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Abstract. Cancer stem cells (CSCs) constitute a specific subset 
of cells found within tumors that are responsible for initiating, 
advancing and resisting traditional cancer treatments. M2 
macrophages, also known as alternatively activated macro‑
phages, contribute to the development and progression of 
cancer through their involvement in promoting angiogenesis, 
suppressing the immune system, supporting tumor growth 
and facilitating metastasis. Exosomes, tiny vesicles released 
by cells, play a crucial role in intercellular communications 
and have been shown to be associated with cancer develop‑
ment and progression by influencing the immune response; 
thus, they may serve as markers for diagnosis and prognosis. 
Currently, investigating the impact of exosomes derived from 
M2 macrophages on the maintenance of CSCs is a crucial 
area of research with the aim of developing novel therapeutic 
strategies to target this process and improve outcomes for 
individuals with cancer. Understanding the biological func‑
tions of exosomes derived from M2 macrophages and their 
involvement in cancer may lead to the formulation of novel 
diagnostic tools and treatments for this disease. By targeting 
M2 macrophages and the exosomes they secrete, promising 
prospects emerge for cancer treatment, given their substantial 
contribution to cancer development and progression. Further 
research is required to fully grasp the intricate interactions 
between CSCs, M2 macrophages and exosomes in cancer, and 
to identify fresh targets for cancer therapy. The present review 
explores the pivotal roles played by exosomes derived from M2 
cells in maintaining the stem‑like properties of cancer cells.
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1. Introduction

Cancer stem cells (CSCs) constitute a distinct set of cells found 
within a tumor that share similar properties to normal stem 
cells (1). These cells are important for cancer development and 
progression, as well as in making tumors resistant to chemo‑
therapy and radiation therapy (2). CSCs exhibit self‑renewal 
potential and can differentiate into various cell types found 
within the tumor, allowing them to continually regenerate the 
tumor and form more aggressive tumors, even after initial 
treatment has been administered. They have been identified 
in various types of cancers, including glioma, breast cancer, 
lung carcinoma, and leukemia (3‑5). Due to their resistance 
to conventional cancer treatments, they are considered to be 
one of the contributing factors for tumor recurrence following 
treatment (3‑5).

The CSC niche, similar to the adult stem cell niche, is a 
component of the tumor microenvironment (TME) that regu‑
lates stem cell activities through interactions between cells 
and secreted molecules (6). The TME consists of a variety 
of components, such as cytokine networks, immune cells, 
perivascular cells, fibroblasts, extracellular matrix (ECM) 
components, and endothelial cells (7). Tumor‑associated 
macrophages (TAMs) are the most prevalent immune cells in 
the TME and can be recruited by CSCs to participate in TME 
formation, which can aid in CSC survival. M2 macrophages, 
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which are alternatively activated macrophages, have a signifi‑
cant influence on cancer development and progression (8), 
unlike M1 macrophages, which are responsible for the immune 
response against infections and inflammation (8).

Exosomes are small extracellular vesicles that range from 
40 to 160 nm in diameter and originate from endosomes (9). It 
has been shown that nearly all cells secrete exosomes, which 
can be found in various biofluids and cell culture media (10). 
Exosomes represent a novel mechanism for intercellular 
communication between donor and recipient cells, and indi‑
viduals with cancer have been found to possess increased 
quantities of exosomes compared with healthy individuals, 
highlighting the potential role of exosome‑mediated cellular 
and communication in cancer. This communication promotes 
tumor formation, angiogenesis, metastasis, progression, 
immune evasion, and drug resistance (11). Due to their favor‑
able biocompatibility properties and capacity for customization 
to target specific cells, exosomes hold promise as carriers for 
therapeutic payloads like microRNAs (miRNAs/miRNAs), 
small interfering RNA (siRNAs), and small‑molecule drugs. 
This potential creates possibilities for transforming conven‑
tional cancer treatment approaches (12). Nevertheless, the 
quest for suitable exosomal molecules and donor cells to 
establish an effective exosomal drug delivery system remains 
a substantial challenge.

Extensive research has been performed to understand the 
complex system of communication facilitated by exosomes 
within the TME (9). Within the TME, macrophages play a 
pivotal role in intercellular communication through the release 
of exosomes. Macrophages are broadly categorized into two 
types based on their activation status: Classically activated 
M1 macrophages and alternatively activated M2 macro‑
phages, which are influenced by a range of stimuli (13). TAMs 
exhibit a mixed M1/M2 phenotype, and macrophage‑derived 
exosomes may vary based on their parental cell properties. 
For example, exosomes derived from M2 macrophages may 
contain higher levels of specific miRNAs compared to those 
derived from M1 macrophages, thereby impacting cancer 
progression and drug resistance (14). Hence, understanding the 
specific exosomes secreted by distinct macrophage phenotypes 
may offer therapeutic opportunities. Macrophage‑derived 
exosomes constitute a substantial proportion of blood‑borne 
exosomes and these may be used as potential biomarkers for 
diagnosing cancer through minimally invasive liquid biop‑
sies (15). Moreover, exosomes released by macrophages can 
trigger immune responses that restrain cancer progression, 
highlighting their possible application in anti‑tumor treat‑
ments (16,17). Currently, the role of M2‑derived exosomes in 
maintaining cancer cell stemness is an active area of investiga‑
tion for developing novel therapeutic approaches to target this 
process and improve outcomes in cancer patients.

2. CSCs in tumor progression

CSCs are a subpopulation of tumor cells that exhibit 
self‑renewal and differentiation abilities, similar to those of 
normal stem cells (5,18). CSCs are hypothesized to be respon‑
sible for initiating and maintaining tumor growth, as well as 
conferring resistance to chemotherapy and radiation therapy. 
These versatile cancer cells have the capacity to differentiate 

