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Abstract. Immune checkpoint inhibitors (ICIs) play a signifi‑
cant anti‑tumor role in the management of non‑small cell lung 
cancer. The most broadly used ICIs are anti‑programmed 
death 1 (PD‑1), anti‑programmed cell death‑ligand 1, and 
anti‑cytotoxic T lymphocyte‑associated antigen‑4 monoclonal 
antibody. Compared with traditional chemotherapy, ICIs 
have the advantages of greater efficiency and more specific 
targeting. However, the resulting immune‑related adverse 
events limit the clinical application of ICIs, especially check‑
point inhibitor pneumonitis (CIP). CIP chiefly occurs within 
6 months of administration of ICIs. Excessive activation and 

amplification of cytotoxic T lymphocytes, helper T cells, 
downregulation of regulatory T cells, and over‑secretion of 
pro‑inflammatory cytokines are the dominant mechanisms 
underlying the pathophysiology of CIP. The dysregulation 
of innate immune cells, such as an increase in inflammatory 
monocytes, dendritic cells, neutrophils and M1 polarization of 
macrophages, an increase in IL‑10 and IL‑35, and a decrease 
in eosinophils, may underlie CIP. Although contested, several 
factors may accelerate CIP, such as a history of previous 
respiratory disease, radiotherapy, chemotherapy, administra‑
tion of epidermal growth factor receptor tyrosine kinase 
inhibitors, PD‑1 blockers, first‑line application of ICIs, and 
combined immunotherapy. Interestingly, first‑line ICIs plus 
chemotherapy may reduce CIP. Steroid hormones remain the 
primary treatment strategy against grade ≥2 CIP, although 
cytokine blockers are promising therapeutic agents. Herein, the 
current research on CIP occurrence, clinical and radiological 
characteristics, pathogenesis, risk factors, and management is 
summarized to further expand our understanding, clarify the 
prognosis, and guide treatment.
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1. Introduction

According to the Global Cancer Statistics 2020 report, lung 
cancer ranks as the second most common type of cancer in inci‑
dence, accounting for 11.4% of all diagnosed cancer cases (1). 
Lung cancer is a prime contributor to cancer‑related deaths, 
with 1.8 million global deaths from lung cancer each year (1). 
Non‑small cell lung cancer (NSCLC) is the predominant 
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pathological type of lung cancer, accounting for ~85% of 
all reported cases (2). Patients with advanced NSCLC who 
received combination chemotherapy have a 5‑year survival 
rate of only 2.8% (3).

Implementing immune checkpoint inhibitors (ICIs) can 
improve survival in advanced NSCLC. Pembrolizumab 
showed notable survival benefits in both previously untreated 
and treated advanced NSCLC, in which the 5‑year survival 
rate was 23.2 and 15.5%, respectively (4). Programmed death 1 
(PD‑1) and programmed cell death‑ligand 1 (PD‑L1) blockers, 
including nivolumab, pembrolizumab, cemiplimab, atezoli‑
zumab, and durvalumab, have been authorized by the US 
Food and Drug Administration for advanced and metastatic 
NSCLC (5‑7).

Additionally, anti‑PD‑1/PD‑L1 treatments combined with 
anti‑cytotoxic T lymphocyte‑associated antigen‑4 (CTLA‑4) 
treatments have also been used for the management of 
advanced and recurrent NSCLC (8‑11). The NEOSTER trial 
showed that the treatment with nivolumab combined with 
ipilimumab in neoadjuvant therapy for resectable NSCLC 
significantly increased the pathological response rate and 
reduced tumor retention (12).

The emergence of ICIs has revolutionized the therapeutic 
approaches for the management of NSCLC. Immune‑related 
adverse events (irAEs) have also attracted significant atten‑
tion, in particular, checkpoint inhibitor pneumonitis (CIP). 
CIP is more prone to occur in ICI‑treated NSCLC than 
in other cancer types (13), with the rate of a grade ≥3 CIP 
being 2.3x higher than in different cancer types (14), which 
may be due to an increased chance of having respiratory 
comorbidities such as chronic obstructive pulmonary disease 
(COPD) and pre‑existing interstitial lung disease (ILD) and 
receiving chest irradiation in NSCLC (13,15). Although CIP 
is rare, it has become one of the primary causes of ICI‑related 
treatment interruption and death (16,17). The characteristics 
of occurrence, pathogenesis, high‑risk factors, clinical and 
radiological manifestation, and management of CIP remain 
unclear; therefore, herein, the above issues are explored and 
summarized.

2. Occurrence of CIP

Among patients with malignant tumors who were adminis‑
tered PD‑1/PD‑L1 blockers, the global morbidity of irAEs 
was 26.82%, and the incidence of severe irAEs was 6.10% (6); 
common irAEs included pneumonia, colitis, hepatitis, 
rash, endocrine diseases, and nephritis (18). Following the 
Common Terminology Criteria for Adverse Events [version 
5.0], CIP can be classified into 5 grades (19): In neoadjuvant 
therapy, anti‑PD‑1 therapy and combined immunotherapy had 
CIP rates of 1.1‑5.0 and 5.0%, respectively; the occurrence of 
grade ≥3 CIP was 0.0‑5.0% and 0.0, respectively (12,20,21). 
The incidence of CIP in f i rst‑l ine treatment with 
anti‑PD‑1/PD‑L1 therapy and combined immunotherapy was 
1.1‑8.0 and 3.8‑12.8%, respectively; the incidence of grade 
≥3 CIP was 0‑3.0 and 2.3‑5.7%, respectively. In consolidation 
therapy, anti‑PD‑L1 therapy had CIP rates of 10.7‑19.0%, and 
the incidence of grade ≥3 CIP was 1.7‑3.0%. In second line 
and above treatment, anti‑PD‑1/PD‑L1 therapy had CIP rates 
of 1.0‑4.5%, and the incidence of grade ≥3 CIP was 0.0‑2.1% 

(Table I). However, a meta‑analysis involving 1,885 patients 
with Stage III NSCLC showed that the incidence of CIP and 
the incidence of grade ≥3 CIP were 35 and 6%, respectively, 
when adopting durvalumab as a consolidation regimen in the 
real world (22). In retrospective studies, the incidence of CIP 
and the incidence of grade ≥3 CIP was 4.7‑18.0 and 2.5‑6.5%, 
respectively (Table II) (23‑31). Based on the above studies, 
CIP in the real world is higher than that of prospective 
clinical trials.

Naidoo et al (6) retrospectively analyzed 915 patients 
who used PD‑1/PD‑L1 blockers, and found that the median 
time to CIP was 4.6 months (21 days to 19.2 months) in the 
ICI monotherapy group and the median time was 2.7 months 
(9 days to 6.9 months) in the combined therapy group. The 
time to CIP varies considerably in randomized clinical 
trials (RCTs). The CheckMate057 study showed that in 292 
NSCLC patients who received nivolumab, the median time 
to CIP was 31.1 (11.7‑56.9) weeks, while the CheckMate 
017 trial showed a median time to CIP of 15.1 (2.6‑85.1) 
weeks (32,33). The time to CIP in NSCLC adopting ICIs 
ranges from 39 days to 20 weeks in the real world (Table II). 
Suresh et al (34) divided CIP into early CIP (within 6 months 
after ICI) and late CIP (after 6 months of ICI). The results 
showed that CIP tended to occur early in NSCLC patients 
after initiating ICI treatment, with a higher CIP grade and 
higher early mortality. However, in the late CIP group, the 
grade of CIP was lower. In conclusion, CIP chiefly occurs 
within six months of ICIs. Since CIP is rare and has few 
cases, further large‑sample trials are necessary to verify its 
law of occurrence.

