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Abstract. Ovarian cancer (OC) is a deadly disease. The poor 
prognosis and high lethality of OC are attributed to its high 
degrees of aggressiveness, resistance to chemotherapy and 
recurrence rates. Calcium ion (Ca2+) signaling has received 
attention in recent years, as it appears to form an essential part 
of various aspects of cancer pathophysiology and is a potential 
therapeutic target for OC treatment. Disruption of normal Ca2+ 
signaling pathways can induce changes in cell cycle progression, 
apoptosis, proliferation and migration and invasion, leading to 
the development of the malignant phenotype of tumors. In the 
present review, the main roles of ion channel/receptor/pump‑trig‑
gered Ca2+ signaling pathways located at the plasma membrane 
and organelle Ca2+ transport in OC are summarized. In addition, 
the potential of Ca2+ signaling as a novel target for the develop‑
ment of effective treatment strategies for OC was discussed. 
Furthering the understanding into the role of Ca2+ signaling in 
OC is expected to facilitated the identification of novel thera‑
peutic targets and improved clinical outcomes for patients.
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1. Introduction

Ovarian cancer (OC) is considered to be the most lethal 
of the three major types of gynecological cancer known, 
which also include cervical and endometrial cancer  (1). 
Different histological subtypes of OC can be distinguished 
by their unique combination of risk factors, cellular origins, 
molecular profile, clinical characteristics and response 
to treatment. Epithelial ovarian cancer (EOC) accounts 
for 90% of all ovarian tumors, which can then be further 
subdivided into the following four subtypes: Plasmacytoma, 
endometrioid carcinoma, clear cell carcinoma and mucinous 
carcinoma. In total, ~10% ovarian malignancies are clas‑
sified as non‑epithelial, which includes germ cell tumors, 
gonadal mesenchymal tumors and metastatic tumors (2,3). 
As the principal female reproductive organ, the ovaries are 
in charge of oogenesis, female sex hormone production and 
secretion. Previous research indicates that OC originates 
in the fallopian tubes rather than the ovary, as previously 
thought (4,5). Ovarian malignancies are difficult to detect in 
the early stages due to their position in the peritoneal cavity 
and being shielded and they are frequently discovered in the 
late stages. However, detecting early atypical OC remains 
difficult due to molecular similarities between cells in the 
fallopian tubes, ovaries and peritoneum (4). Ovarian cancer 
is exceedingly common, second only to breast cancer in 
terms of incidence and it has the greatest mortality rate 
among the three primary gynecologic malignancies, posing 
a substantial threat to women. OC is a very aggressive cancer 
that is resistant to treatment, has a high recurrence rate and 
has a low 5‑year survival rate (6‑9). In comparison to other 
gynecological cancers, research in this field is wanting and 
needs more attention and exploration. As a result, identifying 
early diagnostic markers and developing further focused 
therapy options for this cancer is critical.
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Calcium ion (Ca2+) is an essential second messenger 
that participates in a wide range of critical physiological 
processes (10). Signal transduction involving Ca2+ is essen‑
tial for a wide variety of biological functions, including 
proliferation, differentiation, growth and apoptosis. Ca2+ 
flow through intracellular Ca2+ ([Ca2+]i) channels are neces‑
sary for the transition from the G1/S phase to mitosis in the 
cell cycle. By contrast, Ca2+ deficiency can halt cell cycle at 
the G0/G1 and S phases (11). A number of ovarian patholo‑
gies, such as OC, typically result from the dysregulation of 
plasma membrane‑based and organelle‑based Ca2+ signaling 
mechanisms (12). Ca2+ levels have a profound effect on the 
physiology of the female reproductive system, especially 
the ovary. [Ca2+]i concentrations can regulate almost every 
cellular process currently known, from energy production and 
cellular metabolism to phenotypic development. In partic‑
ular, novel ideas of ovarian oncogenesis involving altered 
Ca2+ signaling have been steadily proposed over the past 
decade (12). Variations in [Ca2+]i concentrations can translate 
through the cell to effect distant regions, to modulate Ca2+ 
signaling pathways that can regulate cell cycle progression, 
apoptosis, proliferation and metastasis. This contributes to 
the promotion of more malignant tumor phenotypes (13‑16). 
The present review summarized the current knowledge on the 
role of Ca2+ channels and Ca2+ signaling dysfunction in OC 
development. In addition, how plasma membrane Ca2+ chan‑
nels, [Ca2+]i channels, Ca2+ transport proteins, mitochondrial 
Ca2+ transport, the S100 family and extracellular factors can 
regulate OC development and progression are comprehen‑
sively reviewed. The potential roles of these ion channels as 
therapeutic targets for the diagnosis and treatment of OC are 
also discussed. The present review not only discussed the 
most recent findings in the field, but also aimed to swiftly 
propose entry points for developing treatment methods and 
future research avenues.

2. Plasma membrane Ca2+ channels

Transient receptor potential (TRP) channels. TRP channels 
form a group of non‑selective cation channels that allow Ca2+ 
to permeate. These channels can be categorized into seven 
groups based on the similarity of their amino acid sequences: 
TRP canonical (C), TRP vanilloid (V), TRP mestatin (M), TR 
polycystic protein (PP), TRP mucin (ML), TRP anchor protein 
(A) and TRP no mechanoreceptor potential C (N) (17). Studies 
have shown that mutations in the TRP gene can affect the 
spatial and temporal distribution of Ca2+, which can in turn 
promote the proliferation and spread of cancer cells (18‑22). In 
OC, the TRPC, TRPM and TRPV families of TRP channels 
have received the most attention.

TRPC is a subfamily of TRP channels that can be acti‑
vated by hormones and growth factors, which can mediate 
Ca2+ transport  (19). TRPC1, which is widely expressed, is 
involved in various physiological processes, including cancer 
development (20), cell proliferation, differentiation, migration, 
membrane permeability, fluid secretion and apoptosis (21). In 
OC, the mRNA expression levels of TRPC1 have been reported 
to be significantly decreased, especially in drug‑resistant 
cases. In addition, this decrease may be associated with higher 
histological tumor grades and drug resistance (22).

