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Abstract. Ovarian cancer (OC) represents the most prevalent 
malignancy of the female reproductive system. Its distin‑
guishing features include a high aggressiveness, substantial 
morbidity and mortality, and a lack of apparent symptoms, 
which collectively pose significant challenges for early detec‑
tion. Given that aberrant DNA methylation events leading to 
altered gene expression are characteristic of numerous tumor 
types, there has been extensive research into epigenetic mech‑
anisms, particularly DNA methylation, in human cancers. 
In the context of OC, DNA methylation is often associated 
with the regulation of critical genes, such as BRCA1/2 and 
Ras‑association domain family 1A. Methylation modifications 
within the promoter regions of these genes not only contribute 
to the pathogenesis of OC, but also induce medication resis‑
tance and influence the prognosis of patients with OC. As 
such, a more in‑depth understanding of DNA methylation 
underpinning carcinogenesis could potentially facilitate the 
development of more effective therapeutic approaches for 
this intricate disease. The present review focuses on classical 
tumor suppressor genes, oncogenes, signaling pathways and 
associated microRNAs in an aim to elucidate the influence of 
DNA methylation on the development and progression of OC. 
The advantages and limitations of employing DNA methyla‑
tion in the diagnosis, treatment and prevention of OC are also 
discussed. On the whole, the present literature review indicates 

that the DNA methylation of specific genes could potentially 
serve as a prognostic biomarker for OC and a therapeutic 
target for personalized treatment strategies. Further investiga‑
tions in this field may yield more efficacious diagnostic and 
therapeutic alternatives for patients with OC.
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1. Introduction

Ovarian cancer (OC) is one of the three most prevalent and 
lethal malignancies affecting the female reproductive organs, 
alongside endometrial and cervical cancers (1). Its incidence 
has been increasing worldwide, and it now has the second 
highest yearly incidence rate among cancers of the female 
reproductive system (2,3). Epithelial OC (EOC), which consti‑
tutes 85 to 90% of all ovarian tumors, is the most common 
subtype (4). The histological subtypes of EOC vary based on 
the tissue origin, as detailed in Table I. Malignant ovarian 
germ cell tumors and sex cord‑stromal tumors, however, are 
relatively rare (4). OC is characterized by a combination of 
direct spread, intraabdominal seeding and lymphatic metas‑
tasis, with peritoneal metastases in the advanced stages of the 
disease being associated with high mortality rates and a poor 
patient prognosis (5). The primary treatments for patients with 
advanced‑stage OC currently include surgical tumor removal 
and platinum‑based combination chemotherapy (6). Despite 
advancements in treatment, the prognosis of patients with 
advanced‑stage disease remains poor, and OC continues to 
have the highest mortality rate among all malignant gyneco‑
logical malignancies (7). OC often remains asymptomatic in 
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the early stages due to the covert growth of the ovary, which is 
the reason why numerous younger women do not experience 
symptoms from their ovarian tumors. The absence of reliable 
biomarkers for the early detection of OC often results in the 
disease progressing to a more difficult‑to‑treat late stage.

At present, an increasing number of studies have indi‑
cated that epigenetic modifications play a pivotal role in 
tumor growth etiology, and variations in the epigenetic 
status are emerging as promising non‑invasive biomarkers 
for the early diagnosis and monitoring of OC (8‑10). 
DNA methylation, the most extensively studied and most 
well‑characterized epigenetic modification, regulates gene 
expression by adding methyl groups to the promoter region 
of DNA (11,12). DNA methylation is a complex epigenetic 
modification mediated by a complex network of enzymes, 
cofactors, and regulatory proteins in a process that involves 
a variety of channels and receptors that facilitate the inter‑
action between DNA methyltransferases and their targets. 
These include chromatin remodeling complexes, histone 
modifiers and transcription factors. In turn, matrix proteins 
provide the structural framework for enzymes and cofac‑
tors involved in methylation and thus play a key role in the 
process of DNA methylation (10,13). Unlike normal cells, 
tumor cells often display abnormal DNA methylation levels 
in specific regions of tumor‑suppressor gene and/or onco‑
gene promoters (14,15). This disruption of key biological 
processes, including cell proliferation, cell cycle regula‑
tion and apoptosis, due to the abnormal DNA methylation 
patterns of certain genes, has been found to be associated 
with the development of OC (16,17). Recent studies have 
also suggested that DNA methylation plays a role in OC 
cell metastasis (11,18). The current understanding posits 
that DNA methylation markers are crucial in the prevention, 
diagnosis and treatment of OC, and DNA methylation‑related 
drugs have also exhibited efficacy in reducing or eliminating 
resistance to chemotherapy and molecular targeting in 
patients with OC (4,8,19). High‑grade serous OC (HGSOC), 
the most prevalent subtype of OC, has the highest recurrence 
rate and the worst prognosis. It is widely acknowledged that 
the primary challenge in treating HGSOC is the acquired 
resistance to platinum‑based drug therapy (20,21). The study 
by Feng et al (22) proposed that NCALD and LAMA3 could 
serve as novel markers for determining the sensitivity to 
chemotherapy in patients with HGSOC, and that hypermeth‑
ylation and the low expression of NCALD and LAMA3 are 
linked to a poor progression‑free survival. It is thus suggested 
that the methylation of gene promoter regions plays a crucial 
role in platinum resistance in patients with OC. The present 
review focuses on the roles of DNA methylation variations in 
tumor suppressor genes, oncogenes, signaling pathway genes 
and microRNAs (miRNAs/miRs) involved in the develop‑
ment of OC. Given the challenges posed by drug resistance 
and relapse mechanisms, which significantly affect the 
management and prognosis of this disease, the latest findings 
on the role of DNA methylation in the screening, diagnosis 
and the treatment of OC are also summarized. The present 
review comprehensively discusses the current evidence for 
the role of DNA methylation in both oncogenic and tumor 
suppressor pathways implicated in OC, in order to identify 
promising biomarkers or therapeutic targets.

2. Tumor suppressor genes

BRCA1/2. Since the 1990s, studies have often been 
conducted on BRCA1 and BRCA2 due to their connection 
to OC. These genes play an essential role in maintaining 
human health by regulating cellular replication, repairing 
DNA damage, promoting normal cell development and 
suppressing tumors (23,24). Since BRCA1 and BRCA2 have 
complementary roles in protecting against cancer, they are 
often discussed together. Mutations in BRCA1 and BRCA2, 
which are crucial genes in the homologous recombination 
mechanism for the repair of DNA double‑strand breaks, have 
been shown to be associated with an increased risk of devel‑
oping cancer. Women with a hereditary BRCA1/2 mutation 
have a higher chance of developing both breast cancer and 
OC (25). Unlike sporadic breast cancer, BRCA‑associated 
breast cancer is more likely to occur on the side of the body 
or as a second primary tumor. By the age of 70 years, women 
with the BRCA1/2 mutation have a 10‑59% increased chance 
of developing OC (26). Therefore, it is critical to conduct 
additional cancer screening at the time of OC or breast cancer 
diagnosis and treatment. The increased likelihood of devel‑
oping primary OC, an earlier onset, larger tumor spread and a 
more aggressive disease course in BRCA1/2 mutant carriers 
deserves special attention. Individuals with BRCA1/2 muta‑
tions, particularly those with recurrent OC, have an improved 
prognosis and a longer survival time following surgery 
compared with individuals with primary and recurrent OC 
without BRCA1/2 mutations (23,27). This phenomenon 
was also observed in the study by Yang et al (23), in which 
patients had longer overall survival and progression‑free 
survival times. However, the underlying mechanisms of this 
difference have yet to be demonstrated, and future studies are 
required investigate whether it is linked to DNA methylation 
as a result of BRCA1/2 mutations.

In the study by Jung et al (28) comparing the peripheral 
blood DNA of 55 subjects with no history of cancer and 
52 patients with OC, higher rates of BRCA1 methylation were 
observed in individuals with a family history of cancer, and 
the presence of BRCA1 methylation increased the risk of 
developing familial and sporadic EOC. Therefore, BRCA1 
methylation testing is an invaluable diagnostic and prognostic 
tool for individuals who are aware of their BRCA mutation 
status and have a strong family history. DNA methylation 
in cervical cells has also been linked to an increased risk of 
developing OC (29‑31). As previously demonstrated, patients 
with OC who carry the BRCA1/2 mutation have a higher 
rate of fibrosis and differential methylation in the proximal 
tubal segment compared with the controls (31). This finding 
has critical implications for the early detection and treatment 
of OC.