into various cell types found in tumors, which enables them 
to drive primary tumor growth and contribute to the develop‑
ment of new tumors (19). Various surface markers, such as 
CD34+/CD38‑, are used to identify CSCs in a wide range of 
cancers (20). By way of their pluripotency, CSCs play a pivotal 
role in tumorigenesis, cellular proliferation, and metastasis. 
Furthermore, CSCs can self‑renew, making them function‑
ally immortal. Although only a small percentage of cancer 
cells exhibit stemness properties, they can differentiate into a 
range of cancer cell types that constitute the majority of tumor 
cells (18). CSCs are often more tumorigenic than non‑stem 
cancer cells. Although chemotherapy and radiotherapy can 
effectively kill a significant portion of the tumor mass, CSCs 
are typically resistant to these treatments, making it difficult 
to achieve significant clinical improvement (2,4,21). CSCs also 
have the capacity to generate a wide range of cell types within 
a tumor, resulting in heterogeneous progeny (22). This diver‑
sity of phenotypes stems from the inherent plasticity of CSCs, 
allowing them to transition between different cell states or 
phenotypic states. These transitions can occur spontaneously 
or in response to signals from the tumor microenvironment, 
such as changes in oxygen levels, nutrient availability, or 
interactions with other cells and signaling molecules (22). The 
phenotypic variations exhibited by CSCs are extensive and 
can vary depending on the tumor type and context (22). There 
are several common phenotypic states observed in CSCs: 
i) Stem‑like state: CSCs maintain stem cell‑like properties, 
characterized by their ability to self‑renew and differentiate 
into multiple cell lineages. These cells often show increased 
expression of stem cell markers and signaling pathways 
associated with stemness (23). ii) Differentiated state: CSCs 
can undergo partial or complete differentiation into various 
cell types present in the tumor, resembling the non‑CSC 
population. This differentiation can lead to the formation of 
bulk tumor cells with limited self‑renewal potential (24). 
iii) Hybrid state: CSCs can exhibit a hybrid phenotype that 
combines both stem‑like and differentiated characteris‑
tics. These cells possess certain stem cell properties while 
also displaying markers or features associated with more 
differentiated cells. The hybrid state may confer increased 
resistance to therapies and enhanced metastatic potential (24). 
iv) Epithelial‑to‑mesenchymal transition (EMT): CSCs can 
undergo a process known as EMT, which is associated with 
increased invasiveness and metastatic potential. During EMT, 
CSCs lose epithelial characteristics and acquire mesenchymal 
traits, including enhanced motility, resistance to apoptosis, and 
ECM remodeling abilities (25). v) Metabolic plasticity: CSCs 
can adapt their metabolic profile to utilize different energy 
sources and survive in a range of different microenvironments. 
They can switch between glycolysis and oxidative phosphory‑
lation (a process known as the Warburg effect), which provides 
them with a survival advantage under nutrient‑deprived condi‑
tions (26). Understanding and targeting the cellular plasticity 
of CSCs is crucial for developing effective therapeutic strate‑
gies against cancer. The ability of CSCs to transition between 
different phenotypic states enables them to evade therapies, 
contribute to tumor heterogeneity, and drive tumor relapse and 
metastasis (25). Overall, the characteristics of CSCs offer a 
valuable avenue for comprehending cancer development and 
the potential treatment of various cancer types.
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3. The role of M2 macrophages in tumor progression

Within the scientific community, an ongoing debate persists 
regarding the specific mechanism underlying the origin of 
macrophages. However, it is widely recognized that macro‑
phages can be classified into two distinct lineages: Bone 
marrow‑derived macrophages and tissue‑resident macro‑
phages (27,28). Tissue‑resident macrophages develop during 
embryonic development and are self‑sustaining within their 
specific area, while bone marrow‑derived macrophages arise 
from monocytes differentiated by bone marrow progeni‑
tors (29). These monocytes migrate from the bloodstream to 
tissues during normal and inflammatory conditions and are 
activated by various factors. These macrophage populations 
have distinct distributions within the TME, with tissue‑resident 
macrophages spreading to neighboring tumor cells early on, 
promoting EMT and increasing invasion (30). Furthermore, 
tissue‑resident macrophages raise regulatory T‑cell numbers to 
help tumor cells escape from the immune system (31). Hence, 
tissue‑resident macrophages may present a promising target 
for treating tumors. There are various macrophage subtypes 
that can be characterized with specific markers.

Macrophages are a heterogeneous population of immune 
cells with a range of phenotypes and functions that actively 
regulate tumor progression. Among these, the M1 and M2 
macrophage subtypes hold significant roles in tumor regula‑
tion. M1 macrophages exhibit a pro‑inflammatory phenotype 
when exposed to Type 1 T helper cytokines, such as IFN‑γ, and 
TNF‑α. They secrete anti‑tumor pro‑inflammatory cytokines 
such as IL‑8, TNF‑α, IL‑1β, and IFN‑γ (32,33). Conversely, 
M2 macrophages are primarily activated by Type 1 T helper 

(Th2) cytokines, including IL‑13 and IL‑4, resulting in 
anti‑inflammatory properties and tumorigenesis. M2 macro‑
phages can be further classified into distinct subsets based on 
specific stimuli and markers. The M2a subset, characterized by 
CD206 and CD68, contributes to fibrosis, allergic responses, 
and parasite elimination. The M2b subset, identified by CD86 
receptors, plays a vital role in immune responses (34,35). The 
M2c subset, distinguished by the expression of CD163 recep‑
tors, is induced by IL‑10, TGF‑β, or glucocorticoids and serves 
a critical function in anti‑inflammatory processes (36,37). 
Finally, the M2d subset, associated with tumor progression, 
exhibits increased secretion of vascular endothelial growth 
factor (VEGF) and IL‑10, along with reduced expression of 
TNF‑α and IL‑12 (38,39). Nonetheless, the precise mechanism 
underlying the programming of M2d macrophages remains 
a subject of controversy. Fig. 1 provides a depiction of the 
expression of markers associated with different subtypes of 
M2 macrophages.

Macrophages in the TME may have divergent effects on 
cancer progression based on their polarization status. Initially, 
macrophages may exhibit a pro‑inflammatory response and 
inhibit tumor growth; however, the evidence supporting this 
remains limited (40). As a tumor expands, Th2 cells guide 
macrophages toward a pro‑tumor phenotype, which promotes 
tumor development (41). M2 macrophages have been shown to 
regulate multiple aspects of tumorigenesis, such as angiogen‑
esis, metastasis, and chemo‑resistance. M2 macrophages can 
promote tumor cell intravasation and extravasation by secreting 
VEGF and epidermal growth factor (42,43). They also modu‑
late tumor metastasis by regulating EMT and promoting ECM 
degradation. The majority of TME‑associated macrophages 

Figure 1. M2 macrophages and expression markers. Arg1, arginase 1; FIZZ1, resistin‑like molecule alpha1; IL‑1, interleukin‑1; IL‑10, interleukin‑10; IL‑12, 
interleukin‑12; IL‑13, interleukin‑13; IL‑1R, interleukin‑1 receptor; IL‑1Ra, interleukin‑1 receptor agonists; IL‑4, interleukin‑4; IL‑6, interleukin‑6; MHC‑II, 
major histocompatibility complex‑II; TGF‑β, transforming growth factor‑β; TLR1, Toll‑like receptor 1; TLR8, Toll‑like receptor 8; TLRa, Toll‑like receptor 
agonists; TNF‑α, tumor necrosis factor‑α; VEGF, vascular endothelial growth factor.
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tend to be M2, which creates an immunosuppressive micro‑
environment (44). An overview of the interactions between 
CSCs and M2 macrophages is shown in Fig. 2. Therefore, 
gaining insights into the characteristics of M2 macrophages 
can enhance our understanding of cancer states and enable the 
development of new approaches for inhibiting or eradicating 
cancer.

