoint inhibitors.

  FDA 
Drug Target approval year Indications

Ipilimumab CTLA‑4 2011 •Unresectable or metastatic melanoma
   •Adjuvant therapy stage III melanoma
   •Intermediate or poor‑risk, previously untreated
     advanced RCC, in combination with nivolumab
   •MSI‑H or dMMR metastatic CRC, in combination
     with nivolumab
Nivolumab PD‑1 2014 •Unresectable or metastatic melanoma, single
     or in combination with ipilimumab
   •Adjuvant therapy for lymph node‑positive or
     metastatic melanoma 
   •Metastatic NSCLC with progression after platinum drugs
   •Metastatic SCLC with progression, 3rd line
   •Advanced RCC after antiangiogenic therapy
   •Previously untreated advanced RCC, in combination
     with ipilimumab 
   •Hodgkin lymphoma, refractory to auto‑HSCT,
     brentuximab or three other treatments
   •Recurrent or metastatic HNSCC
   •Locally advanced or metastatic UC, cisplatin refractory
   •MSI‑H or dMMR metastatic CRC, single or in
     combination with ipilimumab
   •HCC refractory to sorafenib
   •Unresectable advanced, recurrent, or metastatic
     esophageal squamous cell carcinoma 
   •Advanced RCC, first line in combination with
     cabozantinib
Pembrolizumab PD‑1 2014 •Advanced/unresectable melanoma
   •Advanced NSCLC (PD‑L1+)
   •Metastatic SCLC, 3rd line
   •Metastatic or recurrent HNSCC
   •Hodgkin lymphoma, 4th line
   •Refractory primary mediastinal large B‑cell lymphoma,
     3rd line
   •Recurrent or cisplatin‑intolerant UC, PD‑L1+

   •Unresectable or metastatic, MSI‑H or dMMR solid
     tumors refractory to prior treatment, and CRC refractory
     to chemotherapy
   •Recurrent locally advanced or metastatic gastric cancer,
     PD‑L1+, 3rd line
   •Recurrent locally advanced or metastatic esophageal
     cancer, PD‑L1+, 2nd line
   •Recurrent or metastatic cervical cancer, PD‑L1+, 2nd line 
   •HCC (sorafenib refractory)
   •Recurrent locally advanced or metastatic MCC
   •Advanced RCC, in combination with axitinib, 1st line
   •Advanced endometrial carcinoma, without MSI‑H or
     dMMR, in combination with lenvatinib
   •Locally recurrent unresectable or metastatic TNBC with
     tumor PD‑L1 combined positive score ≥10
     (in combination with chemotherapy)
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T, B, natural killer (NK) T and myeloid cells (42,43). PD‑1 
binds to the B7 family ligands, PD‑L1 (B7‑H1) and PD‑L2 
(B7‑DC), and inhibits the proliferation and effector functions 
of immune cells. Specifically, the ligation of PD‑L1 and PD‑1 
leads to tyrosine phosphorylation of the immunoreceptor 
tyrosine‑based inhibitory motif (ITIM) and immunoreceptor 
tyrosine‑based switch motif (ITSM) of PD‑1. Binding of the 
ITSM by SHP‑1 or SHP‑2 results in the inhibition of casein 
kinase II, the induction of PTEN phosphatase activity and thus 
the suppression of the PI3K/Akt pathway (43). Other signaling 
pathways initiated by TCR ligation are also inhibited by PD‑1, 
including ZAP70 and protein kinase Cθ activation. PD‑1 liga‑
tion can also inhibit the activation of phospholipase C‑γ1 and 
downstream Ras signaling, resulting in decreased activation of 
the MEK/Erk pathway (44,45). Furthermore, PD‑1 signaling 
may lead to a decrease in T‑cell proliferation, survival and 
protein synthesis, which is essential for maintaining peripheral 
tolerance. Notably, the genetic loss of Pdcd1, which encodes 
PD‑1, may cause autoimmune pathologies (39,46).

Unlike CTLA‑4, PD‑1 expression is transient in the 
early stage of T‑cell activation and then decreases when the 
activating antigen is removed. However, PD‑1 expression is 
high if the antigen is present for a prolonged period of time; 
for example, during chronic infection or in a tumor (47,48). 

It has previously been demonstrated that PD‑1 expression is 
increased on the majority of tumor‑infiltrating T lymphocytes 
(TILs) in various tumor types, and this is an important cause 
of tumor immune escape (49,50). The two ligands of PD‑1 are 
comparable with other B7 immune regulatory ligand family 
members, and the affinity of PD‑L2 to PD‑1 has been reported 
to be higher than that of PD‑L1 (46,51). The expression levels 
of PD‑Ls are different in different human cells. Notably, PD‑L1 
is expressed on hematopoietic cells, such as B cells, T cells, 
macrophages, dendritic cells (DCs) and mesenchymal stem 
cells (MSCs) (52), and is also expressed on nonhematopoietic 
cells, including vascular endothelial cells, fibroblastic reticular 
cells, astrocytes, liver cells, pancreatic cells and neurons (43). 
By contrast, PD‑L2 is mainly expressed on APCs, such as 
macrophages and DCs, and peritoneal B1 cells (53). In addi‑
tion, the main PD‑1 ligand expressed on solid tumor cells is 
PD‑L1 (54,55). Results of previous studies have suggested 
that PD‑L1 is upregulated in multiple cancer types, including 
melanoma, ovarian cancer and lung cancer (56‑58). Activated 
T cells also produce cytokines that promote the expression 
of PD‑L1 on cancer cells (56). When PD‑L1 on cancer cells 
binds to PD‑1 on T cells, immunosuppression occurs. In 
addition, PD‑L1 specifically interacts with the B7‑1 (CD80) 
co‑stimulatory molecule to inhibit T‑cell responses (59). 

Table I. Continued.