Clinical trials using poly‑ADP ribose polymerase 
(PARP) inhibitors for the treatment of individuals with 
BRCA gene mutations are currently underway, since an 
in vitro study demonstrated that cells with mutations in 
the BRCA1 or BRCA2 genes are particularly sensitive 
to PARP (32). Additionally, a recent study revealed that 
females with BRCA methylation were more likely to benefit 
from treatment with PARP inhibitors, regardless of whether 
they carried BRCA mutations or not (33). However, further 
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clinical trials are required to confirm the feasibility of the 
treatment instead. Cisplatin resistance has been linked to 
the disruption of the BRCA/Fanconi anemia (FA) pathway, 
which occurs when the FA gene (FA complementation group 
F) is methylated and silenced (34). Patients with HGSOC 
commonly exhibit a defective BRCA/FA pathway, rendering 
the tumor susceptible to DNA cross‑linking agents and 
PARP inhibitors (35). The BRCA1 and BRCA2 genes, are 
where the majority of BRCA/FA pathway‑inactivating muta‑
tions are found, particularly in HGSOC (36). Although the 
DNA methylation of FA complementation group N is rarely 
observed in HGSOC, it has been shown to be associated with 
inactivation in some cases of sporadic OC (37). However, 
targeting the BRCA/FA pathway is expected to overcome 
OC resistance to cisplatin.

Different subtypes of OC have been found to be associ‑
ated with distinct patterns of BRCA methylation. HGSOC 
has been found to have a higher prevalence of BRCA1 
hypermethylation compared with other types of EOC (38). 
The pathophysiology of OC has been linked to the hyper‑
methylation of the BRCA promoter (39). Additionally, 
Soslow et al (40) revealed that BRCA methylation was asso‑
ciated with the presence of solid, pseudo endometrioid and 
transitional cell carcinoma‑like morphology. The combined 
effect of BRCA1 and BRCA2 hypermethylation in the 
development of OC supports the use of immune checkpoint 
inhibitors in clinical trials (41). Furthermore, the methylation 
of DNA in the upstream region of BRCA1 transcriptional start 
sites has been observed to positively influence the prognosis 
of patients with HGSOC (42). Bilateral ovarian cancers are 
associated with an increased BRCA1 methylation compared 
with unilateral cancers, and the methylation status can serve 
as a predictor of the survival of patients with sporadic EOC. 
The co‑expression of DNA methyltransferase (DNMT)1 and 
3a, DNMT1 and 3b, or DNMT3a and 3b contributes to the 
hypermethylation of the BRCA1 promoter, as previously 
described by Bai et al (43). Additionally, Pradjatmo (44) 
revealed that BRCA2 methylation was present in the majority 
of patients with OC, and that BRCA2 protein expression 
levels were associated with overall survival, regardless of the 
methylation status of BRCA2. This finding may guide the 
development of therapeutic approaches aimed at preventing 
or reversing BRCA gene methylation. These results high‑
light the significance of BRCA methylation in the etiology, 
progression and prognosis of OC, and lay the foundation for 
future therapeutic advancements.

The aforementioned evidence suggests that individuals 
with BRCA1/2 gene mutations, who also exhibit elevated 
levels of BRCA gene methylation, leading to decreased 
BRCA1/2 expression, are at a higher risk of developing OC. 
The methylation testing of the BRCA1/2 gene could poten‑
tially play a crucial role in preventing OC. Additionally, 
individuals with BRCA mutations who have been diagnosed 
with OC may benefit from treatment that specifically targets 
BRCA. However, the current findings on the clinical implica‑
tions of BRCA methylation in OC are complex and conflicting. 
Therefore, further substantiated data are warranted in order 
to study and validate the impact of DNA methylation of the 
BRCA genes in OC.

p53. Both the wild‑type and mutant forms of the p53 gene play 
prominent roles as tumor suppressors in humans. Wild‑type 
p53 is essential for controlling cell division and growth, 
inducing the apoptosis of malignant cells, and blocking 
carcinogenesis. By contrast, the mutation of P53 transforms 
the p53 gene, which is normally a tumor suppressor, into an 
oncogene that actively promotes cancer development at the 
cellular level. Point mutations, inactivation and deletions 
of the p53 gene convert the wild‑type to the mutant type, 
promoting carcinogenesis and cancer progression (45). 
Studies have revealed a strong association between the meth‑
ylation of the promoter region of the p53 gene and the onset 
of several types of cancer, including breast cancer (46), lung 
cancer (47), prostate cancer (48) and OC (49). A previous 
study comparing the p53 methylation status in normal and 
malignant ovarian tissues using methylation‑specific PCR 
determined that the p53 promoter area methylation was 
unique to OC tissue specimens (50). These results suggest the 
potential use of p53 promoter area methylation as a screening 
tool for OC, and indicate that epigenetic modifications play 
a critical role in OC carcinogenesis.

As illustrated in Fig. 1, yippee like (YPEL)3 is a member 
of the YPEL1‑5 gene family, which encodes putative zinc 
finger motifs. It is a newly discovered tumor suppressor and 
p53‑regulated gene associated with cellular senescence, 
causing persistent growth arrest in human tumor and normal 
cells (51). In ovarian carcinoma cell lines, YPEL3 expres‑
sion is downregulated due to the hypermethylation of the 
CpG island upstream of the YPEL3 promoter, resulting in 
a marked decrease in the suppression of cancer cell prolif‑
eration and in the promotion of OC. This role was also 
confirmed by Kelley et al (51) who screened 30 ovarian 

Table I. Major histotypes of epithelial ovarian cancer.

Categories Abbreviations Incidence Origination (Refs.)

Serous ovarian cancer (high‑grade HGSOC and 60‑70% Fallopian tube (3)
and low‑grade) LGSOC  epithelium
Endometrioid ovarian cancer ENDOC 15% Endometriosis (3)
Clear cell ovarian cancer CCOC 5% Endometriosis (3)
Mucinous ovarian cancer MOC 10% Transitional cell (3)
   nests at the tubal‑
   mesothelial junction
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tumor samples and six normal ovary samples. Additionally, 
YPEL3 induces cellular senescence downstream of p53, 
suggesting that upregulating the expression of the YPEL3 
gene may be a viable strategy for the treatment of OC (51). 
Another p53‑regulated gene, zinc‑finger protein 1 (Zac1), 
is an imprinted gene expressed in various embryonic and 
adult somatic organs. By interacting with p53, the tumor 
suppressor Zac1 can control the transcriptional activity 
of p53 and induce cell cycle arrest and apoptosis (52). The 
increased expression of mesenchymal biomarkers and migra‑
tion support the association between a high expression of 
Zac1 in cervical cancers and clinical metastasis (53). This is 
attributed to the hypomethylation of the Zac1 promoter CpG 
island, leading to the upregulation of its expression in various 
cervical cancer cell lines (53). Further research is required in 
order to determine the role of Zac1 in OC, and its involvement 
in OC development through changes in DNA methylation. 
In order for non‑invasive serous borderline ovarian tumors 
(SBOTs) to progress to low‑grade invasive carcinomas, p53 
promotes SBOT invasion by activating the PI3K/Akt pathway 
and transcription, which in turn suppresses E‑calmodulin, as 
previously demonstrated by Cheng et al (54). The downregu‑
lation of E‑calmodulin by p53 was found to be associated 
with promoter methylation by DNMT1 (54).

The specificity of the p53 gene results in a complex 
dichotomy in its role in the pathogenesis of OC. The only 
studies thus far have shown that p53 is hypermethylated 
and downregulated in the development of OC. However, 
there is a lack of studies examining the role of p53 in the 
epigenetic development of OC, particularly in the context of 
DNA methylation, despite the association of p53 mutations 

with an increased risk of developing OC. This presents a 
key opportunity for further research. Given its potential 
utility in clinical screening and prognostication of OC, 
the extensive investigation of the p53 gene methylation 
is warranted.

Ras‑association domain family 1A (RASSF1A). RASSF1A 
is a potential Ras effector that regulates cellular proliferation 
and apoptosis in response to extrinsic signals. Its upregulation 
leads to the decreased proliferation of human cancer cells, 
indicating its crucial role as a tumor suppressor gene (55). 
Numerous studies have demonstrated the epigenetic inactiva‑
tion of the RASSF1A isoform in various types of cancer, such 
as lung cancer (56), breast cancer (57) and OC (58). Therefore, 
the methylation of RASSF1A could serve as a valuable prog‑
nostic marker for patients with cancer, and may play a critical 
role in the early detection of cancer (59).