3. Clinical and radiological characteristics

The typical clinical manifestations of CIP are dyspnea 
(38.5‑78.6%), cough (22.7‑88.1%), fever (9.1‑40.5%), and chest 
pain (2.4‑7.0%), although 8.8‑33.0% of CIP patients are asymp‑
tomatic (6,35‑40). Compared to other respiratory diseases, 
the clinical manifestations of CIP lack specificity. Therefore, 
radiological characteristics are critical to the diagnosis.

The prime radiological patterns of CIP are organizing 
pneumonia (OP) (65‑86%), nonspecific interstitial pneu‑
monia (NSIP) (15‑31.3%), and hypersensitive pneumonia 
(HP) (7‑38.1%). In addition, the unique radiological patterns 
of CIP include traction bronchiectasis, consolidation, 
reticular changes, central lobular nodules, and honeycomb 
changes (6,26,28,35,38,41,42). Studies have shown that the 
radiological characteristics of CIP are related to its severity. 
In grade ≥3 CIP, acute interstitial pneumonia (AIP) and acute 
respiratory distress syndrome (ARDS) are the primary mani‑
festations, followed by OP, while in grade 1‑2 CIP, NSIP, and 
HP are the most common manifestations (41). HP and crypto‑
genic organizing pneumonia were associated with improved 
efficacy of ICIs, with a median progression‑free survival (PFS) 
of 44.29 weeks and 57 weeks, respectively (28). In addition, 
high‑resolution computed tomography (HRCT) is promising 
for diagnosing CIP, especially when interstitial pulmonary 
fibrosis is considered (36). Clinical and radiological charac‑
teristics can help to establish a preliminary diagnosis of CIP, 
but tumor progression, infection, ILD, and thromboembolism 
must first be excluded (43).



INTERNATIONAL JOURNAL OF ONCOLOGY  63:  122,  2023 3
Ta

bl
e 

I. 
C

IP
 in

 N
SC

LC
 tr

ea
te

d 
w

ith
 IC

Is
 in

 p
ha

se
 II

I r
an

do
m

iz
ed

 c
lin

ic
al

 tr
ia

ls
.

A
, N

eo
ad

ju
va

nt
 1

st
 li

ne
 tr

ea
tm

en
t

 
In

ci
de

nc
e 

of
 p

ul
m

on
ar

y 
to

xi
ci

ty
, n

 (%
)

 
Ev

al
ua

bl
e 

   
   

  ‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑
 

pa
tie

nt
s 

A
ny

‑g
ra

de
 

G
ra

de
, ≥

3
Tr

ia
l, 

ye
ar

 o
f 

 
 

N
SC

LC
 

H
is

to
lo

gi
ca

l   
   

  ‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑     
      

   ‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑     

      
   ‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
pu

bl
ic

at
io

n 
Ta

rg
et

 
Tr

ea
tm

en
t 

St
ag

e 
ty

pe
 

IC
Is

 
C

on
tro

l 
IC

Is
 

C
on

tro
l 

IC
Is

 
C

on
tro

l 
(R

ef
s.)

C
he

ck
m

at
e 

81
6,

 2
02

2 
PD

‑1
 

N
iv

ol
um

ab
+P

la
tin

um
 

IB
‑I

II
A

 
N

SC
LC

 
17

6 
17

6 
2 

(1
.1

) 
1 

(0
.6

) 
0 

(0
.0

) 
1 

(0
.6

) 
(2

0)
K

EY
N

O
TE

‑0
24

, 2
01

6 
PD

‑1
 

Pe
m

br
ol

iz
um

ab
 

IV
 

N
SC

LC
 

15
4 

15
0 

9 
(5

.8
) 

1 
(0

.7
) 

4 
(2

.6
) 

1 
(0

.7
) 

(1
34

)
C

he
ck

m
at

e 
02

6,
 2

01
7 

PD
‑1

 
N

iv
ol

um
ab

 
IV

 
N

SC
LC

 
26

7 
26

3 
3 

(1
.1

) 
1 

(0
.4

) 
3 

(1
.1

) 
0 

(0
.0

) 
(1

35
)

C
he

ck
M

at
e 

22
7,

 2
01

8 
PD

‑1
 

N
iv

ol
um

ab
 

IV
 

N
SC

LC
 

39
1 

57
0 

9 
(2

.3
) 

3 
(0

.5
) 

6 
(1

.5
) 

2 
(0

.4
) 

(9
)

K
EY

N
O

TE
‑1

89
, 2

01
8 

PD
‑1

 
Pe

m
br

ol
iz

um
ab

+ 
IV

 
N

on
‑ 

40
5 

20
2 

18
 (4

.4
) 

5 
(2

.5
) 

11
 (2

.7
) 

4 
(2

.0
) 

(1
36

)
 

 
C

is
pl

at
in

/C
ar

bo
pl

at
in

+ 
 

sq
ua

m
ou

s
 

 
Pe

m
et

re
xe

d
K

EY
N

O
TE

‑4
07

, 2
01

8 
PD

‑1
 

Pe
m

br
ol

iz
um

ab
+ 

IV
 

Sq
ua

m
ou

s 
27

8 
28

0 
18

 (6
.5

) 
6 

(2
.1

) 
7 

(2
.5

) 
3 

(1
.1

) 
(1

37
)

 
 

C
ar

bo
pl

at
in

+P
ac

lit
ax

el
/

 
 

N
ab

‑p
ac

lit
ax

el
K

EY
N

O
TE

‑0
42

, 2
01

9 
PD

‑1
 

Pe
m

br
ol

iz
um

ab
 

II
IB

, I
V

 
N

SC
LC

 
63

6 
61

5 
53

 (8
.0

) 
1 

(0
.2

) 
22

 (3
.0

) 
1 

(0
.2

) 
(1

38
)

O
R

IE
N

T‑
11

, 2
02

0 
PD

‑1
 

C
am

re
liz

um
ab

+ 
IV

 
N

on
‑ 

26
6 

13
1 

9 
(3

.4
) 

2 
(1

.5
) 

2 
(0

.8
) 

1 
(0

.8
) 

(1
39

)
 

 
Pl

at
in

um
in

+ 
 

sq
ua

m
ou

s
 

 
Pe

m
et

re
xe

d
O

R
IE

N
T‑

12
, 2

02
0 

PD
‑1

 
Si

nt
ili

m
ab

+P
la

tin
um

+ 
IV

 
Sq

ua
m

ou
s 

17
9 

17
8 

6 
(3

.4
) 

0 
(0

.0
) 

0 
(0

.0
) 

0 
(0

.0
) 

(1
40

)
 

 
G

em
ci

ta
bi

ne
C

am
el

, 2
02

1 
PD

‑1
 

C
am

re
liz

um
ab

+ 
IV

 
N

on
‑ 

20
5 

20
7 

6 
(3

.0
) 

2 
(<

1.
0)

 
4 

(2
.0

) 
1 

(<
1.