TRPC3 is an important member of the TRPC family and 
has been shown to be involved in tumor proliferation, metas‑
tasis and invasion in OC (23). The protein levels of TRPC3 
are considerably higher in human OC samples compared with 
those in normal ovarian tissue (23‑26). Relapse, metastasis 
and a poor prognosis in human OC have all been associated 
with high TRPC3 expression (24‑26). Downregulating TRPC3 
expression in human OC cells leads to a reduction in cell 
proliferation through the suppression of epidermal growth 
factor‑induced Ca2+ influx, dephosphorylation of cell divi‑
sion cycle 2 and Ca2+/calmodulin (CaM)‑dependent protein 
kinase IIα, in addition to prolonged M phase progression (23). 
By contrast, follicle‑stimulating hormone (FSH), estrogen 
and long chain noncoding RNA (lncRNA) small nucleolar 
RNA host gene (SNHG)3 can upregulate TRPC3 expression, 
which contributes to the progression of human OC (24‑26). 
Additionally, phospholipase A2‑activated protein has been 
found to inhibit OC cell invasion and tumor metastasis via 
decreasing the levels of m6A‑modified TRPC3 mRNA by 
inhibiting methyltransferase‑like 3 expressions (27). Therefore, 
TRPC3 probably serves a significant role in the progression of 
human OC, rendering it a potential diagnostic and therapeutic 
target for this malignancy. In particular, TRPC3 downregu‑
lation in aging fibroblasts has been documented to increase 
endoplasmic‑reticulum (ER)‑mitochondrial Ca2+ transfer, 
which enhances oxidative phosphorylation in mitochondria 
and promotes the release of tumor‑promoting molecules 
such as interleukin‑8 and matrix metalloproteinase 1 (28). 
However, it remains unclear whether this mechanism would 
have a counteracting effect on the downregulation of TRPC3 
in the treatment pathway for OC, for which further research is 
required.

TRPV1 is a non‑selective cation channel that belongs to the 
TRP channels family. It is particularly sensitive to capsaicin, 
heat, protons, lipids, phorbols and phosphorylation (29,30). 
Aberrant expression of TRPV1 has been associated with 
malignant tumors in the female reproductive system, including 
breast, ovarian and cervical cancer (31‑33). During the devel‑
opment and progression of OC, Han et al  (33) previously 
found that high TRPV1 expression was present in the tissues 
of ovarian malignancies, particularly in the plasma‑type EOC. 
Therefore, it was proposed that high TRPV1 expression can 
be applied as an independent prognostic factor for the overall 
survival of patients with OC. In addition, Han  et  al  (33) 
found that the expression of PTEN, a dual‑lipoprotein 
phosphatase, was negatively correlated with that of TRPV1 
expression in late‑stage OC, whereby high TRPV1/low PTEN 
was confirmed by Cox regression analysis to be a significant 
predictor of prognosis in patients with OC. Subsequent in vitro 
functional studies revealed that inhibiting TRPV1 can prevent 
the development of OC cells (33). In another previous study, 
Wang et al (34) found that the TRPV1 antagonist DWP05195 
significantly suppressed the proliferation of five human OC 
cell lines A2780, SKOV3, OVCAR3, TOV‑21G and Hey8A 
by inducing C/EBP homologous protein expression, ER stress 
and apoptosis through the accumulation of reactive oxygen 
species (ROS). Cisplatin, which is used to treat OC, is known 
to increase the risk of cytotoxicity. Ursolic acid treatment 
has been reported to effectively prevent the development of 
cytotoxicity by inhibiting the TRPV1/‑Ca2+/calpain signaling 
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pathway in the cochlea (35). At present, TRPV1 is one of the 
most extensively researched TRP channels. However, the 
mechanism underlying its involvement in the development of 
OC requires further study. These promising findings provide 
a path for the future investigation of TRPV1 as a possible 
therapeutic target for OC.

TRPV2 is typically found inside the cell membrane 
and has been shown to regulate a number of pathological 
processes, including cancer, through a signaling route that 
occurs outside the membrane (36). TRPV2 activation has been 
found to promote cell migration and cell invasiveness, while 
the absence or modification of TRPV2‑mediated signaling 
can lead to uncontrolled proliferation and apoptotic  (37). 
Cannabidiol (CBD) has been shown to bind to the TRPV2 
channel and has been associated with the dysregulation of 
proliferation, cell differentiation and invasion in a variety of 
cancer cell lines and animal models (36). CBD treatment of 
endometrial cancer has been reported to reverse the cytotoxic 
effects of chemotherapeutic agents, which is also enhanced by 
TRPV2 overexpression. Antitumor effects of CBD on OC have 
been previously observed, both as a potential monotherapy 
and in combination with conventional chemotherapeutic 
agents (36). Using PLGA‑microparticles as carriers of CBD 
in combination with paclitaxel, the therapeutic efficacy for 
OC was increased without any worsening of paclitaxel‑related 
side effects (38). However, whether CBD can improve chemo‑
therapy prognosis for patients with OC by targeting TRPV2 
remains to be elucidated. Additionally, TRPV2 also been 
proposed to be a novel marker for type II EOC, especially for 
the plasmacytic subtypes and high‑grade tumors (39). Further 
research is required to fully establish the role of TRPV2 in 
OC.

TRPV4 is a non‑selective mechanosensitive trans‑
membrane Ca2+‑permeable cation channel  (40). Increased 
expression of TRPV4 in OC has been associated with poorer 
overall survival, disease‑specific survival, disease‑free 
interval and progression‑free interval  (41). Furthermore, 
patients with OC who express higher levels of TRPV4 may 
be more resistant to the chemotherapeutic drugs cisplatin and 
oxaliplatin. Zhang et al (42) previously reported that screened 
high TRPV4 expression was associated with poor prognosis 
in patients with ovarian serous cystadenocarcinoma and also 
demonstrated by Cox regression analysis that TRPV4 was the 
most probable therapeutic target for ovarian serous cystad‑
enocarcinoma. The role of TRPV4 in the dysregulation of cell 
migration and adhesion may be crucial for the poor prognosis 
in OC. This is because it has been known to physiologically 
regulate endothelial vasodilatation and shear stress sensing, 
cell migration and skin adhesion junctions (43).

TRPV6 is a highly selective Ca2+ channel with its own 
spontaneous activity that depends on intracellular and extra‑
cellular Ca2+ concentration  (44,45). Its overexpression has 
been observed in several types of cancer, including prostate, 
breast and ovarian cancers, and is strongly associated with 
tumorigenesis, metastasis and prognosis (46,47). Clear cell 
carcinoma, endometrioid carcinoma, high‑grade plasmacy‑
toma, low‑grade plasmacytoma and mucinous carcinoma all 
possess higher TRPV6 mRNA and protein expression levels 
compared with those in normal tissue, suggesting that targeting 
TRPV6 channels may inhibit the growth of tumor cells in OC 

xenograft models and that TRPV6 is a viable target for OC 
therapy (48). Lidocaine, an anesthetic at concentrations below 
clinical levels, has been shown to reduce TRPV6 expression 
in OC cells, to prevent cell invasion and migration (49). By 
contrast, lapatinib has been observed to suppress TRPV6 
mRNA expression in breast and lung adenocarcinoma cells, 
but has not been studied in OC cells (50).

TRPM2 is a cation channel that allows the passage of Na+, 
K+ and Ca2+, which are in turn regulated by [Ca2+]i in a manner 
that is dependent on the CaM‑binding IQ‑like motif  (51). 
TRPM2‑antisense (AS) is a lncRNA that acts as an antisense 
RNA for TRPM2 (52). It has been discovered that TRPM2‑AS 
expression is increased in OC tissues and cells, where it may 
serve a role in cell proliferation, colony formation, cell migra‑
tion and invasion in vitro. By primarily activating syndecan 3 
expression by sponging microRNA (miR‑)138‑5p, TRPM2‑AS 
was documented to promote tumor growth by OC cells and 
increase resistance to cisplatin (53). As a novel treatment target 
for OC, focusing on TRPM2 may prove fruitful.