According to recent research, RASSF1A methylation is 
increased in OC compared with normal ovarian tissues (60). 
Furthermore, the methylation frequency of RASSF1A 
has been found to be higher in patients with HGSOC (61). 
Additionally, the methylation frequency of RASSF1A was 
higher in OC than in low malignant potential tumors, which 
exhibited higher methylation levels of RASSF1A than benign 
ovarian epithelial adenomas (62). Therefore, RASSF1A 
promoter hypermethylation and RASSF1A protein levels 
may serve as reliable and sensitive tools for the diagnosis 
and monitoring of patients with ovarian malignancies. 
Furthermore, cationic conjugated polymer‑based fluores‑
cence resonance energy transfer techniques for the detection 
of the RASSF1A methylation status in EOC may be useful 

Figure 1. EMT‑like changes in ovarian epithelial cells. YPEL3 and Zac1 are regulatory genes for p53, and their altered promoter methylation affects their own 
expression, which in turn represses p53 expression. The p53‑induced downregulation of E‑calmodulin expression and DNMT1‑mediated promoter methylation 
are collectively involved in the EMT‑like changes in the ovarian epithelium that lead to cancer development. EMT, epithelial‑mesenchymal transition; YPEL3, 
yippee like 3; Zac1, PLAG1 like zinc finger 1; DNMT1, DNA methyltransferase 1.
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for diagnosis and screening. Combining the techniques with 
the detection of cancer antigen 125 levels may improve the 
sensitivity of the diagnosis of EOC (63).

RASSF1A promoter methylation has been reported to 
be markedly associated with EOC in a previous study on 
OC in Vietnamese women (64). However, a meta‑analysis 
found that the levels of this modification were not substan‑
tially linked to the clinicopathological characteristics 
or the survival outcomes of patients with OC (65). This 
discrepancy may be due to differences in sample size or 
individual variations in experimental results. Nevertheless, 
a recent study examined EOC cells and mesenchymal‑like 
OC stromal progenitor cells to determine their methyla‑
tion status at RASSF1A promoters (66). The frequency of 
RASSF1A promoter methylation was found to be consider‑
ably higher in tumor‑derived OC stromal progenitor cells 
(OCSPCs) than in epithelial‑like OCSPCs, and it was shown 
to be associated with the clinicopathological characteristics 
and survival outcomes of patients. That study demonstrated 
the potential therapeutic value of RASSF1A promoter meth‑
ylation in OCSPCs generated from EOC tissues (66). Since 
OCSPCs with a reduced expression of tumor suppressor 
genes in the ovarian tumor microenvironment can promote 
tumorigenesis and can be reversed by the DNA demethyl‑
ation of genes, reversing the DNA demethylation of tumor 
suppressor genes in OCSPCs may represent a potential ther‑
apeutic strategy for OC (67). Reyes et al (68) conducted a 
study on advanced‑stage HGSOC and a retrospective, nested, 
case‑control study of patients with recurrent HGSOC. They 
found that patients with OC in different states had different 
frequencies of DNA methylation of RASSF1A, and meth‑
ylation was associated with several differentially expressed 
genes that could be potential biomarkers and/or therapeutic 
targets for HGSOC (68).

In patients with advanced‑stage EOC receiving neoadju‑
vant therapy, the methylation status of the RASSF1 promoter 
has been demonstrated to exhibit a marked association with 
the response to chemotherapy. Specifically, by studying 
aberrant DNA methylation in 68 normal ovarian tissues, 
and 29 benign, 100 malignant and 10 junctional ovarian 
tumor tissues, Feng et al (69) revealed that patients with 
EOC with RASSF1A promoter methylation had mark‑
edly poorer response rates to cisplatin‑based neoadjuvant 
therapy compared with patients without a methylation status. 
RASSF1A promoter methylation is a key predictive factor 
for the prognosis of patients with HGSOC (70); the study 
by Giannopoulou et al (71) found that RASSF1A promoter 
methylation was significantly associated with the OC grade, 
and that prognosis tended to be worse for patients with OC 
in whom RASSF1A promoter methylation was detected in 
the tumor and in adjacent tissues. Furthermore, the iden‑
tification of aberrant RASSF1A promoter methylation in 
cell‑free circulating tumor DNA from low‑volume plasma 
samples of patients with EOC has shown potential as a 
prognostic marker for the disease (72). These findings have 
significant implications for EOC research, including the 
development of improved diagnostic methods and targeted 
therapy approaches. In summary, RASSF1A is hypermethyl‑
ated and downregulated in the development of OC, and the 
methylation status of RASSF1A has the potential to serve 

as a biomarker for early identification and diagnosis of OC, 
as well as for predicting the treatment response and overall 
clinical outcomes.

Other tumor suppressor genes. In addition to the tumor 
suppressor genes described above that have undergone 
substantial research, a large number of other tumor suppressor 
genes have been linked to the development of OC. Among 
the principal molecular determinants that exert a profound 
influence on OC are chromodomain helicase DNA binding 
5 (CHD5), fructose‑1,6‑biphosphatase (FBP1), aldehyde 
dehydrogenase 1‑A2 (ALDH1A1), pluripotency‑associated 
transcription factor forkhead box (FOX)D3, insulin‑like 
growth factor binding protein‑3 (IGFBP‑3), zinc finger 
protein 671 (ZNF671), secreted protein acidic and rich in 
cysteine (SPARC) and O6‑methylguanine‑DNA methyltrans‑
ferase (MGMT). All the aforementioned tumor suppressor 
genes can be accessed from Table II.

CHD5, also known as DNA binding 5, is a member of 
the subclass of chromatin remodeling Swi/Snf proteins and 
is currently considered to be a tumor suppressor (73). The 
frequency of abnormal DNA methylation of the CHD5 gene 
promoter is inversely related to the prognosis of patients 
with cancer and has been observed in several malignan‑
cies (74‑78). Despite the limited number of studies, CHD5 
promoter methylation has been shown to be associated with 
OC, suggesting its potential clinical applications in OC 
metastasis, treatment and prognosis. The downregulation of 
FBP1, a tumor suppressor and the rate‑limiting enzyme in 
gluconeogenesis (79), has been observed in several malig‑
nancies. The DNA methylation of the FBP1 promoter in 
patients with OC leads to a decreased expression of FBP1, 
which is associated with advanced‑stage disease, high 
malignancy, low survival, high recurrence rates, and a poor 
prognosis (80). Compared to the normal ovarian surface 
epithelium, OC cells have a significantly lower expression 
of ALDH1A2, another rate‑limiting enzyme involved in 
cellular retinoid production (81). High ALDH1A2 promoter 
methylation levels in OC cells promote cell proliferation, 
enhance invasive activity and are associated with a poor 
prognosis (82). Together, CHD5, FBP1, and ALDH1A2 
have exhibited promise as biomarkers, therapeutic targets 
and prognostic indicators in the study of OC and its clinical 
management.

FOXD3 is essential for development, cellular homeostasis 
and the control of lineage specification (83). The reduced 
expression of FOXD3 due to the hypermethylation of its 
promoter has been linked to the development of malignant 
tumors (84,85). The study by Luo et al (86) revealed that 
FOXD3 promoter methylation was increased and its expres‑
sion was decreased in OC tissues. The inhibition of tumor 
cell growth, as well as the effects on tumor cell proliferation 
and migration, suggest that FOXD3 promoter methylation 
may serve as a prognostic marker for OC (86). IGFBP‑3 
is a member of the IGFBP family, which largely governs 
the mitogenic and anti‑apoptotic effects of insulin‑like 
growth factor, a protein whose transcription is regulated by 
p53 and which possesses anti‑proliferative, pro‑apoptotic 
and invasion‑inhibiting activities (87). Wiley et al (88) 
discovered that changes in IGFBP‑3 promoter methylation 
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significantly affected the survival of patients with EOC. This 
link was found to be particularly strong in individuals with 
early‑stage OC. Furthermore, in patients with EOC who 
lacked p53 overexpression, elevated DNA methylation levels 
of the IGFBP‑3 promoter were found to be substantially 
associated with OC progression (89). ZNF671, a member 
of the KRAB‑ZFP family that contains C2H2‑type zinc 
fingers and a Krüppel associated box domain, regulates key 
functions in cell differentiation, proliferation, apoptosis and 
tumor suppression (90,91). The low expression of ZNF671 
is strongly associated with OC cell motility and invasion, 
and it is one of the most heavily methylated genes in patients 
with early recurrence. The ZNF671 DNA methylation status 
following platinum‑based adjuvant chemotherapy may be a 
potent indicator of serous OC recurrence (92). In summary, 
promoter hypermethylation affects the low expression of 
FOXD3, IGFBP‑3 and ZNF671, which contributes to the 
onset and progression of OC. Patients with early‑stage OC 
may benefit from using these genes as prognostic indicators. 
If other members of this family are found to be involved in 
the formation of OC, which is yet to be determined, scholars 
can explore additional gene targets that can aid in the clinical 
diagnosis and therapy of OC.