4. Characteristics and composition of macrophage‑derived 
exosomes

The process by which exosomes are formed from macro‑
phages follows a similar pattern to that observed in other cells. 
It is initiated by the inward budding of the cellular membrane, 
leading to the formation of endosomes (9). These endosomes 
then generate intraluminal vesicles (ILVs) within the cytoplasm, 
gradually transforming into multivesicular bodies (MVBs) (9). 
Throughout this process, the sorting of exosomal cargo can be 
influenced by various external factors. For example, in response 
to IL‑4 stimuli, macrophage‑derived exosomes selectively 
incorporate miRNAs (45). Moreover, macrophages activate 
the peroxisome proliferator‑activated receptor γ pathway 
and transfer phosphatase and tensin homolog (PTEN) into 
exosomes when exposed to the microenvironment of apoptotic 
lung cancer cells undergoing irradiation (46). Additionally, the 
activation of the P2X7 signaling pathway triggered by extra‑
cellular ATP enables macrophages to transfer IL‑1β and other 
proteins into exosomes, leading to an elevation in intracellular 
calcium levels (Fig. 3) (47,48).

Typically, exosomes from the inward budding of the 
cellular membrane can create endosomes, which develop ILVs 
that eventually mature into MVBs through cargo sorting and 
external factors. In the typical scenario, MVBs are predomi‑
nantly degraded by lysosomes, and only a small fraction of 
them are released as exosomes through exocytosis facilitated 
by Rab proteins and small GTPases (49). However, when 
lysosomes in macrophages are defective, increased secretion 
of exosomes is observed (50), indicating the substantial reli‑
ance on macrophage‑derived exosomes on lysosomal function. 

Conversely, autophagy has a diminishing effect on exosomal 
secretion since autophagosomes can merge with MVBs to form 
amphisomes, which can then be degraded by lysosomes (51). 
Conversely, reducing the expression of lysosome‑associated 
membrane protein‑2 and lysosome‑associated membrane 
protein‑1 hinders the fusion of amphisomes with lysosomes, 
resulting in an increased release of exosomes. Notably, not 
only endogenous factors but also exogenous stimuli, such as 
cellular stress impact the secretion of macrophage‑derived 
exosomes (52). For example, macrophages release a higher 
number of exosomes upon stimulation by lipopolysaccharide 
(LPS), which upregulates the expression of Rab27b and 
Rab27a. However, this effect can be counteracted by IL‑25 (53). 
In the tumor microenvironment, hypoxia can also enhance the 
release of macrophage‑derived exosomes compared to physi‑
ological conditions (54). These exosomes become independent 
components of the tumor microenvironment and can affect 
other cells through various mechanisms. For instance, For 
example, LPS/IFN‑γ‑induced macrophage‑derived exosomes 
can bind to extracellular endoplasmic reticulum aminopepti‑
dase 1, which promotes macrophage phagocytosis and nitric 
oxide synthesis (55). Macrophage‑derived exosome surface 
markers are specific to cell and/or tissue types and can deter‑
mine the types of recipient cells (56). Different proteins, such 
as RAB27A and syntaxin 3, are used by macrophages from 
various tissues to regulate exosomal biogenesis and docking 
with recipient cells (57). Overall, these findings suggest that 
macrophage‑derived exosomes play a role in cell‑to‑cell 
communication and have a wide range of effects depending on 
their contents and surface markers.

5. M2 macrophage‑derived exosomes in cancer cell 
stemness

M2 macrophage‑derived exosomes transfer various biomol‑
ecules, including growth factors, cytokines, miRNAs, long 
non‑coding RNAs (lncRNAs), and circular RNAs (circRNAs) 
(Table I) have been shown to promote self‑renewal and survival 
of CSCs (58). They can also modulate the signaling pathways 
and molecular processes that regulate CSCs, thereby main‑
taining and expanding the cancer stem cell population (58).

Additionally, M2 macrophage‑derived exosomes have 
been shown to modify the behavior of immune cells, thereby 
suppressing the anti‑tumor immune response (59). This may 
further promote the survival and expansion of the cancer stem 
cell populations and contribute to tumor progression.

miRNA‑mediated regulation of cancer cell stemness. 
Exosomes, which mediate cell‑to‑cell interactions, possess the 
ability to exchange genetic molecules, such as miRNAs (60). 
miRNAs are key to the development, polarization, and meta‑
bolic control of macrophages (61‑63). To maintain a balanced 
mRNA environment, exosomes can rapidly eliminate 
excessive miRNAs in an activation‑dependent manner (45). 
Consequently, exosomes derived from macrophages stimulated 
with LPS or IL‑4 exhibit noticeable enrichment of specific 
miRNAs (64). Numerous studies have demonstrated that 
alterations in exosomal miRNAs derived from macrophages 
can significantly impact important post‑transcriptional control 
functions in neighboring cells, including cancer cells.

Figure 2. Interaction between M2 macrophages, CSCs and the tumor 
microenvironment. CCL2, C‑C motif chemokine ligand 2; CSF1, colony 
stimulating factor 1; CSF2, colony stimulating factor 2; EGF, epidermal 
growth factor; GPNMB, glycoprotein non‑metastatic melanoma protein B; 
IGF, insulin‑like growth factor; IL‑10, interleukin‑10; IL‑13, interleukin‑13; 
IL‑18, interleukin‑18; IL‑33, interleukin‑33; IL‑34, interleukin‑34; IL‑35, 
interleukin‑35; IL‑4, interleukin‑4; IL‑6, interleukin‑6; IL‑8, interleukin‑8; 
PTN, pleiotrophin; TGF‑β, transforming growth factor‑β; TNF‑α, tumor 
necrosis factor‑α; WISP1, WNT1‑inducible‑signaling pathway protein 1.
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To date, a wide range of miRNAs sourced from exosomes 
of M2 macrophages have been implicated in the regulation of 
cancer stemness. In human colon cancer, exosomal miR‑155‑5p 
derived from M2 macrophages has been shown to augment the 
proliferation and anti‑apoptotic capabilities of SW48 and HT29 
cells. It also promotes immune escape by downregulating zinc 
finger CCCH‑type containing 12B and upregulating IL‑6, 
thereby increasing CD3+ T cell proliferation and the propor‑
tion of IFN‑γ+ T cells (65). Another study revealed that the 
collaborative action of exosomal miR‑155‑5p and miR‑21‑5p 
from M2 macrophages promotes cell migration and invasion 
in colon cancer by suppressing BRG1 expression. (66); BRG1 
is a crucial regulator in maintaining colorectal cancer stem 
cells (67). In pancreatic cancer, exosomal miR‑155‑5p and 
miR‑221‑5p derived from M2 macrophages were found to 
stimulate angiogenesis and pancreatic cancer growth by inhib‑
iting E2F2 expression (68). E2F2 transcriptionally regulates 
multiple targets involved in various characteristics of CSCs, 
including proliferation, self‑renewal, metastasis, and drug 
resistance (69). Furthermore, exosomal miR‑193b‑3p from 
M2 macrophages was observed to enhance the proliferation, 
migration, invasion, and glutamine uptake of pancreatic 
cancer cells by downregulating tripartite motif containing 
62 (70). Similarly, exosomal miR‑365 from M2 macrophages 
suppressed the expression of BTG2, activating the FAK/AKT 
pathway and promoting pancreatic cancer development (71). 
Inhibiting the FAK/AKT signaling pathway was found to 
reduce the viability of human breast cancer stem cells (72). 
Additionally, exosomal miR‑501‑3p derived from M2 