0)
 

(1
41

)
 

 
C

ar
bo

pl
at

in
+ 

Pe
m

et
re

xe
d 

 
sq

ua
m

ou
s

EM
PO

W
ER

‑L
un

g1
, 2

02
1 

PD
‑1

 
C

em
ip

lim
ab

 
II

IB
‑I

V
 

N
SC

LC
 

35
5 

34
2 

5 
(1

.4
) 

12
 (3

.5
) 

4 
(1

.0
) 

7 
(2

.0
) 

(1
42

)
IM

po
w

er
15

0,
 2

01
8 

PD
‑L

1 
A

te
zo

liz
um

ab
+ 

IV
 

N
on

‑ 
39

3 
39

4 
11

 (2
.8

) 
5 

(1
.3

) 
6 

(1
.5

) 
2 

(0
.5

) 
(1

43
)

 
 

B
ev

ac
iz

um
ab

+ 
 

sq
ua

m
ou

s
 

 
C

ar
bo

pl
at

in
+P

ac
lit

ax
el

IM
po

w
er

11
0,

 2
02

0 
PD

‑L
1 

A
te

zo
liz

um
ab

 
IV

 
N

SC
LC

 
28

6 
26

3 
21

 (7
.3

) 
27

 (1
0.

3)
 

7 
(2

.4
) 

10
 (3

.8
) 

(1
44

)
M

Y
ST

IC
, 2

02
0 

PD
‑L

1 
D

ur
va

lu
m

ab
 

IV
 

N
SC

LC
 

36
9 

35
2 

8 
(2

.2
) 

5 
(1

.4
) 

5 
(1

.4
) 

2 
(0

.6
) 

(1
1)

IM
po

w
er

13
2,

 2
02

1 
PD

‑L
1 

A
te

zo
liz

um
ab

+ 
IV

 
N

on
‑ 

29
2 

28
6 

18
 (6

.2
) 

6 
(2

.2
) 

8 
(2

.1
) 

3 
(1

.1
) 

(1
45

)
 

 
C

is
pl

at
in

/C
ar

bo
pl

at
in

+ 
 

sq
ua

m
ou

s
 

 
Pe

m
et

re
xe

d
G

EM
ST

O
N

E‑
30

2,
 2

02
2 

PD
‑L

1 
Su

ge
m

al
im

ab
+ 

IV
 

N
SC

LC
 

32
0 

15
9 

6 
(2

.0
) 

1 
(1

.0
) 

3 
(1

.0
) 

0 
(0

.0
) 

(1
46

)
 

 
C

ar
bo

pl
at

in
+P

ac
lit

ax
el

/
 

 
Pe

m
et

re
xe

d



HU et al:  CHECKPOINT INHIBITOR PNEUMONITIS IN NON‑SMALL CELL LUNG CANCER4
Ta

bl
e 

I. 
C

on
tin

ue
d.

A
, N

eo
ad

ju
va

nt
 1

st
 li

ne
 tr

ea
tm

en
t

 
In

ci
de

nc
e 

of
 p

ul
m

on
ar

y 
to

xi
ci

ty
, n

 (%
)

 
Ev

al
ua

bl
e 

   
   

  ‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑
 

pa
tie

nt
s 

A
ny

‑g
ra

de
 

G
ra

de
, ≥

3
Tr

ia
l, 

ye
ar

 o
f 

 
 

N
SC

LC
 

H
is

to
lo

gi
ca

l   
   

  ‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑     
      

   ‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑     

      
   ‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
pu

bl
ic

at
io

n 
Ta

rg
et

 
Tr

ea
tm

en
t 

St
ag

e 
ty

pe
 

IC
Is

 
C

on
tro

l 
IC

Is
 

C
on

tro
l 

IC
Is

 
C

on
tro

l 
(R

ef
s.)

C
he

ck
M

at
e 

22
7,

 2
01

8 
PD

‑1
+ 

N
iv

ol
um

ab
+I

pi
lim

um
ab

 
IV

 
N

SC
LC

 
57

6 
57

0 
22

 (3
.8

) 
3 

(0
.5

) 
13

 (2
.3

) 
2 

(0
.4

) 
(9

)
 

C
TL

A
‑4

K
EY

N
O

TE
‑5

98
, 2

02
1 

PD
‑1

+ 
Pe

m
br

ol
iz

um
ab

+ 
IV

 
N

SC
LC

 
28

2 
28

1 
36

 (1
2.

8)
 

15
 (5

.3
) 

16
 (5

.7
) 

7 
(2

.5
) 

(1
0)

 
C

TL
A

‑4
 

Ip
ili

m
um

ab
M

Y
ST

IC
, 2

02
0 

PD
‑L

1+
 

D
ur

va
lu

m
ab

+ 
IV

 
N

SC
LC

 
37

1 
35

2 
25

 (6
.7

) 
5 

(1
.4

) 
11

 (3
.0

) 
2 

(0
.6

) 
(1

1)
 

C
TL

A
‑4

 
Tr

em
el

im
um

ab

B
, C

on
so

lid
at

io
n

 
In

ci
de

nc
e 

of
 p

ul
m

on
ar

y 
to

xi
ci

ty
, n

 (%
)

 
Ev

al
ua

bl
e 

   
   

  ‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑
 

pa
tie

nt
s 

A
ny

‑g
ra

de
 

G
ra

de
, ≥

3
Tr

ia
l, 

ye
ar

 o
f 

 
 

N
SC

LC
 

H
is

to
lo

gi
ca

l   
   

  ‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑     
      

   ‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑     

      
   ‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
pu

bl
ic

at
io

n 
Ta

rg
et

 
Tr

ea
tm

en
t 

St
ag

e 
ty

pe
 

IC
Is

 
C

on
tro

l 
IC

Is
 

C
on

tro
l 

IC
Is

 
C

on
tro

l 
(R

ef
s.)

PA
C

IF
IC

, 2
01

7 
PD

‑L
1 

D
ur

va
lu

m
ab

 
II

I 
N

SC
LC

 
47

5 
23

4 
51

 (1
0.

7)
 

16
 (6

.8
) 

8 
(1

.7
) 

6 
(2

.6
) 

(5
)

G
EM

ST
O

N
E‑

30
1,

 2
02

2 
PD

‑L
1 

Su
ge

m
al

im
ab

 
II

I 
N

SC
LC

 
25

5 
12

6 
48

 (1
9.

0)
 

21
 (1

7.
0)

 
8 

(3
.0

) 
1 

(<
1.

0)
 

(6
9)

C
, 2

nd
 li

ne
 tr

ea
tm

en
t

 
In

ci
de

nc
e 

of
 p

ul
m

on
ar

y 
to

xi
ci

ty
, n

 (%
)

 
Ev

al
ua

bl
e 

   
   

  ‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑
 

pa
tie

nt
s 

A
ny

‑g
ra

de
 

G
ra

de
, ≥

3
Tr

ia
l, 

ye
ar

 o
f 

 
 

N
SC

LC
 

H
is

to
lo

gi
ca

l   
   

  ‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑     
      

   ‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑     

      
   ‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
‑‑‑‑

‑‑‑‑
pu

bl
ic

at
io

n 
Ta

rg
et

 
Tr

ea
tm

en
t 

St
ag

e 
ty

pe
 

IC
Is

 
C

on
tro

l 
IC

Is
 

C
on

tro
l 

IC
Is

 
C

on
tro

l 
(R

ef
s.)