  FDA 
Drug Target approval year Indications

Atezolizumab PD‑L1 2016 •Locally advanced or metastatic UC, PD‑L1+, cisplatin
     ineligible or refractory
   •Metastatic NSCLC with progression after platinum drugs
   •Unresectable locally advanced or metastatic TNBC,
     PD‑L1+, in combination with protein‑bound paclitaxel
   •Extensive stage SCLC, in combination with carboplatin
     and etoposide
   •Metastatic or unresectable HCC, first line (in combination
     with bevacizumab)
   •BRAFV600 mutation‑positive unresectable or metastatic
     melanoma in combination with cobimetinib and
     vemurafenib
Avelumab PD‑L1 2017 •Metastatic MCC
   •Locally advanced or metastatic UC, platinum refractory
   •Advanced RCC, in combination with axitinib, 1st line
Durvalumab PD‑L1 2017 •Advanced or metastatic UC, cisplatin refractory
   •NSCLC, stage III non‑platinum/radiation refractory
   •Locally advanced or metastatic biliary tract cancer,
     in combination with chemotherapy
Cemiplimab PD‑1 2018 •Metastatic or locally advanced unresectable cutaneous
     squamous cell carcinoma

FDA, Food and Drug Administration; CTLA‑4, cytotoxic T lymphocyte associated antigen‑4; RCC, renal cell carcinoma; MSI‑H, microsatellite 
instability‑high; dMMR, mismatch repair deficient; CRC, colorectal cancer; PD‑1, programmed death‑1; NSCLC, non‑small cell lung cancer; 
SCLC, small cell lung cancer; HSCT, hematopoietic stem cell transplantation; HNSCC, head and neck squamous cell cancer; UC, urothelial 
carcinoma; HCC, hepatocellular carcinoma; PD‑L1, programmed cell death‑ligand 1; MCC, Merkel cell carcinoma; TNBC, triple‑negative 
breast cancer.
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Collectively, these mechanisms cause cancer cells to evade the 
immune system.

A previous study found that the CTLA‑4 inhibitor was 
effective only for certain cases of advanced melanoma, and 
serious side effects may occur in treating other types of 
tumors (34). Notably, ICIs were not widely accepted until the 
use of PD‑1/PD‑L1 antibodies was established in the clinic 
in 2014. Although PD‑1/PD‑L1 antibodies mainly function 
through upregulating T‑cell activation, they also block the 
host‑derived PD‑L1 signals from non‑tumor cells in the micro‑
environment, as well as the interactions between PD‑L1 and 
B7‑1 (11). At present, a total of six PD‑1/PD‑L1 inhibitors have 
been approved by the FDA, including nivolumab, pembroli‑
zumab, atezolizumab, avelumab, durvalumab and cemiplima. 
The associated indications include melanoma, Hodgkin's 
lymphoma, non‑small cell lung cancer (NSCLC), renal cell 
cancer (RCC), gastric cancer, liver cancer, colorectal cancer 
(CRC), cutaneous squamous cell cancer and urothelial cancer 
(UC). These indications are displayed in Table I.

In 2006, the first clinical trial of a PD‑1 inhibitor, 
nivolumab, was conducted in refractory solid tumors. Notably, 
nivolumab was known as IgG4 anti‑PD‑1 mAb and Opdivo 
(MDX‑1106, ONO‑4538, BMS‑936558), and was developed 
by Bristol‑Myers Squibb. In December 2014, nivolumab 
was approved by the FDA for the treatment of metastatic 
melanoma, with the results of the CheckMate 037 clinical 
trial demonstrating an objective response rate of 31.7% in 
the nivolumab group, and 10.6% in the chemotherapy group 
(dacarbazine orcarboplatin) (54). At present, the indications 
have extended to various advanced solid tumors, including 
NSCLC, RCC, UC, squamous cell carcinoma of head and neck, 
Hodgkin's lymphoma, HCC, CRC and esophageal squamous 
cell carcinoma (59‑63).

In September 2014, an additional PD‑1 inhibitor, pembro‑
lizumab (Keytruda, lambrolizumab, MK‑3475), was approved 
by the FDA for the treatment of unresectable or metastatic 
melanoma. Pembrolizumab, a fully humanized IgG4 with 
high‑affinity and high‑selectivity, demonstrated an objective 
response rate of >30% in patients with advanced melanoma 
(NCT01866319) (63). At present, pembrolizumab is approved 
for use in >14 indications of 10 tumor types (64‑69).

In September 2018, another PD‑1 inhibitor, cemiplimab 
(Libtayo), was approved by the FDA for treatment of meta‑
static or locally advanced non‑resectable cutaneous squamous 
cell carcinoma. Notably, this was the first drug approved by 
the FDA that was specifically for the treatment of patients with 
advanced cutaneous squamous cell carcinoma (70).

Atezolizumab (Tecentriq), a human IgG1 anti‑PD‑L1 
mAb, was the first PD‑L1 inhibitor approved by the FDA for 
the treatment of advanced or metastatic UC. Results of a phase 
II clinical trial demonstrated an objective response rate of 15% 
in all patients and 26% in patients with the highest levels of 
PD‑L1 expression following treatment with atezolizumab (71). 
The indications of atezolizumab have subsequently extended 
to NSCLC, small cell lung cancer, breast cancer, HCC and 
melanoma (71‑75).

An additional PD‑L1 inhibitor, avelumab (Bavencio), not 
only functions via blocking PD‑1/PD‑L1 interactions, but also 
through antibody‑dependent cell‑mediated cytotoxicity (76). 
In March 2017, avelumab was approved by the FDA for the 

treatment of metastasis Merkel cell carcinoma in adolescents 
and adults >12 years of age, and the indication was subse‑
quently expanded to UC and RCC.

In May 2017, the FDA‑approved durvalumab (Imfinzi), 
an additional PD‑L1 antibody, for the treatment of advanced 
UC, using accelerated approval. Results of a previous study 
demonstrated that durvalumab substantially improved 
the progression‑free survival of patients with NSCLC, 
compared with the placebo (16.8 months vs. 5.6 months) (77). 
Subsequently, the FDA expanded the indications to include 
Stage III NSCLC in February 2018.

A novel PD‑L1 inhibitor, envafolimab (KN035), was 
awarded Orphan Drug Designation by the FDA for the treat‑
ment of biliary tract cancer. Notably, the PD‑1/PD‑L1 inhibitors 
approved by the FDA may continue to be approved for addi‑
tional indications. However, alternative anti‑PD‑1/PD‑L1 
axis‑targeted therapies, such as pidilizumab (CT‑011) and 
BMS‑936559 (MDX‑1105) are under investigation in clinical 
trials, and these treatment options may exhibit potential in a 
broad range of tumor types (78,79).