macrophages was identified to hinder the tumor suppressor 
TGFβ receptor 3 gene, thereby facilitating the progression of 
pancreatic cancer through the activation of the TGF‑β signaling 
pathway (73). It is important to note that the TGF‑β signaling 
pathway has been demonstrated to enhance pancreatic cancer 
stemness (74,75). Interestingly, miR‑21‑5p from extracellular 
vesicles derived from M2 macrophages was found to promote 
the differentiation and activity of pancreatic cancer stem cells 
by suppressing Krüppel‑like factor 3 (KLF3) expression (76). 
In lung cancer, exosomal miR‑1911‑5p from M2 macrophages 
facilitated cell migration and invasion in lung adenocarcinoma 
by downregulating zinc finger and BTB domain containing 4 
expression, which is mediated by CUGBP Elav‑like family 
member 2 (77). Additionally, exosomal miR‑3917 from M2 
macrophages promoted lung cancer progression by inhibiting 
G protein‑coupled receptor kinase 6 (78), a factor involved 
in maintaining self‑renewal of hematopoietic stem cells (79). 
Furthermore, exosomal miR‑501‑3p from M2 macrophages 
represses WD repeat domain 82, contributing to the progres‑
sion of lung cancer (80). Notably, M2 macrophage‑derived 
exosomal miR‑942 suppresses forkhead box protein O1 
(FOXO1) expression, promoting the progression of lung 
adenocarcinoma (81), FOXO1 acts as a key inhibitor of cancer 
cell stemness in various cancer types (82,83). In gastric cancer, 
exosomal miR‑487a from M2 macrophages advances disease 
progression by suppressing TIA1 expression (84). Moreover, 
exosomal miR‑588 from M2 macrophages contributes to 
cisplatin resistance in gastric cancer cells by partially inhib‑
iting cylindromatosis expression (85), which regulates the 

Figure 3. Interaction between M2 macrophage‑derived exosomes and CSCs. CTLA‑4, cytotoxic T‑lymphocyte‑associated protein 4; ER, endoplasmic retic‑
ulum; ICAM, intercellular adhesion molecule; MVB, multivesicular body; TAA, tumor‑associated antigens.
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Table I. Role of M2 macrophage‑derived exosomal non‑coding RNAs in regulating cancer progression.

Types of non‑ Name of non‑ Related target/
coding RNAs coding RNAs signaling pathway Cancer type (Refs.)

miRNA miR‑155‑5p ZC3H12B Colon cancer (65)
  miR‑155‑5p BRG1 Colon cancer (66)
  miR‑186‑5p DLC1 Colon cancer (152)
  miR‑21‑5p BRG1 Colon cancer (152)
  miR‑221‑3p CDKN1B Epithelial ovarian cancer (89)
  miR‑487a TIA1 Gastric cancer (84)
  miR‑588 CYLD Gastric cancer (85)
  miR‑27b‑3p MLL4/PRDM1 Glioblastoma (87)
  miR‑15a PI3K/AKT/mTOR Glioma (93)
  signaling
  miR‑92a PI3K/AKT/mTOR Glioma (93)
  signaling
  miR‑660‑5p KLF3 Hepatocellular carcinoma (88)
  miR‑222‑3p PDLIM2/PFKL Laryngeal squamous cell (153)
   carcinoma
  miR‑1911‑5p CELF2/ZBTB4 signaling Lung cancer (77)
  miR‑942 FOXO1 Lung cancer (81)
  miR‑3917 GRK6 Lung cancer (78)
  miR‑501‑3p WD repeat domain 82 Lung cancer (80)
  miR‑155‑3p WD repeat domain 82 Medulloblastoma (154)
  miR‑31‑5p LATS2/Hippo signaling Oral squamous cell (91)
   carcinoma
  miR‑221‑3p SOCS3/JAK2/STAT3 Osteosarcoma (90)
  miR‑193b‑3p TRIM62 Pancreatic cancer (70)
  miR‑21‑5p KLF3 Pancreatic cancer (76)
  miR‑155‑5p E2F2 Pancreatic cancer (68)
  miR‑221‑5p E2F2 Pancreatic cancer (68)
  miR‑365 BTG2/FAK/AKT  Pancreatic cancer (71)
  miR‑501‑3p TGFBR3‑mediated Pancreatic cancer (73)
  TGF‑β signaling
  miR‑21‑5p PTEN/Akt signaling Renal cell carcinoma (155)
lncRNA lncMMPA Glycolysis pathway Hepatocellular carcinoma (106)
  H19 ULK1 Bladder cancer (108)
  lncRNA CRNDE PTEN Gastric cancer (115)
  AGAP2‑AS1 miR‑296/Notch2signaling Lung cancer (112)
  AFAP1‑AS1 miR‑26a/ATF2 signaling Esophageal cancer (113)
circRNA Circ_0008253 Not examined Gastric cancer (121)
  Circ_0020256 miR‑432‑5p/ Cholangiocarcinoma (122)
  E2F3 signaling
  Circ_0001610 miR‑139‑5p/cyclin Endometrial cancer (123)
  B1 signaling
  Circ_TNFRSF21  mMiR‑3619‑5p/ Cutaneous squamous cell (124)
  ROCK signaling carcinoma

lncRNA, long non‑coding RNA; ATF2, activating transcription factor 2; BRG1, BRM/SWI2‑related gene 1; CDKN1B, cyclin‑dependent kinase 
inhibitor 1B; CELF2/ZBTB4, CUGBP Elav‑like family member 2/zinc finger and BTB domain containing 4; CYLD, cylindromatosis; DCL1, 
deleted in liver cancer 1; FOXO1, forkhead box O1; KLF3, Krüppel‑like factor 3; LATS2, large tumor suppressor kinase 2; MLL4/PRDM1, 
mixed‑lineage leukemia 4/positive regulatory domain I; PDLIM2/PFKL, PDZ and LIM domain 2/phosphofructo‑1‑kinase isozyme B; PTEN, 
phosphatase and tensin homolog; SOCS3, suppressor of cytokine signaling 3; TGFBR3, transforming growth factor beta receptor 3; TRIM62, 
tripartite motif containing 62; ULK1, Unc‑51 like autophagy activating kinase 1; ZC3H12B, zinc finger CCCH‑type containing 12B.
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proliferation of esophageal cancer stem‑like cells through the 
cylindromatosis pathway (86).