TRPM7 is a channel that allows the passage of Ca2+ and 
magnesium ions, where it has been found to be abnormally 
expressed in various types of cancer, including OC (54,55). It 
probably serves an important role in the carcinogenic process 
and is strongly associated with tumorigenesis, metastasis 
and prognosis in patients with OC (56,57). Previous studies 
have shown that downregulating TRPM7 activity with inhibi‑
tors of 5‑lipoxygenase and [Ca2+]i chelators can inhibit OC 
epithelial‑mesenchymal (EMT) transition and metastasis 
by inhibiting the Ca2+‑related PI3k/AKT activation (58,59). 
Therefore, TRPM7 is considered as a potential therapeutic 
target for the intervention of OC.

The present section discussed the TRP channels that are 
most likely associated with OC, including TRPC1, TRPC3, 
TRPV1, TRPV2, TRPV4, TRPV6, TRPM2 and TRPM7. 
While these channels have been associated with various 
physiological processes, such as cell proliferation, apoptosis, 
migration and invasion, in addition to [Ca2+]i regulation, the 
precise mechanisms underlying their roles in OC development 
remain to be elucidated. Additionally, there are other TRP 
channels associated with cancer, but their links to OC have 
not been confirmed. Therefore, further research is required 
to fully understand the role and mechanism of TRP channels 
in the development and therapeutic intervention of OC. Fig. 1 
and Table I summarize the TRP channels discussed and their 
possible associations with OC.

Voltage‑gated Ca2+Channels (VGCCs). VGCCs, including 
T‑type Ca2+ channels (TTCC) and L‑type Ca2+ channels (LTCC), 
play a significant role in regulating the physiological activities 
of cells (60). Studies highlight that the TTCC‑mediated influx 
of Ca2+ regulates cell proliferation, which has been associated 
with different types of cancer, including OC (61,62). Blocking 
TTCC expression with NNC 550396, mibefradil or TTCC 
subunits (Cav3.1/3.2) downregulation impairs the prolifera‑
tion of OC cells, increases G0/G1 phase distribution and slows 
down OC formation in nude mice (61). TTCC inhibitors, such 
as mibefradil and related 3,4‑dihydroquinazoline derivatives, 
alter the normal progression of cells through the cell cycle, 
leading to a similar decline in OC cell proliferation  (62). 
Survivin is an antiapoptotic protein encoded by the BIRC5 
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gene and is also downregulated during this process  (63). 
Inhibiting TTCC in OC cells not only suppresses growth and 
increases apoptosis but also downregulates the expression of 

BIRC5 (63). Additionally, the effectiveness of platinum agents 
in treating OC can be improved by inhibiting Survivin (63). 
TTCC blocker and platinum treatment, in combination, 

Table I. TRP channels in ovarian cancer.

TRP channels	 Expression	 Effects	 (Refs.)

TRPC1	 Decreased	 Lower TRPC1 expression may be associated with drug	 (22)
		  resistance and a high histological tumor grade.
TRPC3	 Increased	 Higher TRPC3 expression levels are correlated with early	 (23)
		  relapse, metastasis and worse prognosis.
TRPV1	 Increased	 Higher TRPV1 expression are correlated with a poor overall	 (33)
		  survival.
TRPV4	 Increased	 High expression of TRPV4 is associated with poor overall	 (42,43)
		  survival, disease specific survival, disease‑free and
		  progression free intervals, and increases drug resistance.
TRPV6	 Increased	 There is a strong relationship between tumorigenesis,	 (50)
		  metastasis, and prognosis.
TRPM2	 Increased	 TRPM2‑AS promotes cell proliferation, colony formation,	 (55)
		  Cell migration and cell invasion in vitro.
TRPM7	 Increased	 Promotes pelvic metastasis of ovarian cancer cells, resulting	 (59,60)
		  in a poor prognosis.

TRP, transient receptor potential; TRPM2‑AS, TRPM2 antisense RNA.

Figure 1. TRP channels in OC cells. Abnormal expressions of TRPC1, TRPC3, TRPV1, TRPV4，TRPV6, TRPM2 and TRPM7 contributes to OC cell prolif‑
erate, metastasize and invade. Lower TRPC1 expression may be associated with drug resistance and a high histological tumor grade. The expression of TRPC3 
was induced by FSH, E2 and lncRNA‑SNHG3 and downregulated by PLAA via METTL3 inhibition. Cell apoptosis was triggered by DWP05195 because it 
inhibited TRPV1 expression, increased ROS accumulation and p38 activation and triggered endoplasmic reticulum stress. TRPM2‑AS is upregulated in OC 
tissues and cells. In vitro, TRPM2‑AS also contributes to cell proliferation, migration and invasion. Reduced [Ca2+]i levels and attenuated PI3K/AKT activa‑
tion after treatment with MK886 and/or BAPTA‑AM inhibited EMT by downregulating TRPM7 in OC cells. TRP, transient receptor potential; OC, ovarian 
cancer; TRPC, TRP canonical; TRPV, TRP vanilloid; FSH, follicle‑stimulating hormone; E2, estrogen 2; lncRNA, long non‑coding RNA; PLAA, phospho‑
lipase A2 activating protein; METTL3, methyltransferase‑like 3; UA, ursolic acid; DWP05195, TRPV1 antagonist; ROS, reactive oxygen species; lncRNA 
TRPM2‑AS, antisense RNA of TRPM2; MK886, 5‑Lipoxygenase inhibitor; BAPTA‑AM, Intracellular calcium chelator; EMT, epithelial‑mesenchymal 
transition. +, Promote; ‑, Inhibit.
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promote apoptosis of OC cells and reduce ectopic metastasis 
of platinum‑resistant tumors in mice, providing a model to 
investigate OC metastasis in humans  (63,64). In the study 
by Fornaro et al  (65), it was found that the expression of 
TTCC genes (three isoforms: CACNA‑1G, CACNA‑1H and 
CACNA‑1I) were correlated with overall survival in patients 
with tumors, especially in gastric cancer. The correlation 
between the expression of all CACNA genes and overall 
survival when considering staging was also significant in OC, 
demonstrating that altered CACNA gene expression correlates 
with tumor prognosis and promising for further evaluation 
in OC.

In addition, when the LTCC is affected by adverse factors, 
such as serum gonadotropins and lysophosphatidic acid 
(LPA), resulting in its abnormal activation of Ca2+ inward 
flow, it is strongly associated with the proliferation and metas‑
tasis of OC cells (66,67). Nifedipine (a LTCC blocker) could 
inhibit LPA‑induced OC cell migration and adhesion (67). OC 
stem cells are a major contributor to drug resistance in OC 
patients. LTCC blockers (manidipine, lacidipine, benidipine 
and lomepizine) and trimebutine maleate could inhibit the 
viability and proliferation of OC stem cells by downregulating 
the expression of the LTCC gene, thereby inducing apop‑
tosis (68,69). CACNA1C, as an important type of LTCC ion 
transmembrane channel, plays regulatory roles in the develop‑
ment and progress of multiple tumors. Chang and Dong (70) 
revealed that CACNA1C could be a prognostic predictor of 
overall survival in OC and it was closely related to immunity. 
In conclusion, the current research indicates that TTCC and 
LTCC play an important role in OC cell proliferation, cell 

cycle progression and metastasis and is also linked to OC 
prognosis (Table II).