PD‑1/PD‑L1 inhibitors are used in the treatment of various 
types of cancer. However, results may differ between patients, 
and the mechanistic basis for the variation in response patterns 
are multifaceted. For example, a previous study reported that 
patients with melanoma that respond to these inhibitors had 
a higher proportion of BRCA2 mutations (80). In addition, 
innately resistant tumors display a transcriptional signature, 
indicating concurrent increased expression of genes involved 
in the regulation of mesenchymal transition, cell adhesion, 
extracellular matrix remodeling, angiogenesis and wound 
healing (80). Moreover, PD‑1 inhibitor monotherapy for 
patients with NSCLC accompanied by EGFR mutations exhibit 
low response rates and unsatisfactory efficacy. PD‑1 inhibitors 
may be ineffective in microsatellite stable type carcinoma (81), 
and PD‑1/PD‑L1 inhibitors exert minimal effects on certain 
types of tumors, such as multiple myeloma and uveal mela‑
noma (78). However, further investigations into the specific 
molecular and cellular mechanisms of PD‑1/PD‑L1 inhibitors 
in antitumor immune enhancement are required.

Alternative immune checkpoint molecules and therapy. 
Following the discovery of CTLA‑4 and PD‑1/PD‑L1 in anti‑
tumor treatment, further preclinical and clinical studies have 
focused on additional immune checkpoint molecules.

Lymphocyte activation gene‑3 (LAG‑3), also known as 
CD223, is a member of the Ig superfamily and a homologous 
protein of CD4+, which can bind to MHC‑II molecules with 
high affinity. LAG‑3 is expressed on active NK cells, T cells, 
B cells, TILs, Tregs and DCs, and is required for immune 
homeostasis (82‑84). However, persistent antigen stimulation 
in cancer may lead to chronic LAG‑3 expression, promoting 
T‑cell exhaustion. Results of previous studies have demon‑
strated that LAG‑3 is highly expressed on the TILs of multiple 
tumors (85‑88). The signaling pathways downstream of 
LAG‑3 responsible for its inhibitory function are still unclear, 
but the KIEELE motif of the LAG‑3 cytoplasmic tail has 
been shown to be essential for the inhibitory function (84). At 
present, research is focused on numerous therapeutic agents 
targeting LAG‑3, for the treatment of multiple types of human 
cancer (89,90).
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T‑cell Ig mucin (Tim)‑3, a member of the Tim family, is 
a type I transmembrane glycoprotein, which was initially 
recognized in CD4+ T helper and CD8+ T cytotoxic cells, and 
was subsequently shown to be expressed in Tregs, NK cells, 
monocytes and DCs (84,91). Several ligands of Tim‑3 have 
been recognized, including galectin‑9 (Gal‑9), phosphatidyl 
serine (PS), high‑mobility group box 1 (HMGB1) and carcino‑
embryonic antigen cell adhesion molecule 1 (Ceacam‑1) (92). 
Notably, the binding of Tim‑3 and Gal‑9 induces T‑cell 
death and reduces the immune response (92). The binding 
of Tim‑3 and PS mediates the phagocytosis of apoptotic 
cells and cross‑presentation (93). The binding of Tim‑3 and 
HMGB1 inhibits antitumor immune responses mediated by 
HMGB1 (94). Ceacam‑1 was identified as a novel ligand for 
Tim‑3. In the absence of Ceacam‑1, the negative regulatory 
function of Tim‑3 is defective, indicating that the interaction 
between Ceacam‑1 and Tim‑3 is required for optimal Tim‑3 
function (95). Bat‑3 and Fyn bind to the same region on the 
cytoplasmic tail of Tim‑3, the binding of Gal‑9 or Ceacam‑1 
to Tim‑3 can trigger the dissociation of Bat‑3 from the 
cytoplasmic tail of Tim‑3, thus allowing Fyn to bind, which 
is implicated in the induction of T‑cell anergy (84). Tim‑3 
expression is indicative of dysfunctional or exhausted T cells 
in cancer, and is elevated in various tumors (96‑99). In addi‑
tion, the co‑blockade of Tim‑3/PD‑1 demonstrated increased 
efficacy in treating tumors, compared with blocking Tim‑3 or 
PD‑1 alone (100).

T‑cell Ig and ITIM domain (TIGIT) is a member of the Ig 
superfamily, and is expressed on NK cells, activated T cells, 
memory T cells, follicular T helper cells and Tregs (101‑104). 
The ligands of TIGIT, including CD155 (PVR) and CD112 
(PVRL2, nectin‑2), are expressed on APCs, T cells, nonhe‑
matopoietic cells and tumor cells (101,105). CD155/TIGIT 
can suppress the function of NK cells through inhibiting 
PI3K/MAPK and NF‑κB signaling, and can suppress the func‑
tion of T cells through inhibiting AKT/mTOR signaling. In 
addition, TIGIT can reduce the activity of the co‑stimulatory 
molecule CD226 during the antitumor T‑cell response (84). 
At present, three phase I/II clinical studies targeting TIGIT 
for cancer immunotherapy are ongoing (NCT05130177, 
NCT04354246 and NCT04995523; 106‑108).

B‑ and T‑lymphocyte attenuator (BTLA), also known as 
CD272, belongs to the CD28 Ig superfamily. The protein struc‑
ture of BTLA is comparable with that of PD‑1 and CTLA‑4. 
BTLA is expressed on B cells, T cells, NK cells, DCs and 
macrophages (109,110). The ligand of BTLA is herpes virus 
entry mediator (HVEM), which belongs to the tumor necrosis 
factor receptor family. HVEM is widely expressed in B cells, T 
cells, NK cells, monocytes and DCs (109). Engagement of BTLA 
leads to the recruitment of SHP‑1 and SHP‑2 in T cells, thereby 
downregulating TCR signaling and the transmission of inhibi‑
tory signals (111). Results of previous studies have demonstrated 
that BTLA is highly expressed in melanoma, lung cancer, RCC, 
lymphoma, B‑cell small lymphocytic lymphoma and chronic 
lymphocytic leukemia (109‑112). At present, preclinical studies 
of BTLA or HVEM inhibitors are ongoing, and subsequent 
clinical studies will be developed (109‑111).

V‑domain Ig suppressor of T‑cell activation (VISTA), also 
known as C10 or f54, is a member of the CD28 family. VISTA 
is a novel immune checkpoint expressed on myeloid cells and 

lymphoid cells, which is upregulated in various tumors (113). 
VISTA has two proven ligands, P‑selectin glycoprotein ligand‑1 
(PSGL‑1) and Ig superfamily member 11 (IGSF‑11); PSGL‑1 
only functions at neutral pH and the affinity declines fourfold 
at pH 6.0 (113). VISTA can serve as both a ligand and receptor 
to suppress T cell‑associated immune responses; however, the 
mechanism remains to be elucidated (113). Several clinical 
trials of VISTA inhibitors are ongoing for the treatment of 
multiple types of cancer (NCT02812875, NCT02671955 and 
NCT04475523; 114‑116).