In glioblastoma, M2 macrophage‑derived exosomal 
miR‑27b‑3p represses mixed‑lineage leukemia 4/positive 
regulatory domain 1 signaling, resulting in the activation of 
IL‑33 and maintenance of stem‑like properties in glioblastoma 
stem cells (87). Studies on hepatocellular carcinoma indicated 
that exosomal miR‑27b‑3p from M2 macrophages enhanced 
tumor development by suppressing KLF3 (88), whereas 
inhibition of KLF3 was found to stimulate the differentiation 
and activity of pancreatic cancer stem cells (76). In epithelial 
ovarian cancer, exosomal miR‑221‑3p from M2 macrophages 
promotes disease progression by suppressing cyclin‑dependent 
kinase inhibitor 1B. Similarly, exosomal miR‑221‑3p derived 
from M2 macrophages enhance the growth and metastasis of 
osteosarcoma by repressing suppressor of cytokine signaling 3, 
activating JAK2/STAT3 signaling (89), which plays a critical 
role in maintaining cancer cell stemness (90). In oral squamous 
cell carcinoma, exosomal miR‑31‑5p from M2 macrophages 
hinders the tumor suppressor large tumor suppressor kinase 2 
gene, facilitating cancer progression by inhibiting the Hippo 
signaling pathway (91), which promotes the transition EMT 
and the maintenance of cancer stem cells (92). Conversely, 
in glioma, M2 macrophage‑derived exosomal miR‑15a 
and miR‑92a suppress cyclin D1 and RAP1B, respectively, 
resulting in the inhibition of cell migration and invasion via 
the PI3K/AKT/mTOR pathway (93). The PI3K/AKT/mTOR 
signaling pathway has been shown to regulate cancer 
stemness (94). Notably, exosomal miR‑223 derived from 
macrophages exhibits divergent effects in different cancer 
types, despite its involvement in regulating the biological func‑
tion of cancer stem cells. The expression levels of miR‑223 
vary across different cancer types, with increased expression 
in metastatic gastric and ovarian cancers, but decreased 
expression in hepatocellular and esophageal cancer (95,96). 
This indicates a contradictory role for miR‑223 in cancer. 
Furthermore, exosomal miR‑223 from macrophages can 
promote drug resistance in epithelial ovarian carcinoma cells 
by inhibiting PTEN expression (97), while in breast cancer 
cells, it can induce invasion and metastasis by suppressing 
Mef2c expression (98). However, conflicting findings suggest 
that exosomal miR‑223 from macrophages inhibits cancer cell 
proliferation in hepatocellular cancer cells by downregulating 
stathmin 1 and insulin‑like growth factor 1 receptor expres‑
sion (99). It is possible that miR‑223 induces macrophages to 
adopt either an anti‑tumor or pro‑tumor phenotype in different 
pathological conditions, leading to pleiotropic effects in cancer 
cells, exhibiting both suppressive and promotive roles.

lncRNA‑mediated regulation of cancer cell stemness. lncRNAs 
are RNA molecules that are >200 nucleotides in length 
and lack protein‑coding capacity. Despite their non‑coding 
nature, they play crucial roles in various cellular processes, 
including regulation of gene expression, epigenetic modifica‑
tions, chromatin remodeling, and mRNA processing. In recent 
years, extensive research has highlighted the significance of 
lncRNAs in cancer development and progression (100,101). 
Dysregulation of lncRNAs can disrupt normal cellular 
processes, leading to uncontrolled cell growth, survival, and 
metastasis, which are all characteristic features of cancer. 

Previous research has primarily focused on studying the func‑
tions and mechanisms of lncRNAs within individual cells, but 
there has been limited investigation into the role of lncRNAs 
carried by exosomes secreted by macrophages in facilitating 
communication between cells. However, recent studies have 
shown that exosomes released by macrophages can deliver 
a specific lncRNA called HIF‑1α‑stabilizing lncRNA to 
breast cancer cells. This delivery process then influences the 
glycolysis of cancer cells by interacting with a protein called 
prolyl hydroxylase domain 2, leading to the stabilization of 
HIF‑1α (102). HIF‑1α is known to play a role in the develop‑
ment of cancer stemness under conditions of hypoxia (103). 
These findings suggest that exosomal lncRNAs derived 
from macrophages have a positive impact on cancer stem‑
ness. Additionally, Yin et al (104) discovered that exosomal 
lncRNA SET‑binding factor 2 antisense RNA 1 derived from 
M2 macrophages can be transferred to pancreatic cancer cells, 
promoting cancer progression by suppressing miR‑122‑5p and 
increasing the expression of a protein called X‑linked inhibitor 
of apoptosis protein. Notably, miR‑122‑5p has been associated 
with cervical cancer stem cell self‑renewal and differen‑
tiation (105). In hepatocellular carcinoma, exosomes derived 
from M2 macrophages play a role in promoting malignancy 
by transferring lncMMPA to tumor cells. This transfer inhibits 
miR‑548 and leads to the upregulation of aldehyde dehydro‑
genase 1 family member A3 (ALDH1A3) expression (106), 
whereas inhibition of ALDH1A3 can impede cancer cell 
stemness (107). In bladder cancer, M2 macrophage‑derived 
lncRNA H19 promotes autophagy in bladder cells by stabi‑
lizing Unc‑51‑like kinase 1 (108). Notably, lncRNA H19 has 
been extensively studied for its involvement in promoting 
cancer stemness across various cancer types (109‑111). In lung 
cancer, exosomal lncRNA AGAP2 antisense RNA 1 derived 
from M2 macrophages enhances radiotherapy immunity by 
reducing miRNA‑296 and increasing NOTCH2 expression. 
Activation of the Notch2 signaling pathway has been associ‑
ated with promoting lung cancer stemness (112). In esophageal 
cancer, exosomal lncRNA AFAP1 antisense RNA 1 from 
M2 macrophages affects cell migration and metastasis by 
repressing miR‑26a expression, thereby promoting activating 
transcription factor 2 activity (113). It is worth noting that 
miR‑26a can regulate the activating enhancer binding Protein 
2 α/Nanog signaling axis related to glioma cancer stem‑
ness (114). In gastric cancer, M2 macrophage‑derived lncRNA 
colorectal neoplasia differentially expressed (CRNDE) 
contributes to cisplatin resistance (115). Furthermore, lncRNA 
CRNDE has been implicated in the regulation of biological 
characteristics of glioma stem cells (116). In summary, these 
findings shed light on the role of exosomal lncRNAs in 
mediating interactions between cells within TME.