Ca2+ release‑activated Ca2+ channel (CRAC). The CRAC 
channel, composed of Ca2+ release‑activated Ca2+ channel 
protein 1 (Orai1) and stromal interaction molecule (STIM), 
serves a vital role in regulating Ca2+ signaling and gene expres‑
sion in cells by activating store‑operated Ca2+‑entry  (71). 
Previous studies suggest that targeting this channel can 
be a potential therapeutic strategy for treating cancer. 
Khan et al (72) reported that blocking the CRAC channel, 
which is overexpressed in various cancer cells and tissues, 
may benefit patients with cancer. Hypoxia inducible factor 
(HIF)‑1α has been found to promote tumor growth and metas‑
tasis by elevating expression the levels of Orai1 and STIM1 
in OC cells after exposure to placental growth factor (73). 
In addition, Schmidt et al (74) found that Orai1 and STIM1 
expression levels were slightly higher in drug‑resistant OC 
cells, suggesting the potential involvement of CRAC channel 
in supporting the survival of OC cells. Other studies have 
demonstrated that upregulated Orai1 expression in OC cells 
could lead to increased cell proliferation and metastasis; mean‑
while, silencing Orai1 expression was demonstrated to inhibit 
these aforementioned effects  (75,76). Therefore, currently 
available evidence suggests that CRAC channel likely serves 
a role in the initiation and progression of OC, contributing to 
poorer patient outcomes (Table II). Although there is limited 
data on other subtypes of Orai/STIM and few clinical trials 
have used CRAC channel blockers, targeting this channel may 
be a promising approach for developing OC therapies.

Table II. Alterations in Ca2+ signaling in ovarian cancers.

Calcium signals	 Expression	 Effects	 (Refs.)

VGCCs	 TTCC	 Increased	 Plays a reinforcing role in ovarian cancer cell proliferation,	 (63)
			   cell cycle progression, and apoptosis evasion.
	 LTCC	 Increased	 Increases ovarian cancer cell proliferation and metastasis.	 (68)
CRAC	 Orai &	 Increased	 Stimulates tumor growth and metastasis and enhances	 (75)
	 STIM		  tumor drug resistance.
BKCa	 KCNMA1	 Increased	 Is associated with the malignancy and poor prognosis of	 (83)
			   the cancer.
	 KCNMA1	 Decreased	 Enhances the drug resistance of ovarian cancer.	 (84)
IP3Rs	 IP3R1	 Increased	 Possesses pro‑proliferative and anti‑apoptotic effects.	 (104)
	 IP3R2	 Increased	 Promotes development and progression of ovarian cancer.	 (112)
RyRs	 RyR1	 Increased	 Is involved in the onset and development of ovarian cancer.	 (112)
	 RyR2	 Decreased	 Promotes tumorigenesis and development.	
Ca2+‑ATPase	 SERCA	 Increased	 Involved in the progression of ovarian cancer.	 (121)
	 PMCA	 Increased	 Disrupts calcium homeostasis and contributes to the	 (126)
			   progression of drug‑resistant cancer cells.	
MCU	 MICU1	 Increased	 MICU1 overexpression correlates with poor overall	 (132)
			   survival and resistance to chemotherapy.

VGCC, Voltage‑gated Calcium Channel; TTCC, T‑type Ca2+ channel; LTCC, L‑type Ca2+ channel; CRAC, Ca2+ Release‑Activated Ca2+ Channel; 
STIM, stromal interaction molecule; BKCa, large conductance Ca2+‑activated K+; KCNMA1, Ca2+‑activated potassium channel subunit α‑1; 
IP3R, inositol 1,4,5‑trisphosphate receptor; RyR, lysine receptor; SERCA, sarco/endoplasmic reticulum; PMCA, plasma membrane; MCU, 
mitochondrial Ca2+ uniporter; MICU1, mitochondrial Ca2+ uniporter regulator 1.
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Large conductance Ca2+‑activated K+ (BKCa) channel. The 
BKCa channel has been implicated in human cancer develop‑
ment, including OC, by contributing to cell cycle disruption, 
proliferation and migration  (77,78). The BKCa channel 
opener NS1619 has been found to reduce proliferation while 
inducing apoptosis in OC cells by upregulating death‑inducing 
proteins (such as P53, P21 and Bax) (79). The α‑subunit of 
BKCa channel is encoded by the Ca2+‑activated potassium 
channel subunit α‑1 (KCNMA1) gene, which has been shown 
to serve a role in the formation of macromolecular signaling 
complexes through the action of local Ca2+ introductory chan‑
nels (80). The BKCa channel subunit KCNMA1 contributes 
to macromolecular signaling complexes, whereby KCNMA1 
amplification is associated with higher proliferation rates 
and higher degrees of malignancy in ovarian, endometrial 
and breast cancers  (81,82). However, a study reported that 
knocking out KCNMA1 expression increases cisplatin resis‑
tance in OC cells (68). A recent study found that trimebutine 
maleate inhibits the viability of OC stem cells by targeting the 
BKCa channel and can prevent drug resistance and recurrence 
in OC (69). Further investigation into the precise mechanism 
of BKCa channel‑regulated proliferation, apoptosis and resis‑
tance in OC cells is necessary to determine their potential as 
biomarkers or therapeutic targets for OC (Table II).

G‑protein‑coupled receptors (GPCRs). GPCRs form a class 
of receptor proteins that can activate G proteins to elicit 
cascade reactions affecting a wide range of biological func‑
tions including cancer progression (83,84). GPCRs can exert 
different types of effects on OC (Table III). The Ca2+‑sensing 
receptor (CaR) is a GPCR that mediates Ca2+ signaling 
and disrupts normal epidermal differentiation by sensing 
extracellular Ca2+  (85). The CaR rs17251221 G allele has 
reported protective effects, reducing the risk of OC develop‑
ment (86,87). By contrast, lysophosphatidylglycerol‑induced 
proliferation and migration of human OC cells are mediated 

by pertussis toxin‑sensitive GPCRs (88). Previous studies have 
highlighted the role of G protein‑coupled estrogen receptor 
(GPER) in OC pathogenesis, where its high expression is 
associated with malignant OC, tumor cell invasion and poorer 
patient survival  (89,90). GPER activation may be involved 
in OC initiation and progression, although GPER has also 
been reported as possessing anti‑cancer properties (91,92). 
Notably, OC cells treated with GPER‑specific agonist G1 
exhibited increased levels of apoptosis and impeded cancer 
progression (93). GPCRs are primarily stimulated by most 
neurotransmitters and inflammation‑related ligands, which can 
in turn promote OC proliferation, metastasis and invasion, as 
reviewed by Predescu et al (94). Despite the scarcity of animal 
models and clinically relevant data, GPCRs have emerged as 
promising therapeutic targets for OC (94). It is reported that 
2‑thioureidothiophene‑3‑carboxylates (TUTPs), a novel class 
of antagonists for the GPCR C‑X‑C chemokine receptor type 
2, effectively inhibits C‑X‑C motif ligand 8‑mediated cell 
migration while exhibiting a synergistic effect with doxoru‑
bicin on OC cells (95). These findings suggest that TUTPs 
hold promise as potential anticancer agent for OC treatment, 
highlighting the potential of GPCR‑based approaches for OC 
therapy.