C
he

ck
M

at
e 

01
7,

 2
01

5 
PD

‑1
 

N
iv

ol
um

ab
 

II
IB

, I
V

 
Sq

ua
m

ou
s 

13
5 

13
7 

6 
(4

.4
) 

0 
(0

.0
) 

0 
(0

.0
) 

0 
(0

.0
) 

(3
3)

C
he

ck
M

at
e 

05
7,

 2
01

5 
PD

‑1
 

N
iv

ol
um

ab
 

II
IB

, I
V

 
N

on
‑ 

29
2 

29
0 

8 
(3

.0
) 

1 
(<

1.
0)

 
3 

(1
.0

) 
1 

(<
1.

0)
 

(3
2)

 
 

 
 

sq
ua

m
ou

s
C

he
ck

m
at

e 
01

0,
 2

01
6 

PD
‑1

 
Pe

m
br

ol
iz

um
ab

 
II

IB
, I

V
 

N
SC

LC
 

68
2 

30
9 

31
 (4

.5
) 

6 
(1

.9
) 

14
 (2

.1
) 

2 
(0

.6
) 

(1
47

)
C

he
ck

M
at

e 
07

8,
 2

01
9 

PD
‑1

 
N

iv
ol

um
ab

 
IV

 
N

SC
LC

 
33

7 
15

6 
15

 (4
.0

) 
0 

4 
(1

.0
) 

0 
(0

.0
) 

(1
48

)
O

A
K

, 2
01

7 
PD

‑L
1 

A
te

zo
liz

um
ab

 
II

IB
, I

V
 

N
SC

LC
 

60
9 

57
8 

6 
(1

.0
) 

1 
(0

.2
) 

4 
(0

.7
) 

0 
(0

.0
) 

(7
)

N
SC

LC
, n

on
‑s

m
al

l c
el

l l
un

g 
ca

nc
er

; I
C

I, 
im

m
un

e 
ch

ec
kp

oi
nt

 in
hi

bi
to

r; 
N

ab
‑p

ac
lit

ax
el

, n
an

op
ar

tic
le

 a
lb

um
in

‑b
ou

nd
; C

IP
, c

he
ck

po
in

t i
nh

ib
ito

r p
ne

um
on

iti
s.



INTERNATIONAL JOURNAL OF ONCOLOGY  63:  122,  2023 5

4. Pathogenesis of CIP

Mechanism of action of CTLA‑4, PD‑1, and PD‑L1 mono‑
clonal antibody (mAb). Tumor cells typically use immune 
suppression and tolerance mechanisms to evade immune 
clearance, activating CTLA‑4 and PD‑1/PD‑L1 signals 
to destroy or inhibit immune regulatory pathways (44). 
CTLA‑4 is structurally similar and homologous to the T cell 
co‑stimulatory molecule Cluster of Differentiation 28 (CD28). 
CTLA‑4 can compete with CD28 to bind to the ligands B7‑1 
(CD80) and B7‑2 (CD86). CTLA‑4 has greater affinity and 
activity than CD28, reducing CD28/B7 interactions, and 
may transmit intracellular inhibitory signals after binding 
to B7 molecules (45). In addition, studies have confirmed 
that CTLA‑4 can remove CD80 and CD86 molecules on the 
surface of antigen‑presenting cells (APCs), which reduces the 
activation of effector T cells (46).

PD‑L1 is one of the ligands of PD‑1 and is primarily 
expressed on somatic cells exposed to anti‑inflammatory 
cytokines. The binding of PD‑1 and PD‑L1 inhibits the effects 
of T cells (44,47). At the same time, chronic inflammatory 
factor‑mediated expression of PD‑L1 in the tumor microen‑
vironment leads to PD‑1‑mediated depletion of T cells and 
inhibits the anti‑tumor cytotoxic T cell response (47‑49). That 
is, the binding between CTLA‑4 and B7 molecules, removing 
B7 molecules from APCs, and the relationship between 
PD‑1 and PD‑L1 ultimately reduces the activation of T cells, 
thus improving the survival of tumor cells. This mechanism 
suggests that CTLA‑4 mAbs can block CTLA‑4 inhibitory 
signals, and PD‑1 and PD‑L1 mAbs can block PD‑1/PD‑L1 
inhibitory signals, restoring T cells' tumor‑killing effect and 
achieving tumor growth inhibition (Fig. 1) (43).

Anti‑PD‑1, anti‑PD‑L1, and anti‑CTLA‑4 mAb can 
block CTLA‑4 and PD‑1/PD‑L1 signaling, respectively. This 
process may also lead to excessive activation and amplification 
of CTL, Helper T (Th) cells, and downregulation of regula‑
tory T cells (Tregs), and ultimately lead to induction of CIP 
(Fig. 2) (50‑52).

Cytotoxic T lymphocyte (CTL). Prior to treatment with steroids, 
analysis of bronchoalveolar lavage fluid (BALF) from 12 CIP 
patients and 6 patients without CIP showed that the number of 
lymphocytes increased by >20% in the CIP group. Subsequent 
flow cytometry analysis revealed that the CD3+CD8+T cells and 
TNF‑αhighIFN‑γhigh CD8+T cells increased (50). Histochemical 
analysis of pneumonia tissues from CIP patients revealed 
that CD8+T cells increased in pneumonia tissues (51). During 
steroid reduction, the specific proliferation of PD‑1+CD8+ T 
cells was observed in the pulmonary pathology of relapsed 
CIP but not in normal tissues (53).

Furthermore, comparison of the complementarity‑deter‑
mining region 3 of the T cell receptor (TCR) β chain in 
irAE‑lesions and tumor‑infiltrating lymphocytes (TILs) 
via sequencing revealed that the T cell pools of two groups 
overlapped significantly (51). Subudhi et al (54) found that 
the number of CD8+T cell clones in the peripheral blood was 
closely correlated with irAEs (P=0.01), especially with grade 
2‑3 irAEs (P<0.0001) in patients who received ipilimumab, a 
CTLA‑4 blocker. TIL‑like T cells in inflammatory tissues and 
peripheral blood suggest the existence of cross‑antigens shared Ta
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in tumor and normal tissues. If the cross‑antigens appeared in 
the lung tissue, the specific CTL may damage the normal lung 
tissue and thereby cause CIP.

Th cells. A previous study showed that CD3+CD4+ cells in 
the BALF were elevated in CIP compared with the control 
group (P=0.04). The differential clustering map of T‑cell 
subsets suggested that CD4+FoxP3loCD25‑CD62LhiCD45RAlo 
clusters were markedly increased in the CIP group (50). Naive 
CD4+ T cells can differentiate into Th1, Th2, and Th17 subsets 
under the stimulation of cytokines such as IL‑6, TGF‑β, and 
IFN‑γ (55). In the following sections, the impact of CD4+ T cell 
subsets in the development of CIP is summarized.

Th1 cells. Th1 cells can secret IFN‑γ and play a vital anti‑
cancer role by activating CTL (56). The proportion of Th1 
cells reportedly decreased in the NSCLC immunological 
background (57). PD‑1 blockers can enhance Th1 and Th17 
effector cytokines, such as IL‑2, IFN‑γ, TNFα, IL‑6, and IL‑17, 
transforming antigen‑induced cell reactivity into a proinflam‑
matory Th1/Th17 response (58). Th1 cells play a dominant 
role in Nivolumab‑mediated irAEs (59). In a previous study, 
the analysis of T‑cell subsets in BALF of the CIP group 
(n=13) indicated that the percentages of Th1 cells were higher 
when CIP occurred compared with the baseline (P=0.029). 
The Th1/Th2 ratio decreased when the severity of CIP was 
reduced (P=0.042) (60). The enrichment of Th1 cells was also 

observed in BALF of leukemia patients with CIP treated with 
ICIs (39). Therefore, the dominance of Th1 cells may be one of 
the mechanisms leading to CIP.