circRNA‑mediated regulation of cancer cell stemness. 
CircRNAs are a type of non‑coding RNA characterized by 
a closed‑loop structure and play crucial roles in gene regula‑
tion, development, and disease progression. Emerging studies 
suggest that circRNAs may participate in modulating CSCs 
across various cancer types (117,118). Specifically, certain 
circRNAs have been shown to influence the differentiation and 
self‑renewal of CSCs in breast, glioblastoma, and colorectal 
cancer (119). Additionally, certain circRNAs have been found 
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to modulate the expression of genes that are important for 
CSC maintenance and survival (120). One mechanism through 
which circRNAs exert their influence on CSCs is by inter‑
acting with miRNAs. By acting as miRNA sponges, circRNAs 
can bind to and sequester miRNAs, thereby regulating the 
expression of miRNA target genes crucial for CSC function. 
For example, Yu et al (121), revealed that macrophage‑derived 
exosomes regulate gastric cancer cell resistance to oxali‑
platin by encapsulating circ_0008253. However, the role of 
circ_0008253 in CSCs has not yet been investigated. Another 
study by Chen et al (122) revealed that M2 macrophage‑derived 
exosomal circ_0020256 enhances cholangiocarcinoma 
progression by targeting miR‑432‑5p/E2F3 axis. Gu et al (123) 
identified that M2 macrophage‑derived exosomal circ_0001610 
reduces endometrial cancer radiosensitivity. Moreover, M2 
macrophage‑derived exosomal circ_TNFRSF21 facilitates 
angiogenesis in cutaneous squamous cell carcinoma through 
the regulation of miR‑3619‑5p/Rho‑associated coiled‑coil 
containing protein serine/threonine kinase signaling (124). 
Nevertheless, the specific roles of these circRNAs in CSCs 
remain to be investigated.

M2 macrophage‑derived exosomal proteins in cancer stem‑
ness. Proteomics has been widely employed to analyze protein 
expression profiles (125). By utilizing proteomics, it was 
uncovered that treating macrophages with LPS/IFN‑γ led to 
the upregulation of 24 proteins and the downregulation of eight 
proteins in macrophage‑derived exosomes (55). Additionally, 
proteomic analysis of the culture media from the co‑culture 
of colorectal cancer and Ana‑1 cells identified an enrichment 
of proteins related to RNA processing, including several 
subunits of the 20S proteasome and ribosomal proteins, in M2 
macrophage‑derived exosomes (126). These findings suggest 
that proteins present in M2 macrophage‑derived exosomes 
may contribute to tumor survival by degrading misfolded or 
denatured proteins in cancer cells. Nevertheless, to obtain a 
more accurate representation of the in vivo environment, it is 
crucial to isolate solid tumor tissue‑derived exosomes, which 
requires suitable models and an adequate number of samples. 
Due to the sensitivity of macrophages and their exosomes to the 
surrounding conditions, the contents of macrophage‑derived 
exosomes and macrophage phenotypes can vary under 
different conditions or in different types of cancer. The 
activities of proteins originating from macrophage‑derived 
exosomes are primarily determined by the specific recipient 
cells they interact with. In the context of high‑grade serous 
ovarian carcinoma, the inclusion of GATA binding protein 3 
within macrophage‑derived exosomes has been observed to 
facilitate the advancement of tumors (127). In gastric cancer, 
macrophages are the primary source of apolipoprotein E 
(ApoE), which is also abundant in their exosomes. When 
cancer cells internalize ApoE‑containing exosomes derived 
from macrophages, they activate the PI3K/AKT signaling 
pathway, thereby promoting cancer cell migration (128).

Furthermore, macrophage‑derived exosomes can influence 
the adaptability of cancer cells and contribute to metastasis. 
Kim et al (46) demonstrated that macrophages can deliver 
an increased amount of PTEN protein to recipient cells via 
exosomes when exposed to irradiated apoptotic lung cancer 
cells, thereby impeding EMT. Conversely, exosomal ADAM 

domain 15, a protein secreted by M2 macrophages, inhibits 
cancer cell migration and growth (129). In addition to macro‑
molecular proteins, cytokines also play a critical role in cancer 
and can be found in M2 macrophage‑derived exosomes. 
For instance, mouse macrophages release various cytokines 
in exosomes upon LPS stimulation (64). In one study, M2 
macrophages cultured with apoptotic breast cancer cells 
after chemotherapy increased the production of IL‑6 in their 
exosomes, which were then transferred to cancer cells (130). 
This process promoted cancer cell metastasis and proliferation 
by enhancing STAT phosphorylation. While cytokines have 
been extensively investigated in the context of non‑exosomal 
secretion pathways, exploring whether these cytokines exhibit 
enhanced efficacy through exosomal pathways would be 
valuable.

Other macrophage‑derived exosomal cargos in cancer 
stemness. Several studies have provided compelling evidence 
that macrophage‑derived exosomes contain a diverse array of 
components, including miRNAs, lncRNAs, proteins, mRNA, 
tRNA and ribosomes (131). Recent research has highlighted the 
significant role of exosomal mitochondrial/nuclear DNA derived 
from cancer cells in tumor immunity (132). However, the pres‑
ence of functional endogenous DNA in macrophage‑derived 
exosomes remains uncertain. Nonetheless, artificial dsDNA 
has been detected in macrophage‑derived exosomes in 
pancreatic cancer (14). Importantly, M2 macrophage‑derived 
exosomes enriched with arginase‑1 can stimulate the migration 
and proliferation of glioblastoma cells (133). Moreover, once 
macrophage‑derived exosomes are released into the extracel‑
lular microenvironment, they may serve as primitive particles 
within the ECM (9). This is supported by the observation that 
components in macrophage‑derived exosomes are capable 
of synthesizing thromboxane B2, thromboxane, and specific 
proteins (126). Further investigation is warranted to explore 
the potential independent functions of macrophage‑derived 
exosomes separate from their parent cells.