To regulate cell adhesion, differentiation, proliferation, 
migration, tissue remodeling, morphogenesis and angio‑
genesis, SPARC (also known as osteonectin or BM‑40) is 
expressed in various types of cells (93). Previous studies 
have linked the hypermethylation of the SPARC gene 
promoter to a worse prognosis and earlier diagnosis in 
several types of cancer, including OC (93‑95). The SPARC 
promoter is methylated in primary OC and that SPARC 
protein levels decrease as the disease advances from low 
to high grade (95‑97). Based on these results, it appears 
that SPARC promoter methylation plays a critical role in 
OC carcinogenesis and survival, and SPARC may serve as 
a novel biomarker for OC.

Comparative research has been conducted on the role of 
MGMT, a DNA repair gene that is hypermethylated in the 
majority of malignancies (98). The frequency of MGMT gene 
promoter methylation varies across OC samples, with EOC 
having the highest frequency and benign ovarian tissue having 

the lowest (99). The role of MGMT promoter methylation 
in the onset of OC is undeniable, despite the lack of clarity 
regarding the link between MGMT gene expression and DNA 
methylation.

DNA hypermethylation and the low expression of the 
aforementioned genes is strongly associated with OC etiology 
and has significant implications for the treatment and prog‑
nosis of patients with OC. Targeting these genes could greatly 
benefit the early screening, diagnosis and therapy of patients 
with OC. It is crucial to gather convincing data to identify 
their precise role in OC and uncover their latent potential in 
managing this malignancy, considering the large number of 
genes present in the human genome and the need to discover 
more tumor suppressor genes.

3. Oncogenes

The atypical expression of oncogenes, which can be caused 
by epigenetic alterations, has been found to be associated with 
tumor development and a poor prognosis. The significance 
of oncogenes in the pathogenesis of OC is demonstrated by 
the identification of ~568 oncogenes, of which ~34 are asso‑
ciated with the risk of developing OC. Common epigenetic 
abnormalities include alterations in DNA methylation, RNA 
interference, histone modifications and gene mutations (100). 
The present review focuses on five oncogenes: Homeobox 
A9 (HOXA9), chromobox protein homolog 8 (CBX8), solute 
carrier family 6, member 12 (SLC6A12), anterior gradient 2 
(AGR2), and gamma‑aminobutyric acid (GABA) A receptor 
subunit (GABRP), due to their known association with OC and 
abnormal DNA methylation (Table III).

The DNA‑binding transcription factor, HOXA9, controls 
gene expression and plays a role in morphogenesis and differ‑
entiation (101). The methylation of the HOXA9 promoter has 
been extensively studied in relation to the development of 
OC (102). Widschwendter et al (102) observed that HOXA9 
promoter methylation in normal endometrium increased the 
incidence of OC by 12.3‑fold across all stages and 14.8‑fold 
in early‑stage OC, independent of age, menstrual cycle 
and cancer histology. Wu et al (103) revealed that HOXA9 
promoter hypermethylation was more common in older 

Table II. Tumor‑associated suppressor genes with abnormal DNA methylation in ovarian cancer.

   DNA Gene
Genes Alternate gene name OC subtypes methylation expression (Refs.)

BRCA1/2 Breast cancer susceptibility gene HGSOC High Low (32,38)
p53 Tumor protein p53 HGSOC High Low (44)
RASSF1A Ras association domain family member 1 HGSOC High Low (54,55)
CHD5 Chromodomain helicase DNA binding protein 5 / High Low (73)
FBP1 Fructose‑1,6‑bisphosphatase / High Low (74,75)
ALDH1A2 Aldehyde dehydrogenase 1 family, member A2 HGSOC High Low (81,82)
FOXD3 Forkhead box D3 / High Low (83‑86)
IGFBP‑3 Insulin‑like growth factor binding protein 3 EOC High Low (87,89)
ZNF671 Zinc finger protein 671 HGSOC High Low (92)
SPARC Secreted protein acidic and rich in cysteine / High Low (93,94,97)
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women and was associated with a higher frequency of meth‑
ylation in the early stages of OC by examining 52 primary 
OCs and their in vitro models. Montavon et al (104) found 
that the HOXA9 promoter was differentially methylated in 
primary HGSOC and rarely methylated in benign ovarian 
surface epithelium (OSE), suggesting that the combination 
of HOXA9 promoter methylation status could distinguish 
HGSOC from benign OSE with a sensitivity of 100% when 
pre‑operative CA125 levels were also included. Studies have 
also demonstrated that HOXA9 promoter methylation is 
highly tumor specific and has great promise as a diagnostic 
serum biomarker for the early screening of OC (95,105). The 
diagnostic utility of promoter methylated HOXA9 in circu‑
lating tumor specific DNA in patients with OC was examined 
by Faaborg et al (106), who deviated from the standard 
practice of studying DNA methylation by analyzing both the 
sense and antisense strands of the HOXA9. They discovered 
that compared to single‑stranded assays, OC diagnostics 
could benefit from simultaneous testing against both DNA 
strands, leading to a 59.5% increase in sensitivity (106). 
In addition, HOXA9 promoter methylation was previously 
found to be involved in the progression from one grade of OC 
to another. For example, in patients with endometriosis‑asso‑
ciated OC, lower levels of HOXA9 promoter methylation 
were significantly associated with a higher tumor grade. 
This suggests that the HOXA9 promoter methylation pattern 
is an indicative factor for progression toward high‑grade 
plasmacytoma (96). Furthermore, the promoter hypermeth‑
ylation of HOXA9 can be used as a diagnostic marker and 
can also be used to forecast prognosis of patients. Patients 
with platinum‑resistant BRCA‑mutated OC treated with 
PARP inhibitors have been shown to have a poor prognosis 
if their HOXA9 promoter is highly methylated (107). This 
suggests that HOXA9 promoter hypermethylation and the 
low expression of HOXA9 in OC can be a valuable predic‑
tive biomarker and can inform clinical decision‑making in 
platinum‑resistant BRCA. Overall, these results highlight 
the potential of HOXA9 methylation as a diagnostic marker 
for OC, with applications in risk prediction and prognosis 
forecasting.

CBX8 is a fundamental CBX protein and maintains 
pluripotency and self‑renewal during developmental program 
controls, cell destiny determinations and the regulation of 
embryonic stem cells. Cell cycle progression, senescence 
and differentiation are all influenced by CBX8, and the 
hypomethylation of its promotor leads to an increase in its 

expression (108). CBX8 has been shown to play a role in the 
development of hepatocellular carcinoma, renal cancer and 
colorectal cancer, among others (109,110). The DNA hypo‑
methylation of CBX8 leads to an enhanced expression, which 
acts as a potential diagnostic and prognostic biomarker for 
patients with OC and is associated with a poor prognosis (109). 
Furthermore, SLC6A12, a betaine/GABA transporter (111), is 
overexpressed in OC metastases, negatively affecting patient 
survival due to its promoter hypomethylation. Since SLC6A12 
promoter methylation facilitates cancer cell invasion during 
the development of OC, it is widely recognized as a prognostic 
marker for the chances of survival of patients (111).

AGR2, a protein disulfide isomerase localized to the 
endoplasmic reticulum or secreted into the extracellular space, 
has been linked to cancer progression in patients with similar 
tumors (112‑114). According to the study by Sung et al (115), 
which used a mouse model of human OC metastasis, the 
CpG site in the promoter region of AGR2 is hypermethylated 
in metastatic tumor tissue, which typically results in AGR2 
overexpression. AGR2 overexpression was found to increase 
SK‑OV‑3 cell migration and invasion (115). This suggests that 
AGR2 promoter hypomethylation may contribute to OC cell 
metastasis and invasion.