Th17. IL‑6 and TGF can activate the transformation of 
naive CD4+T cells into Th17 cells (56). Th17 cells primarily 
consist of the anatomical barrier structures of the digestive 
tract and lung and produce IL‑17 (61). Th17 cells in the lungs 
can recruit and cause significant activation of tumor‑specific 
CD8+T cells (62). In NSCLC, the analysis of T cell subsets 
in BALF of the CIP patients indicated that the percentage of 
Th17 cells and the ratio of Th17 to Tregs was higher when 
CIP occurred compared with the baseline (P=0.014 and 
P=0.002, respectively) (60). The proportion of CD4+ TH17.1 
cells in the CIP group was significantly higher than those in 
the control group (13 vs. 3%) via single‑cell RNA sequencing 
(scRNA‑seq) analyses, especially the pathogenic TH17.1_TBX21 
cells. Subsequent T‑cell receptor sequencing revealed that the 
Gini coefficient increased and TCR abundance and evenness 
decreased in TH17.1_TBX21 cells, which further suggested that 
TH17.1_TBX21 cells had an apparent ability of antigen‑driven 
clonal expansion (63). Thus, Th17 cells can promote CIP by 
activating CD8+T cells and participate in CIP directly through 
antigen‑mediated specific proliferation.

Tregs. Tregs belong to the inhibitory CD4+ T cell subgroup, 
which is primarily involved in establishing peripheral tolerance 
by inhibiting effector T cells and inhibiting immune‑mediated 

Figure 1. Mechanism of action of anti‑CTLA‑4, anti‑PD‑1, and anti‑PD‑L1 mAbs. (A) Mechanism of action of anti‑CTLA‑4 mAb (blue arrow). (B) Mechanism 
of action of anti‑PD‑1 and anti‑PD‑L1 mAbs (green arrow). TCR, T cell receptor; MHC, major histocompatibility complex; APC, antigen‑presenting cell; 
CTLA‑4, cytotoxic T lymphocyte‑associated antigen‑4; PD‑1, programmed death 1; PD‑L1, programmed cell death‑ligand 1; PD‑L2, programmed cell 
death‑ligand 2; mAb, monoclonal antibody.
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tissue destruction against autoantigens. PD‑1+ and CTLA‑4+ 
Tregs negatively regulate the inflammatory response induced 
by CD8+T cells (52,64). Since the PD‑1/PD‑L1 axis is blocked, 
Treg differentiation is blocked, leading to a decrease in Treg 
levels in the tumor microenvironment (38). The conjuga‑
tion of anti‑CTLA‑4 antibodies to CTLA‑4 can also lead to 
Treg depletion or functional blockade, thereby enhancing 
T‑cell activation (52). The proportion of immunosuppressive 
CTLA‑4highPD‑1high alveolar Tregs is notably decreased in 
the BALF following the development of CIP (50), which may 
promote Th1 cell responses, as seen in NSCLC patients with 
CIP (60). Not only does Treg depletion facilitate CIP, but alveolar 
Tregs participate in the regression of lung injury (65). Thus, the 
depletion and dysfunction of Tregs may accelerate CIP.

Innate immune cells. In addition to T cells, innate immune cells 
may be vital for CIP (Fig. 3). A prospective study that consisted 
of 11 CIP patients found marked monocyte/macrophage 

depletion in the BALF of patients with CIP, but a substan‑
tial elevation of dendritic cells (DCs). Further scRNA‑seq 
analysis revealed that the proportion of pro‑inflammatory 
IL‑1Bhigh monocytes was increased, and ‘M1‑like’ genes such 
as CCL3, CCL4, IL1B, TNF, and NFKBIA were up‑regulated 
in monocytes/macrophages in CIP (63). Upregulation of 
M1‑type macrophages was also observed in NSCLC patients 
who developed CIP (66). Recent studies have demonstrated 
that eosinophils may be involved in CIP. By analyzing the 
peripheral blood of 430 lung cancer patients treated with 
ICIs, Li et al (67) observed that eosinophils in the CIP group 
(n=67) differed at the beginning of ICI treatment (E bas), diag‑
nosis of CIP (E end), and 1 week after CIP diagnosis (E fol). 
The E end/E bas ratio signally decreased and was correlated 
with the severity of CIP. The risk and severity of CIP were 
incremental when E end/E bas <0.5. E fol notably rose, and the 
CIP patients had a prolonged overall survival (OS) when 
E fol/E bas ≥1.0 (20.9 vs. 8.2 months, P=0.024). A positive 

Figure 2. Mechanisms of action of T cells and correlative cytokines in CIP. Anti‑PD‑1, anti‑PD‑L1, and anti‑CTLA‑4 mAbs can block CTLA‑4 and PD‑1/PD‑L1 
signaling, enhancing the activation and proliferation of CD4+T cells and CTL and weakening the inhibitory effect of Tregs. CTL kills not only tumor cells but 
also normal lung tissues that express the same antigens as tumor cells. Th2 cells differentiated from CD4+T cells are downregulated, while Th1 and Th17 cells 
are upregulated in this process and secrete more IFN‑γ, TNFα, and IL‑17A into the peripheral blood. IFN‑γ can promote the amplification of CTL. Meanwhile, 
IL‑10 and IL‑35, secreted by Tregs, are secondarily elevated due to the pro‑inflammatory response. Then cytokines reach the lung through blood circulation. 
The above‑dysregulated secretion of cytokines and immune cell‑killing mechanisms jointly promote CIP. CTL, cytotoxic T lymphocyte; Treg, regulatory T; 
CIP, checkpoint inhibitor pneumonitis; Th, helper T; IFN‑γ, Interferon‑γ; IL, interleukin; TNFα, tumor necrosis factor α; CTLA‑4, CTL‑associated antigen‑4; 
PD‑1, programmed death 1; PD‑L1, programmed cell death‑ligand 1; PD‑L2, programmed cell death‑ligand 2; mAb, monoclonal antibody; TCR, T cell 
receptor; MHC, major histocompatibility complex; APC, antigen‑presenting cell.
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association between high baseline eosinophil levels and CIP 
was also observed in NSCLC, and the high eosinophil group 
(eosinophils ≥0.125x109 cells/l) had a superior PFS compared 
with the low‑eosinophil group (eosinophils <0.125x109 cells/l) 
(8.93 vs. 5.87 months, P=0.038) (27). In addition, elevated 
neutrophil counts and infiltration were observed in the BALF 
and pathological tissues of the inflammatory sites in CIP 
patients, respectively (68,69). These findings suggest that the 
increase in inflammatory monocytes, DCs, and neutrophils, 
M1 polarization of macrophages, and decrease in eosinophils 
may influence the occurrence and development of CIP.

Cytokines. In addition to immune cells, cytokines are also 
involved in the development of CIP. The dysregulation of cyto‑
kines is associated with severe irAEs and may thus be used in 
determining a prognosis (70).