6. Therapeutic agents targeting M2 macrophages for 
cancer treatment in clinical trials

Both preclinical and clinical investigations have underscored 
the therapeutic potential of targeting two signaling pathways, 
namely the C‑C chemokine receptor type 2 (CCR2)‑C‑C 
Motif chemokine ligand 2 (CCL2) axis and the C‑C Motif 
chemokine ligand 12 (CXCL12)‑C‑X‑C Motif chemokine 
receptor 4 (CXCR4) pathway, to hinder the recruitment and 
infiltration of TAMs into the TME. These approaches hold 
promise for patients with solid tumors (134). For example, an 
anti‑CCL2 antibody (carlumab) inhibited macrophage infiltra‑
tion in mice and is presently being tested in clinical trials (NCT 
00992186) for the treatment of solid tumors and metastatic 
castrate‑resistant prostate cancer (135). However, carlumab 
alone only produces a temporary reduction in serum CCL2 
levels without significant antitumor effects. Nevertheless, 
when combined with conventional chemotherapeutic regimens 
such as paclitaxel and carboplatin, it enhances the antitumor 
response. Similarly, clinical trials have revealed that inhib‑
iting the CXCL12‑CXCR4 signaling pathway can result in 
TAM exclusion and effective treatment of solid tumors (136). 
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For example, a CXCR4 antagonist called (Plerixafor) impedes 
tumor angiogenesis by inhibiting the release of VEGF‑A from 
TAMs and has been employed in the treatment of solid tumors 
and pediatric cancers (137‑139). LY2510924, a CXCR4 antago‑
nist, has also undergone clinical trials (NCT02737072) for the 
treatment of solid tumors (134).

TAM recruitment and polarization are heavily influenced 
by colony‑stimulating factor‑1 receptor (CSF‑1R)/colony‑stim‑
ulating factor‑1 (CSF‑1) pathway, thus, there have been 
endeavors to block this signal in TAMs for the treatment of 
solid tumors (140). Clinical trials have been conducted with 
Emactuzumab (RG7155) (NCT01494688). This treatment 
has demonstrated a reduction in CD163+/CSF‑1R+ macro‑
phages in diffuse‑type giant cell tumors and an increase in 
CD8+/CD4+ ratio (134). Clinical trials are also underway to 
explore the combination of Emactuzumab with chemotherapy 
(NCT02760797) and immunotherapy (NCT02323191) for solid 
tumor treatment. Clinical trials have utilized CSF‑1R‑specific 
inhibitors for the treatment of solid tumors. Both CSF‑1R 
inhibitors and antibodies have exhibited therapeutic improve‑
ments in clinical trials. An example of this is the utilization of 
the CSF‑1R inhibitor BLZ945, either alone or in conjunction 
with anti‑programmed cell death protein 1 (PD1) antibody 
immunotherapy (NCT02829723), which has demonstrated 
the ability to impede macrophage recruitment and promote a 
change in macrophage polarization towards phenotypes that 
are beneficial in combating tumors (134). The efficacy of this 
combination is presently being assessed in clinical trials as a 
potential treatment for advanced‑stage solid tumors.

Although strategies that aim to eliminate or hinder the 
recruitment of TAMs can delay tumor progression, they often 
have systemic toxicities as they target all macrophages and can 
be quickly compensated by TAMs. Moreover, discontinuation 
of CCR2/CCL2 inhibitors can lead to accelerated metastasis in 
breast cancer due to the sudden release of monocytes that were 
previously trapped in the bone marrow (141). To overcome these 
limitations, alternative approaches have garnered interest, such 
as re‑educating macrophages to adopt an anti‑tumor pheno‑
type. One such approach involves using inhibitors that block 
receptor signals on macrophages responsible for modulating 
phagocytosis. Tumor cells frequently overexpress a signaling 
molecule called CD47, which acts as a ‘do not eat me’ signal 
and suppresses macrophage phagocytic capacity by inter‑
acting with signal regulatory protein α (SIRPα). Anti‑CD47 
antibodies can disrupt the CD47‑SIRPα axis, restoring 
the ability of macrophages to engulf tumors (126). Several 
conventional anti‑CD47 antibodies have shown success in 
preclinical and clinical trials. For example, the anti‑CD47 
antibody Hu5F9‑G4 inhibits the interaction between CD47 
and SIRPα, promoting macrophage‑mediated phagocytosis 
and the elimination of cancer cells; this antibody has been 
tested in clinical trials (NCT02953509 and NCT02216409) 
for the treatment of solid tumors and various hematological 
malignancies (142). Additionally, polypeptides or recombinant 
proteins derived from SIRPα, such as engineered high‑affinity 
SIRPα proteins, can act as decoys by binding to CD47 and 
disrupting CD47‑SIRPα signaling. Studies have demon‑
strated that the recombinant protein TTI‑621, consisting 
of the N‑terminal domain of SIRPα fused to human IgG1, 
suppresses tumor growth by enhancing macrophage‑mediated 

phagocytosis of solid tumor cells (143). Currently, TTI‑621 
is undergoing clinical investigation for the treatment of solid 
tumors (NCT02663518 and NCT02890368). However, CD47 
is expressed on both healthy and tumor cells. Therefore, 
targeting CD47 will inevitably lead to the elimination of 
healthy cells that express CD47, including red blood cells and 
thrombocytes. The unintended consequences of this approach, 
such as thrombocythemia and anemia, result in a reduced 
maximum tolerated dose during clinical trials. Consequently, 
these off‑target effects limit the impact on the tumor (144).

CD40, a member of the TNF receptor superfamily, is 
expressed on various antigen‑presenting cells and certain tumor 
cells. Activation of TAMs by agonistic anti‑CD40 antibodies 
has been shown to stimulate the secretion of pro‑inflammatory 
cytokines such as nitric oxide and TNF‑α, activating effector 
T cells and restoring tumor immune surveillance. Selicrelumab 
in combination with immunotherapy, such as atezolizumab, has 
been tested in clinical trials (NCT02304393) for the treatment 
of solid tumors and has been demonstrated to significantly 
enhance macrophage phagocytic activity (134).

Toll‑like receptor (TLR) activation is essential for stimu‑
lating the innate immune response of macrophages, driving 
them toward the M1 phenotype associated with anti‑tumor 
activity. The activation of multiple TLR signals enhances 
macrophage phagocytic activity and promotes anti‑tumor 
responses. For example, TLR4 and TLR5 agonists have been 
observed to polarize a greater number of CD206+ M2 TAMs 
towards the CD86+ M1 phenotype, effectively suppressing 
tumor growth without significant toxicity (145). Clinical trials 
have evaluated the TLR9 agonist, IMO‑2125, for the treat‑
ment of refractory solid tumors and metastatic melanoma 
(NCT04126876 and NCT03052205), resulting in macrophage 
polarization towards an anti‑tumor phenotype and subse‑
quent tumor regression (134). However, TLR agonists can 
upregulate the expression of programmed death‑ligand 1 
(PD‑L1) in macrophages, limiting the anti‑tumor response. To 
overcome this limitation, the combination of IMO‑2125 with 
immunotherapy, such as ipilimumab, has been explored to 
enhance the effectiveness of cancer treatment. Additionally, 
SD101, another TLR9 agonist, is currently undergoing clinical 
trials (NCT03007732) in combination with PD‑1 blockade 
to augment therapeutic efficacy (134). Table II provides a 
summary of ongoing clinical trials investigating therapeutic 
agents targeting M2 macrophages for cancer treatment.