The FDA‑approved ICIs classified by cancer type are 
summarized in Fig. 2. The characteristics of various immune 
checkpoint molecules and their associated roles in tumor 
immunotherapy differ. An increased understanding of the 
basic biological functions of these molecules is essential for 
the development of novel ICI therapies.

4. Biomarkers for ICIs

Although ICIs have demonstrated high levels of success in 
improving therapeutic efficacy in some patients, previous 
studies have demonstrated that only ≤20‑30% of patients with 
NSCLC, melanoma or RCC benefit from ICIs (30,117‑120). 
Non‑responders include patients who do not respond to 
treatment at all and patients who relapse after remission to 
ICIs (121). These non‑responders endure high treatment costs 
and associated levels of toxicity with little benefit from the 
treatment. Moreover, inappropriate application may cause 
disease progression (122). Therefore, the development of 
predictive biomarkers is required for prescribing ICIs in a 
personalized manner.

PD‑L1. Results of a previous study suggested that PD‑L1 
expression in tumor cells and the tumor environment is posi‑
tively associated with the response to PD‑1/PD‑L1‑blocking 
antibodies (123). Immunohistochemistry (IHC) analyses 
performed on patients with metastatic melanoma, colon 
cancer, NSCLC, prostate cancer and RCC who received 
PD‑1/PD‑L1 targeted therapy demonstrated that PD‑L1 
upregulation acted as a potential biomarker (63,119,124‑126). 
Different PD‑L1 expression cutoffs and scoring systems 
have been used in different trials of FDA‑approved drugs 
directed by PD‑1/PD‑L1 (123). However, PD‑L1 may not 
be optimal as a potential biomarker, as the overall response 
rate of PD‑1/PD‑L1‑blocking antibodies in patients with 
negative PD‑L1 expression can also reach 0‑20% (127,128). 
There are some limitations that must be considered when 
selecting PD‑L1 as an immunotherapy biomarker. Notably, 
the expression of PD‑L1 is induced and dynamic; thus, 
different treatment methods may impact the expression of 
PD‑L1 in different stages of treatment (129,130). Besides, 
the expression between primary and metastatic tumors may 
be heterogeneous. As a result, the expression of PD‑L1 
at a certain time or location cannot accurately reflect the 
expression of PD‑L1 in tumors (131,132). In addition, 
different commercially available PD‑L1 IHC tests were 
used in different trials, and different cutoff scores were set 
to detect or quantify tumor PD‑L1 expression, resulting 
in clinical failure to select patients according to a unified 
standard (133).



WANG et al:  IMMUNE CHECKPOINT INHIBITORS IN CANCER THERAPY8

Mutation signatures and microsatellite instability (MSI). 
Following the development of gene sequencing and bioin‑
formatics, genomics technology is more frequently used 
for discovering biomarkers associated with ICIs. Previous 
clinical studies revealed that mismatch repair deficiency 
(dMMR) or MSI‑high (MSI‑H) are associated with response 
to ICIs (81,134). MMR is an important DNA repair mecha‑
nism that makes alterations in DNA mismatches, and dMMR 
may lead to MSI, which can be used for the clinical detec‑
tion of dMMR (135). dMMR or MSI‑H are often present in 
various types of cancer (136,137). The results of previous 
studies suggested that dMMR tumors exhibit high neoantigen 
load, tumor mutational burden (TMB), T‑cell infiltration and 
upregulation of multiple immune checkpoints, including PD‑1, 
PD‑L1, CTLA‑4 and LAG‑3 (138‑141), which may lead to high 
response rates to ICIs. Notably, MSI has been recognized by 
the FDA as a predictive biomarker for ICI responsiveness (142). 
Moreover, pembrolizumab was specifically approved in the 
treatment of multiple solid tumors with MSI‑H or dMMR. 
This was the first FDA‑approved tumor immunotherapy that 
was not based on tumor tissue type and instead based solely on 

genetic characteristics. Therefore, further investigations should 
focus on identifying MMR and MMR‑like tumors. Further 
analysis of specific DNA repair gene sets, or bioinformatics 
analysis of specific DNA damage characteristics associated 
with specific DNA repair defects in the cancer genome, are 
required to assess the potential sensitivity to ICIs (143).

TMB. TMB refers to the total number of base substitution, 
insertion or deletion mutations in the coding region of 
exons of evaluated genes in tumor tissue samples. Notably, 
a higher TMB may affect the probability of immunogenic 
peptide generation; thus, affecting the response of patients to 
ICIs (144,145). As a result, the association between TMB and 
the efficacy of ICIs has been the focus of multiple studies. 
Notably, TMB may be associated with clinical benefits of 
ICIs in patients with melanoma, NSCLC, UC, squamous cell 
carcinoma of head and neck, and small cell lung cancer, while 
those with lower TMB, such as pancreatic cancer and pros‑
tate cancer, may exhibit poor responses to ICIs (71,146‑152). 
In 2020, TMB became the second FDA‑approved predic‑
tive biomarker for the efficacy of ICIs. However, there are 

Figure 2. Summary of the Food and Drug Administration‑approved immune checkpoint inhibitors classified by cancer type. HNSCC, head and neck squamous 
cell cancer; RCC, renal cell carcinoma; UC, urothelial carcinoma; HCC, hepatocellular carcinoma; CRC, colorectal cancer. This figure was drawn by FigDraw 
(https://www.figdraw.com/).
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notable limitations. Firstly, different testing platforms are 
used in the clinical studies of TMB at present, and there is 
no standard definition of high TMB. Thus, the mutation load 
of different tumors is varied and different cutoffs must be 
established (146,147). Moreover, TMB alone may not distin‑
guish all responders from non‑responders. For example, the 
immunogenicity of tumor neoantigens may be improved by 
epigenetic modification in tumors with low TMB, leading to 
improved therapeutic responses to ICIs (62,153). However, for 
those tumors with high TMB, there may be other immunosup‑
pressive molecules in the tumor immune microenvironment, 
such as IL‑10 and metabolism‑related enzyme IDO, which 
may affect the efficacy of ICIs (9,154). Consequently, TMB 
alone may be inadequate in predicting the efficacy of ICIs. 
Moreover, further investigations into cost control, applica‑
tion of dynamic biomarkers and blood‑based TMB detection 
are required.