3. Intracellular Ca2+ channels and transporters

Inositol 1,4,5‑triphosphate receptor (IP3R) and ryanodine 
receptors (RyR) channels. IP3Rs are a family of Ca2+‑releasing 
channels located in the ER membrane (96). There are three 
main isoforms of IP3Rs: IP3R type 1 (IP3R1), InsP3R type 2 
(IP3R2) and IP3R type 3 (IP3R3). They serve a crucial role in 
the regulation of Ca2+ release from the ER and sarcoplasmic 
reticulum and are expressed to varying degrees in different 
mammalian tissues (97‑99). When activated, IP3Rs regulate the 
release of Ca2+ from the ER to either the mitochondria and/or 
cytoplasm, where they serve an essential role in regulating 

Table III. Alterations in Ca2+ exchange proteins in ovarian cancer.

Calcium signals		  Expression	 Effects	 (Refs.)

GPCRs	 CaR	 Decreased	 Causes changes in the physiology of tumor cells	 (88)
			   and acceleratestumor progression.
	 GPER	 Increased	 Induces metastasis and invasion of tumor cells,	 (91‑94)
			   with a poor prognosis.
S100 family	 S100A1/2/	 Increased	 Correlated with lymph node metastasis, FIGO	 (155,157,178)
	 4/5/6/7/10/		  staging and tumor grade.
	 11/13/14/16
	 S100B/	 Increased	 Upregulation linked to tumor growth, survival,	 (174,176)
	 S100P		  prognosis and resistance to cancer drugs.
TROP	 TROP2	 Increased	 Enhances the ability of ovarian cancer cells	 (177)
			   to proliferate, invade and migrate.
CaMKK	 CaMKK2	 Increased	 Enhances the ability of ovarian cancer cells	 (181)
			   to proliferate, invade and migrate.

GPCR, G‑protein‑coupled receptor; CaR, Ca2+‑sensing receptor; GPER, G protein‑coupled estrogen receptor; FIGO, International Federation 
of Gynecology and Obstetrics; TROP, tumor‑associated calcium signal transducer; CaMKK, Ca2+/calmodulin‑dependent protein kinase.



INTERNATIONAL JOURNAL OF ONCOLOGY  63:  125,  2023 7

cellular metabolism and survival (100). All three isoforms of 
IP3R can be detected in ovarian tissue sections from normal 
experimental animals and OC A2780 cells and some studies 
suggest that IP3R is emerging as a key locus for the regulation 
of pro‑ and anti‑apoptotic factors (101,102). Hypoxia has been 
shown to control the intensity of Ca2+ signaling in cancer cells 
through IP3Rs (103). In addition, Lencesova et al (104) previ‑
ously demonstrated that hydrogen sulfide causes ER stress and 
apoptosis under hypoxic conditions, suggesting that IP3Rs are 
closely associated with apoptosis in OC cells. Additionally, 
stable TAT‑fused IP3R1‑derived peptides can increase 
cisplatin‑induced Ca2+ flux from the ER into the cytosol and 
mitochondria, sensitizing OC cells to cisplatin by targeting the 
BH4 structural domain of Bcl‑2 (Table II) (105,106).

Compared with IP3R1, IP3R3 has been shown to exert 
both pro‑proliferative and anti‑apoptotic effects on cancer 
cells. Elevated IP3R3 expression levels have been observed 
to enhance the migratory and invasive properties of cancer 
cells by increasing mitochondrial metabolism and driving 
anabolic pathways (107,108). By contrast, a recent study found 
that OC cells become more resistant to chemotherapy‑induced 
apoptosis after IP3R3‑mediated Ca2+ flux to mitochondria 
was blocked (109). Therefore, further research is necessary to 
elucidate the function of IP3R3 in OC cells. By comparison, 
IP3R2 has received less attention. Nonetheless, increased 
expression of the IP3R2 gene was observed in iron‑treated 
epithelial OC cells and cisplatin‑resistant cells of the same 
cell line, indicating its probable role in the development and 
progression of OC (110).

RyRs are also members of the Ca2+‑releasing channels 
family located on the ER membrane, of which three known 
isoforms (RyR1, RyR2 and RyR3) exist. RyRs are widely 
expressed and mediate Ca2+ release from intracellular 
membrane compartments, leading to transient and reversible 
alterations in cytoplasmic and ER Ca2+ levels (111). RyRs have 
been found to be useful in determining the severity of malig‑
nant diseases and their prognosis, as they may serve a role in 
the onset and progression of prostate, breast and head and neck 
cancers (112‑114). In OC cells, RyRs can interfere with the 
estrogen receptor α (ERα‑)/PLCγ‑/IP3R pathway by altering 
the activity of ERα biomodulators (115). Furthermore, RyRs 
have been reported to regulate the activation of the unfolded 
protein response in OC cells and in turn their sensitivity to 
paclitaxel and adriamycin (116). A previous study found that 
both epithelial OC cells (MDAH‑2774) and cisplatin‑resistant 
OC cells of the same cell line (MDAH‑2774/DDP) showed 
increased RyR1 gene expression after iron treatment, while 
only EOC cells (MDAH‑2774) showed decreased RyR2 mRNA 
levels (110). This suggests that RyRs can affect the progression 
of OC by regulating Ca2+ levels in OC cells through multiple 
mechanisms (Table II).

IP3Rs and RyRs are considered to serve central roles in 
[Ca2+]i movement and have an important and complex role 
in the development of types of cancer. However, the role 
and mechanism of IP3Rs and RyRs in OC remain poorly 
understood. Further studies are therefore necessary to gain an 
in‑depth understanding into the occurrence, development and 
prognosis of OC. Information from these studies are likely to 
provide novel insights into possible therapeutic approaches for 
OC by targeting the ER‑related Ca2+‑releasing channels.