There are other studies on gene mutations in OC subtypes, 
with previous studies finding that HGSOC has prevalent TP53 
mutations, mucinous OC has frequent KRAS mutations, and 
mutations in AT‑rich interaction domain 1A and phosphati‑
dylinositol‑4,5‑bisphosphate 3‑kinase (PIK3)CA are more 
common in clear‑cell OC and endometrioid OC (35). However, 
studies exploring epigenetic modifications, particularly DNA 
methylation, in OC subtypes are limited. A genome‑wide 
DNA methylation analysis revealed that HGSOC exhibited 
higher levels of overall DNA hypermethylation compared 
to low‑grade EOC (116). DNA methylation profiles could 
potentially be utilized to predict and classify the character‑
istics of aggressive and high‑ or low‑grade EOC. HGSOC, 
which typically displays a higher overall DNA methylation, is 
often associated with varying degrees of platinum resistance, 
leading to differing recurrence intervals following initial 
paclitaxel/platinum‑based therapy (116). The data reviewed 
above suggest that oncogene promoter hypomethylation is a 
common mechanism leading to oncogene overexpression in 
patients with OC. Previous studies support the hypothesis that 
oncogenes contribute to OC cell metastasis and have signifi‑
cant clinical implications for the diagnosis and prognosis of 
patients with OC (102‑106). However, the possible role of 

Table III. Tumor‑associated oncogenes with abnormal DNA methylation in ovarian cancer.

  OC DNA Gene 
Oncogenes Alternate gene name subtype methylation expression (Refs.)

HOXA9 Homeobox A9 HGSOC Low High (103,105‑107)
CBX8 Chromobox protein homolog 8 / Low High (109)
SLC6A12 Solute carrier family 6, member 12 / Low High (111)
AGR2 Anterior gradient 2 EOC Low High (112,114,115)
GABRP γ‑aminobutyric acid (GABA) HGSOC Low High (148)
 A receptor π subunit
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aberrant oncogene promoter methylation in the therapy and 
acquired drug resistance of patients with OC is poorly studied, 
making it a promising area for further research.

4. Pathways

Wnt/β‑catenin signaling pathway. Wnts are a class of glyco‑
proteins that primarily exert their effects through autocrine 
or paracrine secretion. Upon secretion, they interact with 
surface receptors, triggering a cascade of downstream protein 
phosphorylation and dephosphorylation events that ultimately 
result in the accumulation of β‑catenin. Adhesive bands are 
formed when β‑catenin interacts with E‑cadherin at cell junc‑
tions. Free β‑catenin can enter the nucleus to influence gene 
expression. The aberrant expression or activation of β‑catenin 
can lead to the development of cancer (117). Several types 
of cancer, including lung cancer (118), breast cancer (119) 
and OC (120), have been shown to share a common feature: 
The oncogenic activation of the Wnt/β‑catenin signaling 
pathway. Various component alterations (Table IV) in the 
Wnt/β‑catenin signaling pathway and their significance in OC 
are discussed below.

Secreted frizzled‑related proteins (SFRPs) play a crucial 
role in cancer progression and prognosis by functioning as 
critical inhibitors of the Wnt/β‑catenin signaling pathway. 
The SFRP (SFRP1, 2, 3, 4 and 5) genes are heavily 
methylated, leading to transcriptional silencing (121). 
This downregulation of SFRP expression is a common 
occurrence in cancer. In OC, the SFRP1 gene is inacti‑
vated due to promoter methylation and participates in the 
Wnt/β‑catenin signaling pathway (122). Promoter hyper‑
methylation also contributes to the inactivation of SFRP5, 
disrupting Wnt/β‑catenin signaling and promoting ovarian 
carcinogenesis (123). Patients with SFRP5 promoter meth‑
ylation have a poorer prognosis (124,125). Moreover, SFRP5 
hypermethylation is associated with an increased risk of 
EOC recurrence and mortality, suggesting its potential 
as a prognostic biomarker (126). SFRP5 expression also 
suppresses epithelial‑mesenchymal transition (EMT) and 
increases the sensitivity of OC cells to chemotherapy (127). 
Conversely, SFRP5 hypermethylation in OC leads to the 
oncogenic activation of the Wnt/β‑catenin pathway, resulting 
in an increased OC progression and chemoresistance 
through TWIST‑mediated EMT and AKT2 signaling (127). 
Curcumin, a targeted anticancer agent, inhibits the 
Wnt/β‑catenin signaling, thereby mitigating the effects 
of SFRP5 hypermethylation. When used in combination 
with 5‑aza‑2'‑deoxycytidine, it attenuates the development 
of OC (123). Apart from SFRP5, there is limited research 

available onSFRP1/2/3/4, and further investigations are 
required to understand the potential of targeting SFRP and 
inhibiting the Wnt/β‑catenin signaling pathway for OC.

IQ motif containing GTPase activating protein (IQGAP)2, 
a member of the IQGAP family, functions as a tumor 
suppressor in the majority of cancers by mainly inhibiting 
β‑catenin nuclear translocation and transcriptional activity. 
This inhibition leads to the suppression of Wnt/β‑catenin 
signaling, which in turn inhibits the EMT, migration and inva‑
sion of OC cells. In OC, the DNA methylation of IQGAP2 is 
significant and negatively correlates with mRNA expression. 
Survival analyses have revealed that a reduced expression of 
IQGAP2 is strongly associated with a poorer progression‑free 
survival of patients with OC (128,129). Another new protein, 
transmembrane 88 (TMEM88), is an inhibitor of Wnt 
signaling and is found in the cell membrane (130). Promoter 
hypermethylation causes a decrease in TMEM88 expression, 
which enhances OC cell proliferation and the development of 
resistance to platinum treatments (131). The tumor suppres‑
sive functions of IQGAP2 and TMEM88 in OC are mediated 
through the regulation of Wnt/β‑catenin signaling, resulting in 
reduced cell proliferation and invasion. These findings provide 
insight into the pathophysiology of OC and suggest potential 
therapeutic interventions for this condition. Additionally, 
IQGAP2 and TMEM88 may serve as useful biomarkers for 
the diagnosis and monitoring of OC.

The role of DNA methylation in OC in the regulation of the 
Wnt/β‑catenin signaling pathway is illustrated in Fig. 2. The 
aforementioned results demonstrate that hypermethylation and 
the low expression of key genes in the Wnt/β‑catenin signaling 
cascade can significantly affect OC pathogenesis, particularly 
in the context of therapy and platinum resistance in patients 
with OC. Therefore, it is crucial to continue studying the 
Wnt/β‑catenin signaling pathway due to its potential in 
combating platinum resistance in patients with OC.

Transforming growth factor (TGF)‑β signaling pathway. There 
are three closely comparable structural isoforms of TGF‑β, all 
of which belong to the same family of cytokines. The TGF‑β 
signaling pathway has been shown to play a bidirectional role 
in cancer progression and is essential for regulating cellular 
activities, such as cell proliferation, differentiation, apoptosis 
and cellular dynamic homeostasis (132). In the early stages, it 
functions primarily as a tumor suppressor, while in advanced 
stages, it may function as a tumor promoter (133). As demon‑
strated in the study by Matsumura et al (134), DNMT inhibitors 
(DNMTis) can enhance TGF‑β pathway activity and reduce the 
progression of OC. Furthermore, a follow‑up study revealed 
that TGF‑β therapy causes changes in DNA methylation 

Table IV. Wnt/β‑catenin signaling pathways with abnormal DNA methylation in ovarian cancer.

  DNA Gene 
Genes Alternate gene name methylation expression (Refs.)

SFRP5 Secreted frizzled‑related protein 5 High Low (124,126,127)
IQGAP2 IQ motif containing GTPase activating proteins 2 High Low (128,129)
TMEM88 Transmembrane protein 88 High Low (130,131)
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that persist throughout the EMT phase of OC cells. Notably, 
blocking TGF‑β from inducing EMT in cancer cells with 
DNMTi therapy reduced cancer cell metastasis (135). These 
results suggest that DNMTis may be a promising therapeutic 
option for OC by regulating the TGF‑β signaling pathway and 
preventing cancer cell metastasis.