TILs. TILs are the effector cells of antitumor immunity 
and the target cells of ICIs. TILs act as a representative of 
tumor‑immune system interaction; therefore, assessing the 
presence of TILs may aid in identifying patients who benefit 
from immunotherapy. In a study of pembrolizumab in the 
treatment of advanced melanoma, CD8+ T‑cell infiltration in 
the tumor tissue or invasion margin was revealed to be higher 
in responders than in patients who did not respond (155). 
Results of previous studies have also demonstrated that TILs 
may be used to predict the immunotherapeutic response and 
prognosis of numerous types of cancer, including breast cancer 
and CRC (156‑160). Adding immunoscore based on TILs to 
the existing tumor, lymph node and metastasis classification 
system may improve the development of effective treatment 
plans and allow clinicians to provide more accurate prog‑
noses (161). However, the widespread application of TILs as 
a predictive tool for immunotherapy response requires further 
validation and standardization.

Specific mutated genes. Specific gene mutations may exert 
effects on tumor cells that impact immune surveillance. 
Notably, several single gene biomarkers may impact treat‑
ment decisions with ICIs. In patients with melanoma, several 
gene mutations, including BRAF, JAK1/2, β2‑microglobulin 
(β2M) and mutations in the interferon γ (IFN‑γ) pathway, are 
associated with the efficacy of immunotherapies (162‑167). 
SERPINB3 and SERPINB4 mutations have also been shown 
to be associated with the response to anti‑CTLA4 immuno‑
therapy in patients with melanoma, independent of tumor 
stage, TMB and patient age (168). In addition, inactivation of 
PTEN may be associated with resistance to ICIs in melanoma 
and uterine leiomyosarcoma (169,170). Patients with NSCLC 
and STK11/LKB1 or EGFR mutations, or ALK rearrange‑
ments, exhibited decreased efficacy and low response rates to 
ICIs. By contrast, KRAS/TP53 mutations were associated with 
improved clinical outcomes (171‑173). In patients with RCC, 
PBRM1 mutations may be associated with clinical benefits of 
ICIs (174‑178). Moreover, high‑throughput clustered regularly 
interspaced short palindromic repeats screening has identified 
numerous genes associated with improved clinical benefits 
of ICIs, such as PTPN2, APLNR and SWI/SNF complex 
genes (179‑181).

A collection of peptides presented to the cell surface by 
class I and class II human leukocyte antigen (HLA) molecules 
are referred to as the immunopeptidome. Cancer cells may 
have defective HLA‑I functions, leading to abnormal tumor 
antigen presentation and the destruction of antigen‑MHC 
binding; thus, evading immune surveillance and impacting 
the efficacy of immunotherapy (182,183). Results of a previous 
study demonstrated that loss of HLA expression impacted 
the response to ICI therapy (184). Moreover, a further study 
analyzed the HLA‑I genotype of 1,535 patients with advanced 
tumors treated with ICIs. The results demonstrated that in 
patients with maximal heterozygosity at the HLA‑I loci (‘A’, 
‘B’, and ‘C’), OS was improved following treatment with ICIs, 
compared with that of patients who were homozygous for at 
least one HLA locus. This may improve the ability of providing 
a wider range of tumor antigens to T cells (185). Therefore, 
these studies indicated that the recognition of neoantigens by 
peripheral T lymphocytes is the main mechanism of antitumor 
immune response. The widespread application of these 
technologies still requires further validation.

Peripheral blood biomarkers. Considering the advantages of 
non‑invasive surgery, peripheral blood detection technology 
has remained the focus of research surrounding hematological 
markers associated with the efficacy of ICIs. In patients with 
metastatic melanoma treated with ipilimumab, previous 
studies demonstrated that survival was significantly associated 
with low serum lactate dehydrogenase, absolute monocyte 
counts, myeloid‑derived suppressor cells (MDSCs), high CD8 
effector‑memory type 1 T cells, absolute eosinophil counts and 
absolute lymphocyte counts (186‑189). Moreover, baseline abso‑
lute neutrophil counts and derived neutrophil‑to‑lymphocyte 
ratios have been reported to be significantly associated with 
the survival of patients with melanoma treated with ipilim‑
umab (187). The neutrophil‑to‑lymphocyte ratio was also shown 
to be significantly associated with survival in patients with 
metastatic RCC (190). In patients with melanoma treated with 
pembrolizumab, results of a previous study demonstrated that 
increased relative lymphocyte count at baseline was associated 
with improved clinical outcomes (191). In patients with NSCLC 
treated with anti‑PD‑1/PD‑L1 agents as second‑ or third‑line 
therapies, PD‑L1 expression in circulating tumor cells exhibited 
potential as a prognostic biomarker (192). In addition, numerous 
features of peripheral blood components are associated with the 
response to ICIs, including classical monocyte (CD14+CD16−

CD33+HLA‑DR+) frequency (193), serum vascular endothelial 
growth factor level (194,195), soluble CD25 levels (188), and serum 
cytokine levels of IFN‑γ, IL‑18, IL‑6 and IL‑8 (124,196,197). 
Moreover, circulating exosomes containing PD‑L1, PD‑1 or 
CD28 may be associated with responses to ICIs (198‑200). These 
blood‑based biomarkers may be obtained in a clinical setting and 
do not incur any additional costs to the patient. However, there 
is still much to learn from more retrospective and prospective 
studies evaluating the value of both approved and developing 
peripheral blood biomarkers, meanwhile care should be taken to 
avoiding redundancy between biomarkers.