Ca2+‑ATPases. Ca2+‑ATPases or Ca2+ pumps regulate Ca2+ 
homeostasis and are essential for reproduction. However, their 
dysregulation can interfere with the production of sex hormones 
and disrupt normal ovarian physiology (117,118). To date, three 
major families of Ca2+‑ATPases have been identified: Those 
located on the sarco/endoplasmic reticulum (SERCA); on the 
plasma membrane (PMCA); and on the secretory pathway 
(SPCA) (118). In OC tissues, aberrant SERCA expression has 
been observed, the inhibition of which has been revealed to 
increases cytoplasmic Ca2+ concentration, resulting in OC 
cell apoptosis. This suggests that SERCA serves a role in OC 
progression (119,120). Seo et al  (120) found that curcumin 
inhibits SERCA activity to disrupt [Ca2+]i homeostasis, 
which promotes apoptosis in OC cells. Transmembrane and 
coiled‑coil domains 1 (TMCO1), which is essential for ovarian 
follicle development and female fertility in granulosa cells, 
is regulated by SERCA (121). The disruption of TMCO1 was 
demonstrated to cause Ca2+ overload in the ER and increased 
ROS levels in granulosa cells, which ultimately caused 
follicular dysgenesis. These phenomena have been associated 
with various ovarian‑associated pathological conditions, such 
as OC (121,122).

Ovarian granulosa cells rely on PMCA to regulate their 
[Ca2+]i concentrations in response to basic fibroblast growth 
factor (bFGF), which suggests that bFGF regulates PMCA 
as part of an anti‑apoptotic mechanism in ovarian granulosa 
cells (123,124). Iron treatment was found to upregulate the 
mRNA expression of both PMCA1 and PMCA3 in cispl‑
atin‑resistant epithelial OC cells, suggesting that PMCA is 
an independent pathway of drug resistance in OC cells (110). 
Additionally, the mRNA expression profiles of Ca2+ homeo‑
stasis‑associated genes (SERCA1/2/3, PMCA1/2/3/4) were 
decreased in a cisplatin‑resistant cell line compared with those 
in their parental cell lines (Table II) (125). Currently, there is a 
lack of research focusing on the role of Ca2+‑ATPases in OC, 
which should be explored as a starting point for future inves‑
tigations into expanding the understanding of Ca2+‑ATPases 
and their potential as therapeutic targets.

4. Mitochondrial Ca2+ transport

Mitochondria serve as a central hub of [Ca2+]i regulation and 
mediate Ca2+ uptake through the mitochondrial Ca2+ uniporter 
(MCU) channel, which regulates [Ca2+]i. MCU transports 
Ca2+ within the mitochondrial lumen, using the negative 
charge of the inner mitochondrial membrane to sustain the 
Ca2+ levels (126). The MCU complex consists of endosomal 
channel‑dependent MCU proteins and their regulators, 
including the MCU‑dominant negative b subunit (MCUb) and 
MCU‑related regulatory proteins, such as the mitochondrial 
Ca2+ uptake (MICU) family (MICU1, MICU2 and MICU3), 
MCU regulator 1 (MCUR1) and essential MCU regulator 
(EMRE) (127). The activity of the MCU channel is regulated 
by MICU1 and MICU2, which form 95 kDa dimers through 
disulfide bonds. At higher Ca2+ levels, Ca2+‑dependent MICU1 
activation and MICU2 inhibition ensure a rapid mitochondrial 
response to Ca2+ signals generated in the cytoplasm (128,129). 
In OC, it has been discovered that mitochondrial Ca2+ 
uptake by the gatekeeper mitochondrial calcium uptake 1 
(MICU1/CBARA1) drives aerobic glycolysis. MICU1 is 
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overexpressed in a panel of OC cell lines (CP20 and OV90) 
and its overexpression is associated with decreased overall 
survival (130). In vitro silencing of MICU1 increases oxygen 
consumption, decreases lactate production and inhibits clonal 
growth, migration and invasion of OC cells, while in vivo 
silencing inhibits tumor growth and enhances cisplatin effi‑
cacy and overall survival (Table II) (130).

It is known that the electron transport chain (ETC) drives 
physiological mitochondrial Ca2+ uptake. However, ETC over‑
load and partial ETC inhibition can cause ROS production, 
leading to oxidative damage to the mitochondrial membrane. 
This in turn results in cell death and ROS‑dependent tumor 
cell metastasis and invasion (131‑133). Several studies have 
shown that modifying the Ca2+ concentration in mitochondria 
can be a potential treatment method for OC (134‑136). Gentisyl 
alcohol, which has antibacterial, antifungal, antiviral and anti‑
cancer properties, is observed to inhibit cell proliferation while 
inducing apoptosis in human OC cells through DNA fragmen‑
tation (134). In addition, β‑Sitosterol (135), Campesterol (136), 
Stigmasterol  (137), Osthole  (138), Fucosterol  (139), 
Laminarin  (140), Chrysophanol  (141), Chrysin  (142) and 
Epothilone B  (143) have all been shown to increase ROS 
production by dose‑dependently elevating Ca2+ concentrations 
in the cytoplasm and mitochondria of OC cells, leading to 
oxidative stress through the endogenous pathway and initiate 
apoptotic signaling (Table IV). Mitochondrial Ca2+ overload 
activates the unfolded protein response and the ER/mitochon‑
drial axis, which then disrupt [Ca2+]i homeostasis, initiate 
apoptosis and inhibit cell proliferation (144). Treatment of 
cells with β‑Sitosterol or Campesterol impairs mitochondrial 

membrane function, leading to the loss of membrane potential 
and disruption of Ca2+ homeostasis (135,136). Furthermore, 
laminarin suppresses the expression of the ER mitochondrial 
coupling protein glucose‑regulated protein 75 (GRP75) in 
OC cells (140), where the lack of GRP75 expression has been 
associated with Ca2+ overload (145).

The high mortality rate of OC is largely attributed to its 
resistance to currently available chemotherapeutic drugs (7). 
Cisplatin is commonly used for the treatment of malignant 
OC, but acquired resistance limits its application. The inability 
to upregulate [Ca2+]i in OC cells results in cisplatin resistance 
by reducing oxidative stress (146). Bcl‑2, a key regulator of 
survival and apoptosis, is known to block cisplatin‑induced 
apoptosis by regulating Ca2+ signaling in various cancer 
cell lines. Bcl‑2 overexpression inhibits ER mitochondrial 
Ca2+ signaling and increases cisplatin resistance in OC 
cells (147). ABT‑737, a small‑molecule Bcl‑2 inhibitor, has 
been shown to increase free Ca2+ levels in the mitochondria 
in combination with cisplatin treatment of cisplatin‑resistant 
OC cells, thereby enhancing mitochondria‑mediated cell 
apoptosis  (148). Increased mitochondrial Ca2+ may induce 
apoptosis in cisplatin‑resistant OC cells, where the enrichment 
of GRP75 in the mitochondria‑associated ER membranes 
may be responsible for this effect (149). In paclitaxel‑resistant 
OC cells, lncRNA‑RNA component of mitochondrial RNA 
processing endoribonuclease (RMRP) has been shown to 
increase MICU1 expression through miR‑580‑3p aggregation. 
By contrast, targeting lncRNA‑RMRP was found to inhibit 
the miR‑580‑3p/MICU1 axis to increase paclitaxel sensi‑
tivity (150). Overall, mitochondrial Ca2+ alterations probably 

Table IV. Summary of drugs/compounds targeting Ca2+ signaling for ovarian cancer treatment.