F‑box protein 32 (FBXO32), a member of the F‑box 
protein family, is highly methylated in advanced OC, 
resulting in decreased expression. Since FBXO32 is a target 
gene of SMAD4, its loss in OC causes a malfunction in the 
TGF‑β/SMAD4 signaling pathway, accelerating the develop‑
ment of OC (136). However, OC cells can become desensitized 
to cisplatin, and their expression of FBXO32 can be restored by 
treatment with epigenetic drugs, which also markedly reduces 
the growth of platinum‑resistant OC cell lines in vitro and 
in vivo. Additionally, the methylation status of FBXO32 can 
predict the survival of patients with OC (136). ATP binding 
cassette subfamily A member 1 (ABCA1), a signaling target 
of TGF‑β, is also expressed as DNA hypermethylation in OC, 
and the higher the methylation level of ABCA1 promotor, 
the higher the pathological grade and the shorter the survival 
of patients with OC (137). Sex‑determining region Y‑box 2 
(SOX2) is a single‑exon transcription factor with key roles 
in embryonic development and stem cell maintenance (138). 
Shonibare et al (139) observed an improved lifespan of 

tumor‑bearing mice following the promoter methylation of 
SOX2. This suggests that the promoter methylation of SOX2 
can influence the TGF‑β signaling pathway, which in turn 
affects the survival of patients with OC and the metastasis 
of OC cells (139). TGF‑β‑induced protein (TGFBI), also 
known as βig‑H3 and keratoepithelin, is a cellular matrix 
protein whose promoter hypermethylation is associated with 
the silencing of TGFBI. This can induce OC cell death and 
is significantly associated with the development of OC (140). 
Wang et al (141) confirmed this and also found that the 
hypermethylation of TGFBI was associated with paclitaxel 
resistance in patients with OC. Therefore, they hypothesized 
that TGFBI may be a therapeutic target for improving the 
chemotherapeutic response in patients with OC (141). Overall, 
the expression of FBXO32, ABCA1, SOX2 and TGFBI, which 
are genes in the TGF‑β signaling system, is suppressed due 
to hypermethylation, thereby accelerating the development of 
OC. The methylation profiles of these genes (Table V) can be 
utilized to predict the prognosis of patients with OC and can 
also be targeted for therapeutic purposes against the disease.

Other pathways. The abnormal activation of the 
PI3K/AKT/mammalian target of rapamycin (mTOR) signaling 
pathway is very common occurrence in the majority of 
human cancers compared to other major signaling pathways. 

Figure 2. Activation and inhibition of the Wnt/β‑catenin signaling pathway. SFRP5, IQGAP2 and TMEM88 are some of key genes in the Wnt/β‑catenin 
signaling pathway. The hypermethylation of their promoters leads to the downregulation of their expression, which in turn leads to the aberrant expression 
of β‑catenin. This leads to the inhibition of the Wnt/β‑catenin signaling pathway and the development of cancer. SFFRP5, secreted frizzled related protein 5; 
IQGAP2, IQ motif containing GTPase activating protein 2; TMEM88, transmembrane protein 88.
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The inactivation of the phosphatase and tensin homolog 
(PTEN) gene often occurs at an early stage in ovarian 
endometrioid and ovarian clear cell carcinomas, and its 
promoter is often methylated in 40% of ovarian clear cell 
adenocarcinomas (142), which can negatively regulate the 
PI3K/AKT/mTOR signaling pathway. Moreover, PTEN also 
plays a role as an oncogene (143). Li et al (144) found that 
the hypomethylated PIK3R3 promoter was detected in OC 
cell lines, which may play a role in the chemoresistance of 
OC, and can even restore sensitivity to platinum‑based 
chemotherapeutic agents. Overall, the current focus of studies 
on genetic abnormalities in the PI3K/AKT/mTOR signaling 
pathway is on genetic mutation abnormalities; however, 
epigenetic regulation, particularly DNA methylation, has 
been less extensively studied and warrants further investiga‑
tions. The MAPK pathway is another currently well‑studied 
pathway that is aberrantly activated during tumor progression 
and is present in >85% of cancers (145). Human growth factor 
receptor‑bound protein‑7 (GRB7), is overexpressed in a variety 
of human cancers (146,147). A recent study by Chen et al (147) 
found that miR‑193a‑3p directly regulated GRB7 and that 
miR‑193a‑3p was downregulated by DNA hypermethyl‑
ation during the development of OC, leading to the elevated 
expression of GRB7 in OC tissues. In addition, miR‑193a‑3p 
enhances the oncogenicity of OC cells by regulating Erb‑B2 
receptor tyrosine kinase (ERBB)4, SOS Ras/Rho guanine 
nucleotide exchange factor 2 and KRAS in the MAPK/ERK 
signaling pathway (147). Therefore, miR‑193a‑3p and GRB7 
are promising as targets in OC therapy and deserve further 
exploration. The experimental study of Sung et al (148) found 
that the CpG site of the GABRP promoter was hypomethyl‑
ated in the metastatic tissues of mice with tumor xenografts, 
leading to the overexpression of GABRP, and the promotion 
of cell migration and invasion through the activation of the 
MAPK/ERK pathway. This suggests that GABRP enhances 
the invasive phenotype of OC cells and that the DNA meth‑
ylation status of the GABRP‑963 CpG locus may help predict 
the metastatic potential of patients with OC (148). The use of 
animal models well reflects the physio‑pathological mecha‑
nisms in the human body and helps to assist the target therapy 
of human diseases; however, ultimately, research has to be 
returned to the human body for validation, in order to provide 
more realistic and accurate results for clinical treatment.

Although there are more studies on signaling pathways in 
OC, the focus of the studies is on the mutation or inactiva‑
tion of key genes, and studies on epigenetic modifications 
are limited, which has some limitations. Therefore, further 
experimental studies are required for validation, and they are 

expected to promote the advancement of OC as a disease in 
chemotherapy‑resistant treatment and prognostic assessment.

5. MicroRNAs and DNA methylation

Role of miRNAs in the diagnosis and treatment of OC. 
miRNAs are a class of short, non‑coding RNAs that function 
by simultaneously repressing translation and/or causing RNA 
degradation by targeting numerous mRNAs. Previous research 
has shown that OC tissues have distinct miRNA expression 
profiles from those of normal human ovarian tissues (149,150). 
DNA methylation at the promoter of the host gene controls the 
expression of numerous miRNAs. The methylation alterations 
of genes associated with miRNAs in the development of OC 
are summarized in Table VI. Cancer cells rely on a specific 
type of energy metabolism known as the Warburg effect, 
which is partially controlled by miRNAs (151). miR‑532‑3p 
and miR‑145, which are overexpressed in OC tissues, have 
been shown to prevent the Warburg effect in OC cells (152,153) 
and exhibit a negative correlation with DNMT3A expression. 
More specifically, miR‑145 predominantly operates via the 
miR‑133b/pyruvate kinase M2 pathway to induce the Warburg 
effect (154). The hypomethylation of the DNMT3A/3B CpG 
island promoter area enhances miR‑29b expression, and there 
is an inverse association between miR‑29b and DNMT3A/3B 
expression levels in OC tissues. The therapeutic targeting 
of miR‑29b may represent a promising new avenue for the 
management of OC (155).

The secretory epithelial cells of the fallopian tube (FTSECs) 
play a crucial role in the maturation of HGSOC. The malig‑
nant transformation of FTSECs is more common following 
long‑term exposure to iron. Chhabra et al (156) found that the 
expression of miR‑432‑5p and miR‑127‑3p was considerably 
downregulated during this malignant transformation. Chronic 
exposure to iron can affect miRNA expression by causing 
epigenetic modifications; however, this effect can be reversed 
by treatment with DNA methyltransferase inhibitors (156). 
The tumor suppressor gene, DNMT1/UTF1, is also downregu‑
lated by miR‑148a‑3p, which has been found to reduce cancer 
cell proliferation (157). Based on these results, miRNAs may 
be useful as diagnostic indicators and therapeutic targets for 
treating OC.

miRNAs have also been linked to platinum resistance, 
which is a well‑known and challenging barrier in the treatment 
of OC with chemotherapy. The low expression of miR‑509‑3p 
and a significantly higher frequency of miR‑509‑3p meth‑
ylation have been shown to be associated with a shorter 
overall survival of OC cells derived from patients who 

Table V. TGF‑β signaling pathways with abnormal DNA methylation in ovarian cancer.

  DNA Gene 
Genes Alternate gene name methylation expression (Refs.)