Intestinal microbiota. Previous studies have demonstrated that 
intestinal microbiota may affect the occurrence and develop‑
ment of cancer, through modulating immunity and regulating 
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cell metabolism (201,202). Within antitumor immunotherapy, 
intestinal microbiota may impact the therapeutic effects of 
ICIs. Results of a previous study demonstrated that tumors 
in antibiotic‑treated or germ‑free mice did not respond to 
a CTLA inhibitor; however, treatment response occurred 
following gavage with Bacteroides fragilis (203). Moreover, 
results of a further study demonstrated that treatment with an 
oral microorganism combined with a PD‑L1 antibody reduced 
tumor outgrowth in mice (204). These studies demonstrated 
that controlling the microbiota may aid in regulating cancer 
immunotherapy. Notably, comparable results were observed 
in the clinic. Results of a clinical retrospective study demon‑
strated that clinical benefits were reduced in patients who used 
antibiotics before and after treatment with ICIs, compared 
with patients who did not use antibiotics. Notably, the anti‑
biotics may have impacted the homeostasis of the intestinal 
microflora (205). Patients with NSCLC, RCC, metastatic 
melanoma or UC with a high microbial diversity, including 
specific species such as Ruminococcus, Bifidobacterium 
or Enterococcus, exhibited favorable responses to PD‑1 
inhibitors (205‑207). Moreover, results of previous studies 
demonstrated that germ‑free mice that received fecal 
microbiota transplantation from patients with cancer who 
responded to ICIs exhibited improved responses to ICIs, 
compared with those that received fecal microbiota transplan‑
tation from non‑responders (203,205,206). Collectively, these 
results demonstrated that intestinal microbiota are influential 
in antitumor immunity and responses to ICI. At present, the 
immune regulation mechanism of intestinal microbiota is 
not fully understood. With the development of the Human 
Microbiome Program and the advancement of sequencing 
analysis technology, research on intestinal microbiota is 
increasing, and metabolomics analysis technology further 
enhances the exploration of the relationship between intes‑
tinal microbiota and host immunity. Two caveats should be 
mentioned regarding research on intestinal microbiota. First, 
the differences in the application of microbial sequencing 
analysis techniques among different studies have limited 
comparability between research results. Second, the intes‑
tinal microbiota is influenced by various factors, such as diet, 
medication, age and environment, and there is also serious 
interference between different microorganisms. Regardless, 
reasonable antibiotic selection provides new possibilities 
for improving the antitumor efficacy and reducing adverse 
reactions of ICIs (204).

In addition, epigenetic signatures, liquid biomarkers and 
the tumor metabolism microenvironment may be associated 
with responses to ICIs (206,208). In conclusion, there are 
numerous potential biomarkers for predicting the effectiveness 
of ICIs; however, these efficacy prediction biomarkers often 
do not work alone, and different biomarkers interact in tumor 
specimens or blood specimens. The combined application of 
multiple predictive biomarkers can better screen out the popu‑
lation that will respond best to ICIs, and maximize the clinical 
benefits of patients. Thus, further large‑scale prospective 
studies for comparison and validation are required prior to use 
in clinical practice. Further detection of multiple biomarkers, 
establishing standard biomarker test procedures, and main‑
taining high repeatability and low costs are all considerations 
that must be addressed.

5. Resistance mechanisms to ICIs

ICIs exhibit potential in the treatment of some advanced 
tumors; however, the majority of patients do not benefit from 
ICIs as a single therapy due to the complexity of drug resis‑
tance mechanisms. Improving the current understanding of 
mechanisms limiting cancer immunotherapy may aid in the 
discovery of novel therapeutic targets and provide potential 
combination treatment strategies. Multiple tumor‑intrinsic and 
‑extrinsic factors may contribute to both primary resistance, in 
which tumors do not respond to initial therapy, and acquired 
resistance, such as relapse after an initial response.

Tumor‑intrinsic factors for primary resistance. Tumor cells 
may escape from immune surveillance through abnormal 
antigen processing and presentation. Genetic mutations in 
β2M, a component of the MHC‑I molecule required for antigen 
presentation, are present in various cancer types and associated 
with evading the T‑cell immune response (166,183,209‑212). 
Therefore, alterations in antigen‑presenting machinery must 
be taken into consideration prior to ICI treatment.

Gene alterations in specific signaling pathways also serve 
significant and complex roles in mediating immunotherapy 
resistance. Alterations in oncogenic signaling pathways 
include: i) Loss of IFN‑γ signaling pathways; ii) upregula‑
tion of the Wnt‑β‑catenin signaling pathway; and iii) loss 
of PTEN expression, which enhances PI3K signaling. 
Loss‑of‑function mutations in JAK1 and/or JAK2 involved 
in the IFN‑γ signaling pathway have been observed in 
patients who exhibited resistance to PD‑1 inhibitors (167). 
Other genetic mutations in the IFN‑γ pathway, including 
IFN‑γ receptor 1 and 2, and interferon regulatory factor 1, 
have also been observed in patients who exhibited resistance 
to CTLA‑4 inhibitors (165). These mutations may inhibit 
IFN‑γ signal transduction and allow tumor cells to escape 
from T cells. In addition, mutations in this pathway may lead 
to the downregulation of PD‑L1 expression following IFN‑γ 
exposure, thus reducing the therapeutic effect of PD‑1/PD‑L1 
antibodies (213). Upregulation of the Wnt‑β‑catenin signaling 
pathway has been detected in a subset of patients with mela‑
noma, and this was revealed to be associated with resistance 
to ICIs (214). Notably, β‑catenin suppresses CCL4 secretion, 
a chemokine that attracts DCs, subsequently leading to failure 
of T‑cell activation and function (215). Loss of PTEN expres‑
sion has also been associated with ICI resistance, resulting 
from enhanced PI3K signaling (169,170,216). Moreover, 
mutations in the MAPK signaling pathway may lead to 
cancer immune evasion, through enhancing the expression of 
the immunoregulatory cytokines IL‑6 and IL‑10 (217).

An additional tumor intrinsic mechanism is the compen‑
satory upregulation of other immune checkpoints, such as 
VISTA, Tim‑3 and TIGIT (218‑220). Moreover, the transition 
of epithelial cells to mesenchymal cells, characterized by 
increased migration and invasion, and resistance to apoptosis, 
may also have a role in ICI resistance (221‑223). Numerous 
genes have been reported to be associated with a lack of 
response to PD‑1 blockade, known as innate anti‑PD‑1 resis‑
tance signatures (80). Further understanding of these resistance 
mechanisms is required for informing clinical management 
and developing personalized therapies.
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Tumor‑extrinsic factors for primary resistance. The highly 
immunosuppressive TME is considered the tumor extrinsic 
mechanism of ICI resistance. The TME includes immunosup‑
pressive cells, cytokines, chemokines and metabolites that 
restrain antitumor immunity (121). The immunosuppressive 
cells include Tregs, MDSCs, tumor‑associated macrophages 
(TAMs) and MSCs, and these suppress immune responses 
through numerous mechanisms (224‑228). The immunosup‑
pressive cytokines, chemokines and metabolites, such as 
transforming growth factor‑β (TGF‑β), CCL5, CXCL8 and 
IDO are secreted by cancer cells and immunosuppressive cells 
in the TME (229‑232). Collectively, these factors create a func‑
tionally inhibitory microenvironment that causes resistance to 
immunotherapy.