IL‑6. IL‑6 is an essential cytokine in the acute phase of 
inflammation (71), with pro‑inflammatory effects in the 
tumor microenvironment (72). IL‑6 inhibits Treg develop‑
ment and promotes the production of effector Th17 cells (73). 

Lin et al (74) found that IL‑6 levels in the peripheral blood 
were elevated at the onset of CIP (11.81 vs. 7.62 pg/ml). The 
OS in the IL‑6 <11.81 pg/ml group and ≥11.8 pg/ml group was 
21.1 and 6.1 months (P<0.001), respectively, demonstrating 
that high levels of IL‑6 may facilitate CIP and shorten 
survival. IL‑6 levels are markedly different between the acute 
and chronic phases of CIP (17.9 vs. 5.7 pg/ml, P=0.018) (75). 
Analysis of the cytokines in the BALF also indicated that IL‑6 
was significantly higher in the CIP group than that in the lung 
cancer group [126.0 pg/ml (14.6‑248.9 pg/ml) vs. 1.5 pg/ml 
(0.7‑7.8 pg/ml), P=0.011] (68). Thus, elevated levels of IL‑6 are 
not only involved in CIP, but it also has a predictive effect on 
the prognosis.

IL‑17A. IL‑17A produced by Th17 cells, is a pro‑inflam‑
matory cytokine involved in various inflammatory diseases. 
Overexpression of IL‑17A and Th17 cells leads to tissue 
damage, inflammation, and autoimmune activation (76‑78). 
Spleen cells of PD‑1‑/‑ mice have been reported to produce more 
IL‑17A than wild‑type mice post‑stimulation (concanavalin A, 
PMA + lonomycin, or αCD3 + αCD28) (79). High levels of 
IL‑17 at baseline were predictive of grade 3 diarrhea/enteritis 

Figure 3. Mechanisms of action of innate immune cells and correlative cytokines in CIP. Blockade of CTLA‑4 and PD‑1/PD‑L1 signaling by anti‑PD‑1, 
anti‑PD‑L1, and anti‑CTLA‑4 mAbs resulted in the reduction of eosinophil and the elevation in IL‑6 and IL‑1β secreted by monocytes and macrophages in 
peripheral blood. Meanwhile, the increase of pro‑inflammatory MI‑like macrophages, monocytes expressing IL‑1β, dendritic cells, neutrophils, and IL‑6 were 
observed in CIP. The dysregulation of innate immune cells and increase in pro‑inflammatory cytokines promoted CIP. CTLA‑4, cytotoxic T lymphocyte‑
associated antigen‑4; PD‑1, programmed death 1; PD‑L1, programmed cell death‑ligand 1; PD‑L2, programmed cell death‑ligand 2; mAb, monoclonal 
antibody; TCR, T cell receptor; MHC, major histocompatibility complex; IL, interleukin; APC, antigen‑presenting cell; CIP, checkpoint inhibitor pneumonitis.
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in melanoma treated with ipilimumab (P=0.02) (80). IL‑17A 
levels in the serum and BALF were elevated when CIP 
occurred in NSCLC patients. IL‑17A in serum significantly 
decreased when CIP was improved or restored (P=0.034) and 
was positively correlated with the proportion of Th17 cells 
and the Th17/Treg ratio (60). Another study demonstrated that 
IL‑17A in the BALF of CIP patients was significantly higher 
than that of lung cancer and ILD patients (68). In conclusion, 
elevated IL‑17A levels may promote CIP.

IL‑1β. IL‑1β is a critical pro‑inflammatory factor, primarily 
synthesized and secreted by monocytes and macrophages. 
High levels of IL‑1β in the serum can promote acute lung injury 
and pulmonary fibrosis (67,81). Elevated IL‑1β at baseline and 
early in anti‑PD‑1 therapy (1‑6 weeks after anti‑PD‑1 therapy) 
is predictive of irAEs (70). A case report demonstrated that 
the levels of IL‑1β were significantly elevated in the serum 
of CIP patients (21.9 pg/ml) (82). Suresh et al (50) observed 
that the number of monocytes expressing IL‑1β in the BALF 
increased noticeably, while soluble IL‑1β levels decreased 
during the development of CIP. This may be due to the late 
time of BALF collection (at least 2‑3 days after the onset of 
CIP symptoms), whereas elevations in IL‑1β generally occur 
early in lung injury. According to the above studies, IL‑1β may 
be involved in the pathogenesis of CIP through pro‑inflamma‑
tory responses, although its secretion in CIP requires further 
observation and analysis.

IL‑10 and IL‑35. IL‑10 and IL‑35, which are produced 
by Tregs, are important anti‑inflammatory cytokines with 
anti‑fibrotic effects (83,84). IL‑10 can inhibit the production of 
TNF‑α, IL‑6, and IL‑1β of monocytes (85). IL‑35 can reduce 
the activation of Th1 and Th17 cells and inhibit the secretion of 
cytokines such as IL‑17A, TNF‑α, and IFN‑γ (86,87). IL‑35 can 
promote the production of IL‑10 (88). IL‑10 is elevated when 
CIP occurs, and high levels of IL‑10 (≥3.79 pg/ml) are positively 
correlated with severe CIP (P=0.057) (74). Wang et al (89) 
performed a subgroup analysis of 40 NSCLC patients with irAEs 
and found baseline IL‑10 levels were an independent prognostic 
risk factor for CIP (OR=9.969, 95% CI 1.144‑86.843, P=0.037). 
CIP was prone to occur in the high IL‑10 group (≥0.704 pg/ml) 
compared with the low IL‑10 group (<0.704 pg/ml) (45.65 vs. 
9.52%, P=0.004). The levels of IL‑35 in the serum and BALF 
were elevated when CIP occurred in NSCLC patients. IL‑35 
levels in the serum were significantly decreased when CIP 
improved or resolved (P=0.044) and positively associated 
with the proportion of Th1 cells and the Th1/Th2 ratio (60). 
In conclusion, IL‑10 and IL‑35 may influence CIP, while an 
increase in the levels of IL‑10 and IL‑35 may be secondary to the 
pro‑inflammatory response. However, the specific mechanism 
warrants further exploration.

Other potential mechanisms. In addition to the aforemen‑
tioned immune disorders and abnormal cytokine secretion, 
autoantibodies, and microbial flora may also affect the occur‑
rence of CIP. In NSCLC patients who were treated with PD‑1 
blockers, irAEs were found to be associated with preexisting 
rheumatoid factor (68 vs. 40%, P=0.006) and autoantibodies 
(60 vs. 32%, P=0.002), such as thyroid peroxidase antibody, 
anti‑thyroglobulin, and antinuclear antibody; however, no 
statistical differences in the occurrence of CIP was found in 
the subgroup analyses (90).

Tumor‑associated autoantibodies can increase CIP, such 
as antibodies against p53, NY‑ESO‑1, TRIM21, HUD, and 
BRCA2 (91). Furthermore, the levels of anti‑CD74 autoan‑
tibodies increased 1.34‑fold in patients with CIP compared 
with before treatment with ICIs, but the fold increase was 
not observed in patients without CIP, which revealed that the 
fold‑change of anti‑CD74 autoantibodies was related to the 
development of CIP (92). The relationship between microbial 
flora and irAEs has also attracted attention. For example, the 
enrichment of Firmicutes is more likely to lead to ICI‑related 
diarrhea (93). However, the connection between CIP and 
microbial flora is vague.