Calcium signals		  Drugs/Compounds	 Mechanism	 (Refs.)

TRP	 TRPC3	 PLAA	 Inhibitor	 (27)
	 TRPV1	 DWP05195, Ursolic acid	 Antagonist	 (34,35)
	 TRPM7	 MK886, BAPTA‑AM	 Inhibitor	 (61)
VGCCs	 TTCC	 Mibedil, 3,4‑dihydroquinazoline derivatives	 Blocker	 (64)
	 LTCC	 Nifedipine	 Blocker	 (69)
	 TTCC&	 CCBs	 Blocker	 (70,71)
	 LTCC
BKCa	 ‑	 NS1619	 Activator	 (81)
	 ‑	 Trimebutine Maleate	 Inhibitor	 (71)
GPCRs	 ‑	 TUTP	 Antagonist	 (97)
MCU	 ‑	 Gentisyl Alcohol, β‑Sitosterol, Campesterol,	 Inhibitor	 (136‑145)
		  Stigmasterol, Osthole, Fucosterol, Laminarin,
		  Chrysophanol, Chrysin, Epothilone B
	 ‑	 ABT‑737, GRP75	 Activator	 (150,151)
Others	 ‑	 Saikosaponin D	 Calcium	 (182)
			   mobilizer

TRP, transient receptor potential; PLAA, phospholipase A2 activating protein; MK886, 5‑Lipoxygenase inhibitor; BAPTA‑AM, Intracellular 
calcium chelator; VGCC, Voltage‑gated Calcium Channel; TTCC, T‑type Ca2+ channel; LTCC, L‑type Ca2+ channel; CCBs, calcium channel 
blockers; BKCa, large conductance Ca2+‑activated K+; NS1619, the BKCa channel opener; GPCR, G‑protein‑coupled receptor; TUTP, 2‑thio‑
ureidothiophene‑3‑carboxylate; MCU, mitochondrial Ca2+ uniporter; ABT‑737, a small‑molecule Bcl‑2 inhibitor; GRP75, glucose‑regulated 
protein 75.
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serve a significant role in the treatment of OC. Further in‑depth 
studies into MCU channels can aid in understanding their roles 
in the occurrence, development and prognosis of OC. These 
are expected to facilitate the development of novel therapeutic 
targets and search for new therapeutic methods.

5. S100 family and other Ca2+ signaling pathways

S100 family. There are 21 members in the S100 family known 
to date, all of which are found in human tissues and are acidic 
Ca2+‑binding proteins. These proteins are highly homologous 
both in terms of sequence and structure, can switch roles 
within a given biological process and are involved in a wide 
variety of cellular events, such as proliferation, apoptosis, 
migration, inflammation and differentiation (151). The proteins 
that make up the S100 family can serve as both Ca2+ sensors 
on the inside of cells and as extracellular factors promoting 
proliferation from the outside. Therefore, aberrant expression 
of S100 proteins has been proposed to be another factor in 
tumor development and progression (152,153). In a previous 
review, Bresnick et al (151) discussed the importance of S100 
family members in diagnosing and treating cancer, how S100 
signaling can affects the growth of tumors and how S100 
inhibitors were found to treat cancer. With the progression of 
the disease, multi‑drug resistance to tumor therapy remains to 
be a problem. Hua et al (154) found that the dysregulation of 
different S100 proteins can contribute to the development of 

tumor drug resistance, which worsens the prognosis of patients 
with cancer. A summary was also provided of how S100 family 
members can affect tumor resistance to therapy, pointing out 
that inhibition of S100 proteins can mediate the response of 
tumors to therapy. Accumulating evidence suggests multiple 
members of the S100 family are involved in OC development 
and progression (Fig. 2 and Table III) (153).

Compared with fallopian tube and normal ovarian epithe‑
lial tissues, S100A1 expression tends to be significantly higher 
in OC tissues, which is also associated with lymph node metas‑
tasis, International Federation of Gynecology and Obstetrics 
(FIGO) staging and tumor grade (155). S100A2 has also been 
hypothesized to be a tumor suppressor that aids in the stabili‑
zation and response to the transcription of mutant p53, thereby 
controlling cell proliferation (156). Higher expression levels of 
S100A2 have been shown to predict superior overall survival 
in patients with OC expressing wild‑type TP53, but had no 
prognostic value in patients with mutant p53 OC. This suggests 
that the interaction between S100A2 and TP53 may mediate 
the tumor suppressive effects of S100A2 (153). The function 
of S100A3 in OC remains to be elucidated. Kikuchi et al (157) 
found that S100A4 is highly expressed in the nucleus in OC 
tissues; OC patients with stronger nuclear S100A4 expression 
showed a significantly shorter survival time compared those 
without. Subsequent treatment with the recombinant S100A4 
resulted in the translocation of S100A4 into the nucleus, the 
enhancement of which enhanced OC cell invasiveness. These 

Figure 2. Effects of the S100 family on ovarian cancer cells. The abnormal expression of S100A1, S100A2, S100A4, S100A5, S100A6, S100A7, S100A10, 
S100A11, S100A13, S100A14, S100A16, S100B and S100P mainly contributed to the tumor progression. EMT, epithelial‑mesenchymal transition; SNHG8, 
long non‑coding RNA SNHG8; miR, microRNA; +, Promote; ‑, Inhibit.
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findings suggest that the nuclear expression of S100A4 is 
involved in the aggressive behavior of OC. Furthermore, 
nuclear expression of S100A4 in combination with the nuclear 
HIF‑1α protein under hypoxic conditions has been demon‑
strated to induce hypoxia response element‑free methylation 
of the S100A4 gene and promote OC aggressiveness (158). 
In addition, miR‑296 is an important upstream regulator of 
S100A4 and aberrant regulation of the miR‑296/S100A4 axis 
has been reported to promote the EMT process and hasten 
OC progression (159). It was first proposed by Link et al (160) 
that high levels of circulating metastasis‑associated in colon 
cancer 1 and S100A4 transcripts could predict the prognosis of 
patients with OC, because they were associated with advanced 
FIGO staging. Another previous study has shown that the 
insulin‑like growth factor 1 receptor 6‑/integrin‑/S100A4 
molecular network can regulate the organ‑specific metastasis 
of chemoresistant epithelial OC cells. Genetic and pharmaco‑
logical inhibition of S100A4 was found to significantly reduce 
distant metastasis and completely eliminated lung invasion by 
advanced chemoresistant epithelial OC cells (161). S100A5 is 
a novel member of the S100 protein family that can interact 
with Ca2+, Zn2+ and Cu2+ (162). High S100A5 expression was 
previously reported to predict overall survival in all patients 
with EOC (153).