Acquired resistance to immunotherapy. Acquired resistance 
refers to cancer that progresses and relapses following initial 
responses to immunotherapy. The potential mechanisms 
underlying acquired resistance include the inability of T cells 
to recognize tumor cells, due to lack of antigen expression or 
antigen presentation function defects, upregulation of alter‑
native immune checkpoints, T‑cell depletion, and immune 
escape. The mechanisms of abnormal antigen recognition 
or upregulation of other immune checkpoints have been 
aforementioned. The factors that lead to T‑cell depletion are 
multifaceted. For example, epigenetic dysfunction makes 
T cells resistant to remodeling and activation (233). In addi‑
tion, elevated IDO or lactate dehydrogenase in the TME may 
diminish T‑cell responses. Furthermore, impaired production 
of memory T cells may lead to the weakening of the effects of 
ICIs over time, leading to acquired drug resistance (233).

Although resistance to immunotherapy may manifest at 
different times, from initial therapy to relapse after an initial 
response, similar or overlapping mechanisms enable tumor 
cells to evade antitumor immune responses. For example, 
IFN‑γ signaling pathways are key factors for both primary and 
acquired drug resistance (165,167,213,233). Moreover, resis‑
tance mechanisms are dynamic (233). Therefore, targeting a 
single drug resistance mechanism is unlikely to be sufficient to 
eradicate immunotherapeutically refractory tumors. Thus, the 
precise selection of sensitive populations, dynamic monitoring 
of drug resistance, an increased search for synergistic combi‑
nation therapies, and the development of novel targets and 
drugs are required to overcome resistance to immunotherapy.

6. Combination of ICIs with other therapeutic strategies

The effectiveness of ICI therapy is limited by various factors, 
and further investigations into reducing resistance are required. 
To determine an optimal antitumor immune response, combi‑
nation treatments that combine ICIs with other therapeutic 
strategies, such as surgery, radiotherapy, chemotherapy and 
other forms of immunotherapy are required.

Immunotherapy may be combined with surgery in a 
neoadjuvant setting (before surgery) or an adjuvant setting 
(after surgery). Neoadjuvant treatment using chemotherapy or 
radiotherapy before surgery exhibits specific advantages over 
adjuvant treatment; however, current literature surrounding 
neoadjuvant immunotherapy is lacking. From a biological 
standpoint, neoadjuvant immunotherapy may reinvigorate 

exhausted cytotoxic T cells when antigens are encountered, 
and the exposure to antigens during the presence of major 
tumor mass may increase the breadth and persistence of 
tumor‑specific T‑cell responses. Compared with adjuvant 
immunotherapy, neoadjuvant immunotherapy may effectively 
reduce tumor mass and improve the probability of complete 
surgical resection (234). Besides, neoadjuvant immunotherapy 
has been reported to be superior to adjuvant immunotherapy 
in eradicating micrometastases, thereby reducing the prob‑
ability of recurrence (234). Moreover, fewer infusions of 
neoadjuvant immunotherapy provides reduced exposure to 
immunotherapy, limiting the development of resistant clones 
in relapsed patients. The results of previous preclinical 
and clinical studies have demonstrated that neoadjuvant 
immunotherapy can improve response and survival rates, 
compared with the same therapy administered in the adjuvant 
setting (234‑236). In the first clinical trial that performed a 
head‑to‑head comparison of neoadjuvant and adjuvant ICIs for 
the treatment of stage III resectable melanoma, the patients 
were treated either post‑surgery for 12 weeks with a combina‑
tion of ipilimumab + nivolumab, or in a split design for 6 weeks 
before surgery and for 6 weeks post‑surgery (NCT02437279). 
The result showed that OS was 90% for patients treated 
with neoadjuvant ICI therapy and 67% for patients treated 
with adjuvant ICI therapy at a median follow‑up time of 
32 months (234). At the European Society of Internal Oncology 
Immunooncology Conference in 2022, a phase II CA209‑8D8 
study of neoadjuvant therapy for NSCLC based on nivolumab, 
led by Professor Wu Yilong (Guangdong Provincial People's 
Hospital, Guangzhou, China), also announced the advantages 
of neoadjuvant immunotherapy (237). Specifically, patients 
can benefit from nivolumab + chemotherapy regardless of 
PD‑L1 expression, and the neoadjuvant therapy does not affect 
the timing and feasibility of surgery, nor does it increase the 
difficulty of surgery (237). However, further investigations 
into the optimal duration of neoadjuvant immunotherapy and 
surgery, the optimal type of immunotherapy, and the efficacy 
and safety of neoadjuvant immunotherapy are required.

Radiotherapy and chemotherapy may induce apoptosis of 
tumor cells, also known as immunogenic cell death, resulting in 
greater antigen presentation and enhanced antitumor immune 
responses (238). The results of previous studies demonstrated 
improved efficacy when radiotherapy or chemotherapy was 
used in combination with ICIs (239‑243). Combined targeting 
of multiple immune checkpoints, including CTLA‑4, PD‑1, 
LAG‑3, Tim‑3, OX40 and glucocorticoid‑induced tumor 
necrosis factor receptor exerts significant survival benefits, 
compared with single targeting (164,244‑246). However, some 
immune checkpoints are expressed only after initial T‑cell 
priming; thus, ICIs may be limited to tumors that require 
reverse exhaustion and restoration of T‑cell function (247). In 
addition to antibody‑based immunotherapy, the combination 
of ICIs with other forms of immunotherapy, such as cancer 
vaccines, oncolytic viruses or T‑cell adoptive therapies 
are being explored in clinical trials at present (248‑252). 
Moreover, the combination of ICIs with small molecule inhibi‑
tors targeting i) immunosuppressive cells, such as MDSCs 
and TAMs; ii) cytokines, such as TGF‑β; or iii) metabolites, 
such as IDO, are being developed to enhance responses to 
ICIs (229,253). Notably, these studies provide guidance on 
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delivering combination therapies. There are still a number 
of issues that need to be addressed before these combination 
therapies become clinical standards, including indications, 
applicable population, combination medication sequence, 
medication time, dosage, efficacy evaluation standards and 
adverse reaction prediction. Therefore, further preclinical 
investigations and clinical trial designs are required.