5. Risk factors for CIP

Previous respiratory disease. In real‑world settings, several 
NSCLC patients have pre‑existing respiratory diseases, such as 
ILD, COPD, and asthma. Pre‑existing ILD may accelerate CIP 
in NSCLC (35,38,94‑96), and CIP was found to occur earlier 
in NSCLC patients with previous ILD during ICI treatment 
(1.3 vs. 2.3 months) (24). In another study consisting of 461 
NSCLC patients, the ILD group (n=49) more frequently devel‑
oped CIP (n=412) (30.6 vs. 9.5%, P<0.01) and grade ≥3 CIP 
(16.3 vs. 3.6%, P<0.01) than the non‑ILD group (97). However, 
mild ILD may not increase the incidence of CIP and grade ≥3 
CIP. Fujimoto et al (98) defined mild interstitial pneumonia as 
a predicted vital capacity of ≥80% and manifesting as usual 
interstitial pneumonia on HRCT. In their study, CIP occurred 
in only 2 of 18 NSCLC patients after nivolumab therapy, both 
grade 2. In another study involving 10 patients with mild ILD, 
it was also found that there was no significant difference in 
the incidence and severity of CIP between those with and 
without prior ILD who received first‑line pembrolizumab 
monotherapy in NSCLC (20.0 vs. 22.6% and 10.0 vs. 11.3%, 
respectively) (99).

In conclusion, the application of PD‑1 blockers in patients 
with mild ILD may be safe, but more severe ILD may be 
more closely related to CIP in NSCLC, which requires further 
confirmation. Interestingly, adopting the anti‑PD‑L1 mAb 
in a bleomycin‑induced pulmonary fibrosis mouse model 
can alleviate pulmonary fibrosis (100). There is substantial 
heterogeneity in the effects of PD‑L1 blockers in ILD. 
Further comparison and analysis of the immune background 
of patients with ILD who develop CIP and the changes in 
the microenvironment during the development of the two 
diseases are necessary, which may offer a reliable basis for 
utilizing ICIs in NSCLC with pre‑existing ILD. In addition, 
COPD and asthma may also contribute to CIP (101,102). In the 
KEYNOTE‑001 trial, CIP was more common in patients with 
prior COPD and asthma (5.4 vs. 3.1%) (101). Grades 3‑4 CIP 
was more prone to occur in patients with concomitant asthma 
(100.0 vs. 28.6%) (103).

Previous/combined/sequential radiotherapy, chemotherapy, 
and epidermal growth factor receptor tyrosine kinase 
inhibitors (EGFR‑TKIs). Radiotherapy may be a risk factor for 
CIP (104‑106). NSCLC patients with a history of chest radio‑
therapy are more prone to CIP than patients without a history 
of chest radiotherapy (40 vs. 9.8%, P<0.001), and grade ≥3 
CIP occurred in 10% of patients, all of which had a history of 
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chest radiotherapy (104). CIP was independent of parameters of 
previous radiotherapy, but patients who received curative‑intent 
chest radiotherapy (definitive, adjuvant, or consolidative radia‑
tion) were more likely to develop CIP in the subgroup analyses 
(89 vs. 11%) (107). A pronounced increase in pulmonary toxicity 
among patients with a history of previous thoracic and dorsal 
radiotherapy (13 vs. 1%, P=0.046) was also discovered in the 
KEYNOTE‑001 trial. Interestingly, patients who received chest 
radiotherapy before pembrolizumab administration showed 
a more substantial survival benefit (106). A meta‑analysis 
including 9,500 NSCLC patients demonstrated that CIP was 
more likely to occur with ICI plus chemotherapy than with ICI 
alone (6.03 vs. 3.32%, P=0.01) (108). Another meta‑analysis 
of RCTs showed that the incidence of CIP and grade ≥3 CIP 
in first‑line treatment of NSCLC was lower in the ICI plus 
chemotherapy group than in the ICI monotherapy group (5.9 
vs. 7.1% and 1.6 vs. 2.9%, respectively) (109). Matsuo et al (110) 
also demonstrated that CIP in the first‑line treatment of NSCLC 
was higher in ICI monotherapy (n=172) than that in the ICI 
plus chemotherapy (n=38; P=0.029). Moreover, CIP in patients 
treated with EGFR‑TKIs plus nivolumab was four times higher 
than that of nivolumab monotherapy (111). In the TATTON 
trial, osimertinib plus durvalumab was discontinued due to the 
increased reporting of ILD (22%) (112).

Types of ICIs. A meta‑analysis found that compared with 
PD‑L1 blockers, the use of PD‑1 blockers was more likely to 
result in a patient developing CIP, with Grade 3 or 4 pneumo‑
nitis also being more commonly observed with PD‑1 blockers 
(1.1 vs. 0.4%, P=0.02) (108,113). A higher incidence of grade ≥3 
CIP was also observed in patients treated with PD‑1 blockers 
compared with PD‑L1 blockers in stage III NSCLC (8.6 vs. 
4.4%, P=0.01) (114). A review involving 48 trials demonstrated 
that CIP was more likely to occur with PD‑1 blockers than 
CTLA‑4 blockers (OR 6.4, 95% CI 3.2‑12.7) (115). CIP was 
more common when treated with pembrolizumab than with 
nivolumab (63 vs. 37%, P=0.004) (23). Additionally, untreated 
NSCLC is more likely to result in CIP compared with NSLC 
previously treated with PD‑1/PD‑L1 blockers (113). Compared 
with the use of ICIs as a second‑line treatment, CIP and 
grade ≥3 CIP were more likely to occur if ICIs were used as a 
first‑line treatment (14,108). The KEYNOTE‑598 trial showed 
that pembrolizumab plus ipilimumab was more likely to result 
in CIP and grade ≥3 CIP than pembrolizumab alone (12.8 vs. 
5.3% and 5.7 vs. 2.5%, respectively) (10). In the Lung‑MAP 
S1400I trial (8) and the MYSTIC trial (11), the morbidity 
of CIP and grade ≥3 CIP in the PD‑1/PD‑L1 plus CTLA‑4 
blocker group tended to be higher compared with that in the 
PD‑1/PD‑L1 blocker monotherapy group.

Other risk factors. Excluding previous respiratory disease, the 
history of radiotherapy, chemotherapy, and EGFR‑TKI therapy, 
and types of ICIs, age (35,116), smoking history (117,118), histo‑
logical type (34,117), Eastern Cooperative Oncology Group 
(ECOG) score (38,42), extra‑thoracic metastasis (35,119), 
serum albumin (23), and lung function (120) may be related to 
the occurrence of CIP.

However, several studies have shown that age, sex, smoking 
history, ECOG score, extra‑thoracic metastasis, histological 
type, previous COPD, previous chemotherapy, radiotherapy, 

and EGFR‑TKI treatment history, and the type of ICIs are not 
related to the occurrence of CIP (28,35,43,50,116).