FBXO32 F‑box protein 32 High Low (136)
ABCA1 ATP binding cassette subfamily A member 1 High Low (137)
SOX2 Sex‑determining region Y‑box 2 High Low (139)
TGFBI Transforming growth factor‑beta‑induced protein High Low (140,141)
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have undergone primary tumor cytoreductive surgery and 
post‑operative platinum‑based chemotherapy (158). This 
association is primarily mediated by collagen type XI alpha 
1, which increases the phosphorylation and stability of 
DNMT1 (158). In cisplatin‑resistant OC cells, the overex‑
pression of DNMT1 induces methylation and the subsequent 
downregulation of miR‑30a‑5p and miR‑30c‑5p, resulting in 
cisplatin resistance (159). The poor prognosis of patients with 
OC corresponds with the dysregulation of miR‑7, miR‑132, 
miR‑335 and miR‑148a in cisplatin‑resistant cell lines, where 
miR‑7 tends to exhibit specific methylation and is associated 
with a worse prognosis of patients with OC (160). Restoring 
miR‑9 expression by demethylating the miR‑9‑1/3 gene can 
desensitize OC cells to paclitaxel (161). The downregulation of 
miR‑9 expression in paclitaxel‑resistant EOC cells is related to 
resistance to paclitaxel. It has also been found that promoter 
hypermethylation in OC tissues reduces the expression of 
miR‑479 and miR‑130b, decreasing the sensitivity of cancer 
cells to platinum‑based therapies (162,163). Recent studies 
have reported a newly discovered substance, miR‑143, which 
has been proven to play a role in the chemotherapy of tumors. 
DNMT3A is a direct target of miR‑143, and the overexpres‑
sion of DNMT3A antagonizes the sensitivity of miR‑143 
to cisplatin in OC cells, possibly as DNMT3A leads to the 
hypermethylation of the miR‑143 precursor gene, resulting in 
the downregulation of its expression and generating cisplatin 
resistance (164).

All these points emphasize the importance of miRNAs 
in the therapeutic intervention of OC, specifically in relation 
to the reported link between miRNAs and DNA methylation. 
This notable finding suggests potential new avenues for the 
treatment of OC, and further research is required to determine 
its therapeutic implications.

Roles of miRNAs in the staging and progression of OC. In 
addition to their roles in diagnosis and treatment, miRNAs also 
play crucial roles in the progression of OC. Previous research 
has demonstrated that the expression of total miRNAs can be 
used to reliably distinguish between normal and malignant 
cells, and that miRNAs are abnormally expressed in human 
OC compared to normal ovaries (165). Among the miRNAs 
examined, miR‑141, miR‑200a, miR‑200b and miR‑200c were 
found to be significantly overexpressed, while miR‑199a, 
miR‑140 and miR‑145 were significantly downregulated in 
OC tissues (166). Furthermore, the overexpression of miR‑21, 
miR‑203 and miR‑205 in OC tissues, as opposed to normal 
tissues, may be attributed to DNA hypomethylation, which has 
been observed following the treatment of OVCAR3 cells with 
5‑aza‑2'‑deoxycytidine demethylation (166). Additionally, the 
hypermethylation of miRNAs has been found to be associ‑
ated with a shorter survival rate of patients with OC, and 
the expression of miRNAs, particularly that of miR‑203a‑3p, 
has been shown to be significantly reduced in OC metastatic 
tumors (167). Knockdown of DNMT increases the expres‑
sion of miR‑199a‑3p, and the level of miR‑199a‑3p promoter 
methylation is also significantly elevated in OC cells (168). 
The overexpression of miR‑199a‑3p leads to a decrease in the 
expression of discoidin domain receptor 1, which subsequently 
reduces the migration and invasiveness of OC cells (168). 
Moreover, the miR‑34 family has been shown to possess 
tumor suppressive properties that mediate apoptosis and 
promote cellular senescence; however, its expression in OC 
cells is significantly reduced, primarily due to the methylation 
of miR‑34a CpG islands. This downregulation of miR‑34a 
expression affects the grading and prognosis of patients with 
OC (169). Zuberi et al (170) reported that DNA hypermeth‑
ylation may be involved in the inactivation of miR‑125b, 

Table VI. MicroRNA‑associated gene methylation alterations in ovarian cancer.

 DNA Gene
MicroRNA methylation expression Major target or pathway Clinical function (Refs.)

miR‑532‑3p Low High HK2 Warburg effect (152)
miR‑145 Low High miR‑133b/PKM2 Warburg effect (154)
miR‑29b Low High DNMT3A/3B Treatment (155)
miR‑152 High Low DNMT1 Treatment (191)
miR‑148a High Low DNMT1 Treatment (191)
miR‑193a‑3p High Low GRB7, DNMT1/UTF1 Proliferation (147)
miR‑509‑3p High Low COL11A1, SUMO‑3 Invasion and chemical (158)
    sensitivity
miR‑30a‑5p and High Low DNMT1 Cisplatin resistance (159)
miR‑30c‑5p
miR‑143 High Low DNMT3A Cisplatin resistance (164)
miR‑199a‑3p High Low DDR1 Prognosis (168)
miR‑34 High Low P53 Grading and prognosis (173)
miR‑125b High Low ERBB2 or ERBB3 FIGO stage (170)

HK2, hexokinase 2; miR, microRNA; PKM2, pyruvate kinase M2; DNMT, DNA methyltransferase; GRB7, growth factor receptor‑bound 
protein‑7; UTF1, undifferentiated embryonic cell transcription factor 1; COL11A1, collagen type XI alpha 1 chain; SUMO‑3, small ubiquitin 
like modifier 3; DDR1, discoidin domain receptor 1; ERBB, Erb‑B2 receptor tyrosine kinase.
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and miR‑125b was shown to be significantly associated with 
FIGO staging and the metastasis of OC. The overexpression of 
ERBB2 or ERBB3 is known to be associated with cancer devel‑
opment and poor prognosis. He et al (171) demonstrated that 
reactive oxygen species inhibited the expression of miR‑199a 
and miR‑125b by increasing the promoter methylation of the 
miR‑199a and miR‑125b genes through DNMT1. This led to 
changes in the expression levels of ERBB2 and/or ERBB3 in 
OC cells, thereby attenuating the progression of OC (171).

It has been reported that the overexpression of tet methyl‑
cytosine dioxygenase 3 (TET3) can reverse TGF‑β1‑induced 
EMT‑like changes, mainly by demethylating the promoter of 
the precursor gene of miR‑30d. Thus, there is an association 
between TET3 and the grade of differentiation of OC, and 
TET3 plays a role in suppressing the progression of OC (172). 
miR‑34a and miR‑34b/c are direct target genes of p53 and 
have tumor suppressor properties, as they mediate apoptosis, 
cell cycle arrest and senescence (169). However, the inactiva‑
tion of miR‑34 in OC suggests that the CpG methylation of 
miR‑34a and miR‑34‑b/c may be of diagnostic value. The 
mutual exclusivity of miR‑34a methylation and p53 mutations 
suggests that the inactivation of miR‑34a may substitute for 
the loss of p53 function in cancer and induce the proliferation 
of OC cells (173). Therefore, conducting in‑depth studies on 
miRNAs may be beneficial for the further elucidation of the 
pathogenesis of OC.

As illustrated in Fig. 3, miRNAs have attracted atten‑
tion as potential biomarkers for early identification and 
prognostic evaluation, due to their roles in disrupting DNA 
methylation and gene targeting in the pathogenesis of OC. 

Moreover, miRNAs have shown promise as therapeutic 
targets for the treatment of patients with recurrent OC 
with acquired medication resistance. Further research is 
necessary to fully understand the mechanisms involved in 
this area.

6. Prospects for the clinical application of DNMT inhibitors 
in OC

The expression levels of DNMTs in various ovarian tissues 
have been found to be highly associated with the pathology 
and survival outcomes of patients with OC. The 15‑spliced 
protein product or isoform encoded by DNMT3B is essential 
for the migration and invasion of OC (174). DNMT3B has 
been shown to methylate retinol binding protein 1, which 
has both oncogenic and autophagic effects in OC cells (175). 
The inhibitory effects of TET3 on the migration and inva‑
sion of OC can be diminished by DNMT3B binding to the 
TET3 promoter, resulting in methylation of the promoter 
region (176). Therefore, blocking DNMT3B can reduce 
the growth, migration and invasion of OC cells. However, 
in HGSOC, DNMT3B1 and DNMT3B3 are overexpressed, 
and the overexpression of DNMT3B3 leads to the marginal 
gene demethylation of OVCAR3 human OC cells, which 
is associated with a poor prognosis (177). DNMTis, which 
are chemically similar to deoxycytidine, have been shown to 
block methyl transfer by inhibiting DNMT activity. Previous 
studies have confirmed the potential therapeutic benefits of 
targeting DNMT in OC, leading to better clinical outcomes 
and prognoses (174,178).