S100A6 expression has been documented in cancer 
xenografts and OC tissues. Wei et al (163) found that serum 
S100A6 concentrations are higher in patients with advanced 
OC compared with those with early OC. This suggests that 
S100A6 concentrations are associated with experimental 
tumor load and clinical disease stage, making S100A6 a useful 
biomarker for detecting and/or monitoring OC (163). In addi‑
tion, in a previous study by Bai et al (153), a positive association 
between S100A6 mRNA expression levels and overall survival 
was identified in stage II patients but a negative association 
was found with stage IV patients. This suggests that S100A6 
may serve different roles in patients with early and advanced 
OC. It is necessary to be able to independently reproduce these 
results followed by a deeper investigation into the associated 
underlying mechanism. S100A7 has been shown to promote 
tumor cell proliferation, migration, invasion and tumor 
metastasis. Metastasis and chemoresistance in OC cells have 
been shown to be controlled by S100A7 through the MAPK 
signaling pathway. miR‑330‑5p can target the 3'‑untranslated 
region of S100A7, thereby reducing the activity of the protein 
and then the proliferation of OC cells (164). S100A10 is found 
in the plasma membrane, where it associates with Annexin 
A2 to form a heterotetramer (165). S100A10 expression in OC 
tissues has been associated with decreased overall survival and 
progression‑free survival (165). In addition, a high S100A10 
expression was found to be an independent predictor of OC 
prognosis, increasing the risk of progression and mortality 
from OC (166). Supporting this, OC cells were rendered more 
sensitive to carboplatin when the expression of S100A10 was 
downregulated (167).

High expression of S100A11 in the serum of patients 
with OC and increased proliferation, migration and inva‑
sion of OC cells are attributed to the lncRNA SNHG8, 
which regulates OC progression by targeting miR‑1270 and 
S100A11 (168,169). Patients with grade II, stage I+II and p53 
mutant OC had a longer overall survival if S100A13 levels 

were elevated (153). Serum S100A14 levels was found to be 
consistently higher in patients with OC, where a link was 
also found between elevated S100A14 and resistance to plat‑
inum‑based chemotherapy (170). Higher levels of S100A16, a 
member of the S100 family isolated from astrocytomas (171), 
have also been associated with worse prognosis in patients 
with OC, particularly those with grade II, III and stage III 
EOC (153). S100B protein is overexpressed in OC tissues 
compared with that in normal ovaries and is in turn associ‑
ated with advanced tumor stage, decreased differentiation 
and shorter overall survival (172). In addition, S100B has 
been documented to mediate chemotherapy resistance in 
OC cells through p53 (173) and controls the stemness of OC 
stem cell‑like cells (172). Although high S100P expression is 
associated with a worse prognosis in OC patients in terms 
of overall survival and progression free survival, S100P 
has been shown to increase chemosensitivity of OC cells 
to carboplatin and paclitaxel in vitro  (174,175). Overall, a 
comprehensive understanding of the function of S100 family 
members is clinically instructive for the diagnosis and prog‑
nosis of OC patients. According to results from a previous 
survey, S100 protein mRNA expression is strongly associated 
with overall survival in patients with OC, with high levels of 
S100 family members S100A10, S100A11, S100A16, S100B 
and S100P predicting worse overall survival, while S100A1, 
S100A2, S100A5, S100A6 and S100A13 were associated with 
longer overall survival, depending in part on OC subtype and 
clinicopathological features (153,176).

Several promising approaches are currently proposed and 
make use of current knowledge to assess S100 proteins as 
potential therapeutic targets of cancer therapy, as evidenced 
by the aforementioned studies. However, additional research 
is required to firmly establish S100 proteins as reliable 
biomarkers for OC therapy and to further characterize their 
roles in OC pathophysiology. Although these initial findings 
show promise, the true extent of the function of S100 proteins 
in OC remains unknown, which requires unravelling it can be 
fully exploited in the clinic.

Other Ca2+ signaling pathways. Ca2+ signaling is also associ‑
ated with other molecules such as tumor‑associated calcium 
signal transducer 2 (TROP2), calcium/calmodulin‑dependent 
protein kinase (CaMKK) and saikosaponin‑D (SSD) in OC 
(Table III) (177‑179). TROP2 is a newly identified marker 
that plays a vital role in the proliferation and invasion 
of various tumors by transducing [Ca2+]i signaling  (177). 
Wu et al (177) found that suppressing TROP2 expression in 
OC cells significantly slows cell proliferation, invasion and 
migration. CaMKK‑β‑mediated AMPK activity is required 
for regulating autophagy induction in OC spheroids and 
supporting cell viability, at least in part  (180). Elevated 
[Ca2+]i activates the expression of CaMKK2, which medi‑
ates epidermal growth factor signaling through Akt 
signaling and is used by cancer cells as a signal for growth 
and survival (178). Chen et al (181) reported that CaMKK2 
promotes the progression of ovarian carcinoma through the 
PI3K/PDK1/Akt Axis. SSD, a major bioactive component 
of Radix Bupleuri, exhibits anti‑inflammatory, anti‑tumor, 
anti‑oxidant and anti‑viral effects (179). Tsuyoshi et al (182) 
found that SSD may be a new adjuvant for the treatment of 
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chemoresistant OC because it acts as a Ca2+ mobilizer and 
sensitizes OC cells to cisplatin by promoting mitochondrial 
division and G2/M blockade through multiple signaling path‑
ways. These findings suggest that TROP2, CaMKK2 and 
SSD are critical molecules in OC cell proliferation and point 
to a promising direction for future research.

6. Conclusion and outlook

Healthy and malignant cells both rely on cytosolic Ca2+ 
signaling for the regulation of their intracellular cellular 
processes. However, alterations in Ca2+ fluxes can overlap 
with crucial stages of the life cycle of types of cancer. 
Changes in the expression of Ca2+ channels, pumps and 
exchange proteins in OC tissues all suggest that Ca2+ plays an 
important role in regulating OC cell proliferation, migration 
and invasion (Fig. 3). In addition, drug‑resistant OC cells 
have lower levels of Ca2+ and key genes involved in Ca2+ 
homeostasis, supporting the hypothesis that alterations in 
Ca2+ regulation contribute to tumorigenesis, metastasis, prog‑
nosis and drug resistance. The currently proposed inhibitors 
or activators targeting Ca2+ channels for the treatment of OC 
are summarized in Table IV.

Although recent advancements in Ca2+ channel research 
have provided promising insights, further investigations 
are required to establish effective combinatorial methods 

of targeted medications and chemotherapy to boost the 
survival rate of patients with OC. Understanding the 
biological processes that govern the modulation of Ca2+ 
signaling pathways in OC cells is urgently required. Ca2+ 
signaling appears to be a valid target for anticancer therapy 
in patients with OC and is supported by a substantial body 
of preclinical and clinical evidence. However, gaps in 
knowledge remain in our understanding of the role of Ca2+ 
signaling in types of cancer which is required to uncover 
the mechanisms of Ca2+ signaling in OC pathogenesis 
and facilitate the creation of novel therapeutic strategies. 
In conclusion, alterations in Ca2+ f luxes can inf luence 
malignant transformation, tumor progression and response 
to therapy in patients with OC by affecting a complex 
network of OC cell‑intrinsic and extrinsic functions. 
Further research is necessary to disentangle its molecular 
and functional complexity.
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