6. Management and prognosis of CIP

According to the guidelines and consensus recommendations 
for grade 1 CIP, monitoring symptoms and pulmonary func‑
tion, and performing a chest CT is recommended. If symptoms 
improve, close follow‑up and ICI treatment should be resumed. 
However, if conditions worsen, ICI treatment should be 
suspended. For grade 2 CIP, ICI should be suspended, and 
methylprednisolone 1‑2 mg/kg/d should be administered intra‑
venously. After 48‑72 h of treatment, if the symptoms improve, 
the steroid dose should be reduced by 5‑10 mg per week for 
4‑6 weeks. If the disease worsens, the treatment plan should be 
escalated. If there is the possibility of a co‑infection, empirical 
and spectral antibiotic therapy should be considered. Chest CT 
and pulmonary function should be reviewed every 3‑4 days. 
When the patient recovers to grade ≤1 CIP, the resumption 
of immunotherapy should be considered. For grade 3‑4 CIP, 
ICIs should be discontinued permanently, the patient should 
be hospitalized, and methylprednisolone 2‑4 mg/kg/d should 
be administered intravenously after 48 h of treatment. If the 
symptoms improve, the dose of the steroid should be reduced 
after 8 weeks of treatment. If the symptoms worsen, other 
immunosuppressants should be considered (121‑123).

There are currently four RCTs exploring CIP treatment 
on the National Institutes of Health ongoing Trial Registry, of 
which NCT04438382, NCT05899725, and NCT05280873 are 
recruiting patients, and NCT04036721 was suspended due to 
SARS‑CoV‑2 cases. Therefore, the outcomes of treatment for 
CIP in randomized clinical trials are currently unknown.

Following the guidelines and consensus recommendations, 
grade ≥2 CIP requires pharmacological interventions (121‑123). 
A large proportion of the data on pharmacological interven‑
tions of grade ≥2 CIP originate from retrospective studies. 
Among CIP patients receiving first‑line steroid therapy, the 
efficiency is 56‑100% (Table III), Stroud et al (124) attempted 
to treat grade 3‑4 CIP with an IL‑6R inhibitor (tocilizumab) 
on the basis of corticosteroid therapy, and 11 of the 12 patients 
with grade 3‑4 CIP exhibited improvements. Commonly 
used second‑line drugs include TNFα inhibitors (Infliximab), 
mycophenolate mofetil, cyclophosphamide, and intravenous 
immunoglobulins (Table III) (124‑129). Nintedanib has 
also shown promise in improving CIP (130). IL‑1 inhibitors 
(anakinra and canakinumab), IL‑17 inhibitors (ixekizumab, 
brodalumab, and secukinumab), integrin‑4 inhibitors (natali‑
zumab), IL‑23 and IL‑12 inhibitors (ustekinumab), and anti‑B 
cell antibodies (rituximab and obinutuzumab) have been 
used to improve irAEs (71,121‑123), but their efficacy in CIP 
remains unknown.

In addition to the applications of steroid hormones, 
immunosuppressants, and cytokine antagonists to treat 
irAEs, other strategies to reduce irAEs have also attracted 
attention. A meta‑analysis assessing 14 RCTs suggested that 
atezolizumab may reduce the incidence of grade ≥3 CIP 
compared with other immune‑based schedules (131). IL‑6 
blockade combined with ICIs can alleviate ICI‑induced 
experimental autoimmune encephalomyelitis (132). Thymosin 
α1 combined with anti‑CTLA‑4 antibodies can significantly 
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reduce the gastrointestinal toxicity induced by anti‑CTLA‑4 
antibodies (133). However, the results of the above two studies 
are based on animal experiments and have not been confirmed 
in RCTs.

Following steroid treatment, most patients exhibit improve‑
ment. However, ~14% (6/44) of CIP patients still have persistent 
or worsening pneumonia during steroid reduction, and chronic 
CIP requires ≥12 weeks of immunosuppressive therapy (53). 
Lung cancer patients with CIP have a better maximal tumor 
shrinkage rate (25.5 vs. 0.0%, P=0.014) (38), better objec‑
tive response rate (61.90 vs. 29.91%), and better PFS (45.80 
vs. 21.15 weeks) compared with those without CIP (28). 
Ono et al (26) found that patients with CIP had a longer OS 
compared with patients without CIP (27.4 vs.14.8 months). 
However, the common feature of these studies was the 
predominance of grade 1‑2 CIP and the use of close monitoring. 
Lung cancer patients with grade ≥3 CIP have a markedly 
shorter OS (3.7 vs. 22.1 months, P<0.001) (74). The grade ≥3 
CIP‑related mortality was 22.7‑28.1% in NSCLC (29,42), and 
patients with grade ≥3 CIP had a significantly shorter PFS (1.0 
vs. 3.5 months) and OS (3.0 vs. 12.7 months) (42). In conclu‑
sion, grade 1‑2 CIP may be sued to predict the effectiveness 
of an ICI treatment. In contrast, patients with grade ≥3 CIP 
may exhibit a reduced response to ICI and shortened survival; 
thus, assisting in the evaluation of the predictive prognosis 
of NSCLC patients receiving ICI treatment. However, these 
findings require further confirmation via randomized and 
prospective trials.

7. Conclusions and future perspectives

ICIs serve as a better treatment option for NSCLC; however, 
additional attention should be focused on the resulting irAEs, 
especially CIP. The real‑world incidence of CIP is higher than 
in randomized clinical trials. CIP is commonly seen early in ICI 
treatment, especially within the first 6 months of initiation of 
ICIs. The clinical and imaging manifestations of CIP lack speci‑
ficity, complicating the diagnosis. HRCT may be a promising 
method in the imaging diagnosis, evaluation, and follow‑up of 
CIP since it can better reflect pulmonary interstitial changes.

Excessive activation and amplification of CTL, Th cells, 
downregulation of Tregs, and over‑secretion of pro‑inflamma‑
tory cytokines remain the dominant mechanisms underlying 
the pathophysiology of CIP. The dysregulation of innate 
immune cells, such as increased levels of inflammatory 
monocytes, DCs, neutrophils and M1 polarization of macro‑
phages, increased IL‑10 and IL‑35, and a decrease in the 
eosinophil levels may underlie the onset and progression of 
CIP. Nevertheless, several of the above mechanistic findings 
are based on retrospective studies. It is, therefore, necessary 
to obtain lung biopsies from CIP patients, especially patients 
with grade ≥3 CIP for assessment. Before ICI administration 
and during the process of CIP, analyzing the components and 
changes of BALF may provide more evidence of the molecular 
mechanisms underlying the development of CIP and other 
pulmonary toxicities. Furthermore, autoantibodies and micro‑
organisms offer novel research avenues.

Although contested, several factors may facilitate the onset 
of CIP, such as previous ILD, COPD, asthma, radiotherapy, 
chemotherapy, EGFR‑TKI therapy, PD‑1 blockers, first‑line 

application of ICIs, and combined immunotherapy. First‑line 
ICIs plus chemotherapy may reduce the occurrence of CIP. 
Additional trials are required to further assess the risk factors 
associated with CIP. With a deeper understanding of CIP, 
a predictive model may be established to promote the early 
detection, diagnosis, and treatment of CIP and screen the 
optimal population for ICI treatment.

Currently, the treatment of grade ≥2 CIP remains steroid 
hormone therapy. Despite concerns regarding the toxic effects 
and the potential to promote tumor progression, cytokine 
blockers are promising therapeutic agents. The control rate 
of CIP may be further upgraded by enhancing the targeting 
of cytokine blockers, reducing their toxicity, and optimizing 
their combination with steroid hormones. Multi‑center, large 
samples, and interdisciplinary research are imperative to 
achieve this goal.
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