7. Adverse events associated with ICIs

The application of ICIs, either alone or in combination with 
other therapeutic strategies, has increased in patients with 
refractory metastatic cancer, and also as adjuvant or neoad‑
juvant therapy in the early stages of cancer. Although these 
treatments are often well tolerated, immune‑related adverse 
events (irAEs) may also occur, resulting from activation of 
the immune system and off‑target immune attack on healthy 
tissues of the host, which may affect almost any organ system 
with varying severities (254). Notably, irAEs are often graded 
using the National Cancer Institute Common Terminology 
Criteria for Adverse events (254).

As a systemic adverse reaction, fatigue is the most 
commonly reported, followed by infusion reactions (255). 
Moreover, adverse reactions of the skin and gastrointestinal 
tract are the most common following treatment with any 
approved ICI. Skin rash and pruritus are the most widely 
reported symptoms of skin toxicity. Notably, anti‑CTLA‑4 
treatment causes the highest rate of adverse reactions, occur‑
ring in 40‑50% of cases, followed by anti‑PD‑1 treatment 
(30‑40%). In addition, anti‑PD‑L1 treatment causes the lowest 
rate of adverse reactions, occurring in 1‑7% of cases (255,256). 
Other skin toxicities include vitiligo, photosensitive reaction 
and xerosis. Rare cases of Stevens‑Johnson syndrome and toxic 
epidermal necrolysis have been reported, and these may be 
fatal (255). Often, the majority of skin toxicities are low‑grade 
and easily managed with emollients, oral antihistamines 
and topical corticosteroids, while high‑grade adverse events 
require permanent cessation of ICIs. Gastrointestinal toxicities 
often present as diarrhea and/or colitis. In total, in a previous 
study, ~30% of patients who received anti‑CTLA‑4 treatment, 
20% of patients who received anti‑PD‑1 treatment and 45% 
of patients who received combination treatment developed 
diarrhea (257,258). Prompt recognition and intervention are 
crucial in preventing additional complications, such as colonic 
perforation. It is generally recommended that all patients 
receiving ICIs who present with diarrhea should undergo stool 
analyses for enteric pathogens and Clostridium difficile toxins. 
Patients with grade ≥2 diarrhea may require steroid treatment, 
whereas patients with grade 4 diarrhea/colitis or recurrent diar‑
rhea should stop ICI treatment permanently (259). Endocrine 
toxicity associated with ICI therapy may involve the thyroid, 
pituitary or adrenal gland. The most common adverse effect 
is hypophysitis; however, others include hypothyroidism, 
hyperthyroidism, thyroiditis, primary adrenal insufficiency, 
type 1 diabetes mellitus and hypoparathyroidism. Therefore, 
examination of thyroid function pre‑treatment and monitoring 
during treatment are essential (260). Hepatic adverse events 
that occur following ICI therapy often present as increases 
in asymptomatic transaminase, with or without increases in 
bilirubin; however, autoimmune‑like hepatitis with increased 

severity and acute liver failure may also occur. Patients with 
grade ≥2 toxicities should be treated with systemic steroid 
treatment (253). Pulmonary irAEs, such as pneumonitis, are 
uncommon; however, these may be fatal. The incidence rate of 
pulmonary irAEs is higher following treatment with anti‑PD‑1 
and/or combined treatment, compared with anti‑CTLA‑4 
treatment. Timing of systemic steroid treatment is crucial and 
potential infection should be excluded (261). Other irAEs, such 
as neurologic, ocular, renal, hematological, rheumatologic 
and cardiovascular toxicities are rare. Following single drug 
treatment, the incidence rate of these events is <2%; however, 
following the development of grade 3‑4 adverse reactions, 
patients should stop ICI treatment permanently (259).

Although treatment options are available for irAEs, these can 
progress, and in some cases, be life threatening. Management of 
irAEs is often complex and requires close collaboration with 
clinical experts. Further identification of predictive biomarkers 
of irAEs, such as T‑cell or B‑cell biomarkers, microbiome 
biomarkers and genomic biomarkers, will aid in guiding treat‑
ment decisions (262). Furthermore, it is necessary to encourage 
the establishment of a large‑scale pharmacovigilance registra‑
tion system and collect the records of irAEs in real‑world 
patients following treatment with ICIs. This can not only verify 
the existing conclusions obtained through real‑world large 
sample data, but also use these records for new research, such 
as determining the clinical characteristics of various irAEs, 
exploring their important risk factors, and providing an impor‑
tant basis for the diagnosis and treatment of irAEs.

8. Conclusions

Immunotherapy has emerged as a novel cancer treatment. The 
present review summarized the history and novel develop‑
ments of ICIs. However, the number of patients benefiting 
from ICIs remains low, and further studies should focus on 
understanding the specific interactions between tumors and 
the immune system, and resistance mechanisms relevant to 
immunotherapy. Notably, the immune system of each patient 
is dynamic and constantly evolving, highlighting that person‑
alized treatment options are required. Future research should 
focus on developing ICIs for use in an increased number of 
patients with cancer. In addition, ICIs should also be devel‑
oped for use in all fields of oncology, to expand the options 
available for combination strategies. ICIs may be combined 
with surgery, chemotherapy, radiotherapy, targeted therapy 
and other forms of immunotherapy; however, efficient toxicity 
management strategies are required.

Moreover, identification of novel biomarkers that predict 
response or resistance is essential for accurately selecting 
specific ICIs. Existing biomarkers, such as PD‑L1, dMMR, 
MSI‑H and TMB, are widely used in clinical practice; however, 
factors such as tumor type, tumor heterogeneity, tumor 
dynamics and testing procedures may impact the accuracy of 
these biomarkers. Therefore, optimizing existing biomarkers, 
and developing new biomarkers or new biomarker systems 
that integrate immune profiling, tumor biology and treatment 
history are key in future investigations.

The field of immunotherapy is challenging, but also exhibits 
potential. In the future, immunotherapy will require develop‑
ments at a multi‑directional level. Further investigations 
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should explore novel inhibitory checkpoints and pathways, 
and also integrate other fields, such as cancer biology, genetics 
and epigenetics. Moreover, further high‑quality clinical trials 
of ICIs are required, to advance evidence‑based medicine and 
develop new cancer treatment options.
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