Figure 3. Altered methylation of related genes in miRNAs and changes in their expression, with the role they play in OC. OC, ovarian cancer; miR/miRNA, 
microRNA.
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Through a process of viral sensing, DNMTis can also 
induce the production of endogenous retroviruses, which 
in turn triggers an interferon response in OC stem cells. 
Patients with OC who exhibit a high expression of endog‑
enous retrovirus have a better chance of surviving their 
disease, as it increases the efficiency with which cytotoxic 
immune cells kill EOC, and alters the immune infiltration 
of tumors (179). It has also been demonstrated that the use of 
DNMTis to suppress cadherin 13 (CDH13) promoter meth‑
ylation can lead to an increase in CDH13 expression in OC 
cells, and a reversal of the malignant phenotype promoted by 
hsa_circ_0000119 (180). Additionally, several studies have 
demonstrated that combination therapy with DNMTis and 
other treatments is more effective than DNMTi monotherapy 
in the treatment of OC (181‑183). In order to overcome 
platinum resistance in patients with HGSOC, consecutive 
treatment with the DNMTi, azacytidine, and carboplatin 
can demethylate and upregulate immune response‑related 
cells (181). Patients with HGSOC have exhibited greater 
benefits from treatment with DNMTis when used in combi‑
nation with a histone methyltransferase inhibitor (182). 
Furthermore, the combined use of a DNMTi and PARP 
inhibitor has been found to effectively inhibit tumor cell 
proliferation and migration, while promoting apoptosis, 
suggesting a potential therapeutic strategy for EOC (183).

Drug‑resistant cancer cells have been found to have DNA 
hypermethylation aberrations, and DNA hypermethylation, 
produced by chemotherapy, has been proposed as a mecha‑
nism and biomarker of drug resistance (174). Patients who 
have stopped responding to conventional chemotherapy for 
OC may regain platinum sensitivity following treatment 
with DNMTis. Patients with recurrent platinum‑resistant or 
poorly responding OC to immunotherapy have been shown 
to have improved prognostic outcomes and a longer survival 
time when treated with a combination of DNMTis (184,185). 
Additionally, in patients with recurrent platinum‑resistant 
OC, the addition of decitabine (a DNA hypomethylating 
drug) has been shown to enhance the clinical results (186). 
Patients with OC are more responsive to platinum therapy 
and have a better prognosis when treated with decitabine plus 
carboplatin (12).

A previous study using a mouse model demonstrated that 
DNMTis can also improve survival by increasing immuno‑
logical signaling, increasing viral defense gene expression 
in tumor and immune cells, and decreasing the frequency 
of macrophages and myeloid‑derived suppressor cells in 
the tumor microenvironment (184). Chemokine‑like factor 
(CKLF)‑like MARVEL transmembrane domain containing 
6 (CMTM6) is overexpressed in OC compared to normal 
cells due to decreased DNA methylation. Of note, a higher 
expression of CMTM6 has been shown to be associated 
with higher immune cell infiltration, which, in turn, can 
afefct prognosis (187). A recent study demonstrated that 
the production of pro‑inflammatory cytokines/chemokines 
in human OC cell lines was markedly increased following 
in vitro DNMTi therapy in combination with the editing 
of transposable factors (188). These results suggest that 
the therapeutic effects of DNMTis may occur through 
the modification of the immune response and the OC 
microenvironment.

Although DNMTis are effective in preventing, treating 
and determining the prognosis of OC, drug resistance, adverse 
effects and a poor treatment response continue to be obstacles 
to the widespread implementation of DNMTi therapeutic 
regimens. CpG hypermethylation may enhance cancer cell 
proliferation and alter the response to DNMTis, as previously 
observed by Giri et al (189), which raises doubts about the 
usefulness of DNMTis in the treatment of patients with OC. 
However, DNMTis have demonstrated efficacy in reducing 
or eliminating resistance to chemotherapy and molecular 
targeting in OC patients. Therefore, further research is 
required in order to explore the application of DNMTis and 
verify their viability through clinical studies.

7. Conclusion and future perspectives

Despite the notable advances made in the treatment of OC 
in recent years, the majority of patients with advanced‑stage 
OC continue to experience recurrence and eventually 
succumb to chemoresistance. Tumorigenesis, progression 
and resistance to treatment are predominantly mediated by 
epigenetic regulation, particularly DNA methylation. The 
present review aimed to provide an overview of methyla‑
tion‑specific modifications of genes related to OC and their 
clinical applications, thereby emphasizing the significance of 
DNA methylation in OC. In general, tumor suppressor genes, 
such as BRCA1/2, p53, RASSF1A, CHD5, FBP1, ALDH1A2, 
FOXD3, IGFBP‑3, ZNF671, SPARC and MGMT are often 
found to be underexpressed and hypermethylated in OC 
tissues (Table II). Conversely, oncogenes, such as HOXA9, 
CBX8, SLC6A12, AGR2 and GABRP exhibit a high expres‑
sion and DNA hypomethylation (Table III). In addition to 
this, the study by Bauerschlag et al (190) discovered that the 
hypomethylation of genes such as growth regulating estrogen 
receptor binding 1, TGFB induced factor homeobox 1 and 
transducer of ERBB2, and the hypermethylation of genes 
such as transmembrane and coiled‑coil domains 5, protein 
tyrosine phosphatase receptor type N and guanylate cyclase 
2C, were associated with longer survival periods of patients 
with OC, suggesting potential prognostic value. The altered 
DNA methylation of some genes of the classical pathway can 
also have an impact on the development of OC (Tables IV 
and V). miRNAs play a more intricate role in the develop‑
ment of OC. Their expression may be downregulated due to 
gene hypermethylation, such as the expression of miR‑152 
and miR‑148a (191), or they may be overexpressed due 
to gene hypomethylation, such as miR‑21, miR‑203 and 
miR‑205 (166) (Table VI). Overall, miRNAs serve as target 
genes, and investigating whether they are regulated by DNA 
methylation contributes to the development, diagnosis, 
staging and treatment resistance of OC, and thus warrants 
further exploration of their potential clinical applications. 
Building on comprehensive clinical studies exploring the link 
between DNA methylation and OC, DNMTis have emerged 
as a promising therapeutic avenue in clinical settings. They 
play a pivotal role in overcoming chemoresistance and 
recurrence in OC. Current therapeutic strategies include the 
combined use of DNMTis with histone deacetylase inhibi‑
tors, DNMTis with PARP inhibitors, among others. These 
combinations could potentially open up new clinical trial 
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opportunities for patients with advanced malignant ovarian 
tumors who are unresponsive to immunotherapy.

Epigenetics, and in particular DNA methylation, is 
now providing novel and very promising techniques for 
the discovery of specific biomarkers and their subsequent 
screening. As previously described by Belsky et al (192), the 
DNA methylation of related genes can be used as a biomarker 
to predict the rate of aging. Previous studies on DNA methyla‑
tion in OC have provided critical evidence for understanding 
ovarian tumorigenesis (61‑64). These findings provide poten‑
tial diagnostic biomarkers and therapeutic targets. However, 
numerous inconsistencies remain regarding the results of 
aberrant DNA methylation within these tumor suppressor 
genes in OC. When analyzing the possible reasons for these 
inconsistencies, the most significant reason is the sample size. 
Human samples vary greatly in terms of genetics, environment, 
lifestyle and individual differences. In a number of studies, 
the sample size is usually too small due to the huge variation 
in patients with OC. Future studies are urgently required to 
address these controversies by analyzing large sample sizes. In 
addition to this, factors such as the lack of functional studies, 
differences in the methods of DNA methylation detection 
used, and different promoter regions for DNA methylation 
detection may also contribute to the discrepancies. Based on 
the evidence provided in the present review, targeted DNA 
methylation inhibitors have promising applications in the 
treatment of OC. Therefore, it is evident that additional studies 
are warranted to bridge existing knowledge gaps and recon‑
cile inconsistencies. In light of the known limitations, future 
research directions, including conducting larger multicenter 
studies, the development of animal models to determine 
causality, and the initiation of clinical trials involving meth‑
ylating or demethylating drugs are proposed. In conclusion, 
the present review aimed to broaden the understanding of the 
role of DNA methylation in OC and determine its potential 
as a biomarker. This could also the focus for future research 
and further in‑depth analysis of this disease. The ultimate goal 
is to facilitate early diagnosis and treatment, and to promptly 
address the pressing clinical issues of OC recurrence and 
chemoresistance.
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