7. Possible therapeutic approaches involving exosomes 
derived from macrophages in cancer treatment

The utilization of macrophage‑derived exosomes in cancer 
therapy is potentially significant. These exosomes have 
the ability to deliver targeted drugs and nanomaterials to 
specific recipient cells through cargo transfer. They exhibit 
biocompatibility and can facilitate drug transport across 
natural barriers, including the blood‑brain barrier, enabling 
the delivery of brain‑derived neurotrophic factors for the 
treatment of central nervous system diseases and brain 
tumor therapy while minimizing toxicity (146). Furthermore, 
macrophage‑derived exosomes have the potential to mitigate 
adverse reactions in drug therapy. Studies have demonstrated 
that cisplatin‑loaded exosomes derived from M1 macrophages 
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enhance the anti‑cancer effects of a drug by suppressing 
cancer cell proliferation, inducing apoptosis, and improving 
drug sensitivity (147). Additionally, macrophages, particularly 
M1 macrophages, can transport paclitaxel and overcome 
drug resistance mechanisms, resulting in potent anti‑tumor 
effects (148).

Exploring the biogenesis and composition of macro‑
phage‑derived exosomes holds promise for advancing 
anti‑tumor therapies. Inhibiting exosome formation and secre‑
tion may offer the potential for anti‑tumor treatment. Exosomes 
released by macrophages can induce cancer cells to express 
PD‑L1 proteins, which play a crucial role in tumor immune 
escape. However, the use of GW4869, an inhibitor of exosomal 

secretion, can counteract this induction (149,150). Inhibiting 
exosome biogenesis in vivo may have implications for normal 
cellular functions, potentially leading to adverse effects on 
other intracellular transport processes. Therefore, it is crucial 
to exercise caution and conduct thorough investigations when 
developing cancer therapeutic strategies targeting exosome 
biogenesis. In terms of composition, ovatodiolide, a macrocy‑
clic bioactive compound, has demonstrated its ability to reduce 
the abundance of M2 macrophage‑derived exosomal miR‑21, 
consequently suppressing bladder carcinogenesis (151). 
This discovery suggests that macrophage‑derived exosomal 
miRNAs hold promising clinical potential for cancer treat‑
ment. In conclusion, the development of therapeutic approaches 

Table II. Therapeutic agents targeting M2 macrophages for cancer treatment in clinical trials.

    Clinical
Type of compound Compounds Tumor type Clinical trial phase

CCL2 inhibitor Carlumab  Solid tumors NCT01204996 I
CD40 agonist Selicrelumab Solid tumors NCT02304393 I
 SEA‑CD40 Solid tumors NCT02376699 I
CD47‑SIRPa inhibitor Hu5F9‑G4 Advanced solid NCT02216409 I
  malignancies
CSF‑1R antagonists SNFX‑6352 Advanced solid tumors NCT03238027 I
CSF‑1R antibody Emactuzumab  Advanced solid tumors NCT01494688 I
 FPA008  Advanced solid tumors NCT02526017 I
CSF‑1R inhibitor PLX3397  Advanced solid tumors NCT01596751 II
 ARRY‑382 Advanced solid tumors NCT02880371 II
 Pexidartinib Advanced solid tumors NCT02734433 I
 BLZ945 Advanced solid tumors NCT02829723 I
 JNJ‑40346527 Prostate cancer NCT03177460 I
 IMC‑CS4 Advanced solid tumors NCT01346358 I
 PXL7486 Advanced solid tumors NCT01804530 I
 AMG 820 Solid tumors NCT01444404 I
CXCR4 antagonist Plerixafor  Solid tumors NCT01225419 II
CXCR4 antagonist LY2510924 Solid tumors NCT02737072 I
peptide
IL‑1R antagonist Anakinra Advanced solid tumors NCT01624766 I
PI3Kg inhibitor IPI‑549 Advanced solid tumors NCT02637531 Ib
SIRPa‑IgG1 Fc TTI‑621 Solid tumors NCT02663518 I
TLR4 agonist GSK1795091 Advanced solid tumors NCT03447314 I
TLR7/8 agonist Telratolimod Solid tumors NCT02556463 I
 (MEDI9197)
TLR9 agonist IMO‑2125 Refractory solid tumors, NCT03052205 I
  metastatic melanoma
 SD101 Solid tumors NCT03007732 II
Vasculature‑modulating Vanucizumab Advanced/metastatic NCT02665416 I
agent Ang2/VEGF  solid tumors
Vitamin‑D‑binding EF‑022 (Efranat) Solid tumors NCT02052492 I
protein, macrophage‑
activating factor

Ang2, angiopoietin‑2; CCL12, C‑C motif chemokine ligand 2; CSF‑1R, colony stimulating factor 1 receptor; CXCR4, C‑X‑C motif chemokine 
receptor 4; IL‑1R, interleukin‑1 receptor; SIRPa, signal regulatory protein alpha; TLR4, Toll Like receptor 4; TLR7/8, Toll like receptor 7/8; 
TLR9, Toll like receptor 9; VEGF, vascular endothelial growth factor.
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for the complex roles of macrophage‑derived exosomes should 
prioritize optimizing treatment efficacy while minimizing 
adverse reactions during the design of clinical trials.

8. Conclusions and future perspectives

M2 macrophages and the exosomes they release play a vital 
role in supporting CSCs and facilitating cancer progression. 
Through secretion of growth factors, cytokines, and immuno‑
suppressive substances, M2 macrophages contribute to tumor 
growth and progression. These M2‑derived exosomes further 
promote tumor development by transferring genetic material 
and influencing the immune response against cancer. The 
exploration of M2 cell‑derived exosomes holds significant 
implications for the development of novel approaches in cancer 
treatment. Two potential avenues for therapeutic intervention 
involve targeting M2 macrophages and their exosomes, as 
well as utilizing exosome‑based therapies. By directing efforts 
towards M2 macrophages and their exosomes, it becomes 
possible to limit their support to the tumor and stimulate an 
immune response against cancer. Additionally, exosomes can 
serve as a therapeutic tool by delivering therapeutic agents to 
cancer cells and modulating the immune response. Further 
research is required to fully comprehend the role of M2‑derived 
exosomes in cancer and to develop effective therapeutic strate‑
gies. Specifically, there is a need to obtain deeper insights into 
the mechanisms by which M2‑derived exosomes contribute to 
the maintenance of cancer stem cells and to develop targeted 
therapeutic strategies focusing on M2‑derived exosomes in 
cancer due to their critical involvement in disease progression. 
In conclusion, studying M2 cell‑derived exosomes in cancer 
has the potential to offer a better understanding of the mecha‑
nisms driving cancer progression and to guide the development 
of innovative therapeutic approaches. However, extensive 
research is essential to gain a comprehensive understanding 
of the role of M2 cell‑derived exosomes in cancer.
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