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Patterns of p73 N-terminal isoform expression and p53 status
have prognostic value in gynecological cancers
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Abstract. The goal of this study was to determine whether
patterns of expression profiles of p73 isoforms and of p53
mutational status are useful combinatorial biomarkers for
predicting outcome in a gynecological cancer cohort. This is
the first such study using matched tumor/normal tissue pairs
from each patient. The median follow-up was over two years.
The expression of all 5 N-terminal isoforms (TAp73, ANp73,
AN'p73, Ex2p73 and Ex2/3p73) was measured by real-time
RT-PCR and p53 status was analyzed by immunohisto-
chemistry. TAp73, ANp73 and AN'p73 were significantly up-
regulated in tumors. Surprisingly, their range of overexpression
was age-dependent, with the highest differences & (tumor-
normal) in the youngest age group. Correction of this age effect
was important in further survival correlations. We used all 6
variables (five p73 isoform levels plus p53 status) as input
into a principal component analysis with Varimax rotation
(VrPCA) to filter out noise from non-disease related individual
variability of p73 levels. Rationally selected and individually
weighted principal components from each patient were then
used to train a support vector machine (SVM) algorithm to
predict clinical outcome. This SVM algorithm was able to
predict correct outcome in 30 of the 35 patients. We use here
a mathematical tool for pattern recognition that has been
commonly used in e.g. microarray data mining and apply it
for the first time in a prognostic model. We find that PCA/
SVM is able to test a clinical hypothesis with robust statistics
and show that p73 expression profiles and p53 status are
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useful prognostic biomarkers that differentiate patients with
good vs. poor prognosis with gynecological cancers.

Introduction

The p53 gene family consists of p53, p63 and p73. p73 shares
substantial homology with p53. In response to DNA damage
or deregulated oncogenes, full-length p73 can activate many
pS3 target genes, thereby inducing cell cycle arrest or apoptosis
(1-7). In mice, recent genetic evidence found some support
for a helper tumor suppressor role of p73 once p53 is impaired.
While p73-/- mice completely lack a cancer phenotype (8),
double heterozygous p53+/-, p73+/- mice have a higher tumor
burden compared to p53+/- mice (9). In human cancers,
however, p73 is not a classical tumor suppressor. The virtual
absence of p73 inactivating mutations (10), combined with
tumor-associated overexpression of wild-type p73 isoforms
including TAp73 in human cancers are in sharp contrast to
the notion of a tumor suppressor function. One explanation
lies in the fact that, unlike p53, the p73 gene gives rise to
multiple isoforms with different and often opposing functions
(Fig. 2A). Whereas the full-length isoform TAp73 largely
mimics p53 function, four additional NH,-terminally truncated
isoforms, ANp73, AN'p73, Ex2p73 and Ex23p73, act as
dominant negative inhibitors of both TAp73 and wild-type
p53 (11-13). The isoforms TAp73, AN'p73, Ex2p73 and Ex2/
3p73 are all generated from P1 promoter-derived transcripts
via alternative exon splicing (14-16). In contrast, ANp73 is
generated by the P2 promoter in intron 3 (17). Of note, the
AN'p73 and Np73 transcripts encode the same protein due to
a premature translational stop in the 5' region of exon 3' in
AN'p73. Importantly, all NH,-terminally truncated p73 iso-
forms lack all or most of the transactivation domain and are
therefore collectively called ATAp73s. They retain their DNA-
binding and tetramerization competence, which enables them to
inhibit TAp73 and wild-type p53 function by direct promoter
competition as well as by heterocomplex formation (13,18-20).

Experimental and clinical evidence is mounting that
ATAp73s might indeed act as biologically relevant oncogenes
in human cancers (17,21,22). Moreover, recent clinical studies
support this idea by identifying ANp73 as a significant inde-
pendent factor predicting poor prognosis in neuroblastoma
and lung cancer patients (23,24). Of note, most of the previous
p73 expression studies in primary human cancers did not



890

discriminate between TAp73 and ATAp73 isoforms, nor did
they quantitate expression levels of different p73 isoforms
(25-28). Therefore, we recently undertook a large prognostic
study to determine expression levels of all ATAp73 and TAp73
products in 100 primary ovarian carcinomas using isoform-
specific quantitative real-time RT-PCR (29). Tumor expression
levels were comapred to a pool of 48 unmatched normal
tissues. Of note, 95% of ovarian cancers strongly overexpressed
AN'p73, and a small subgroup of tumors overexpressed ANp73,
while about one-third of tumors also exhibiting concomitant
up-regulation of TAp73. We observed a trend for better over-
all survival in patients with low expression of AN'p73/Np73,
compared to patients with high expression. Our recent follow-
up study that was expanded to 122 ovarian cancer patients
was able to demonstrate significant correlations between high
AN'p73/Np73 expression and poor recurrence-free and overall
survival, albeit only within the mutant p53 subgroup of ovarian
cancers (30).

Here we present the first prognostic study of gyneco-
logical cancers with matched tumor/normal tissue pairs, based
on quantitative expression of all five N-terminal p73 isoforms,
p53 status and a median follow-up of more than two years.
We used all 6 molecular variables (p73 isoform levels plus
p53 status) as input into the PCA/Varimax algorithm to test
whether they could serve as combinatorial biomarkers for
predicting outcome in this cohort. Using the resulting principal
components, the SVM was able to correctly predict outcome
in 30 of the 35 patients.

Materials and methods

Tissues. Forty-seven women presenting to the gynecologic
oncology service at Stony Brook University Hospital between
November 2000 and February 2003, with known or suspected
gynecologic cancers and for whom surgery was the planned
therapeutic intervention, were invited to participate in
prospective tissue collection. They consented to sampling of
normal and malignant tissue during surgery in strict accordance
with the Institutional Review Board approved protocol. From
each patient, tumor tissue was obtained from ovary or endo-
metrium or tumor-replaced omentum, and normal tissue
was obtained from peritoneum or in some cases from
macroscopically normal ovary. After resection, tissues were
immediately snap frozen in liquid nitrogen and stored at -80°C
until used. For conventional clinicopathological correlations,
all 47 patients were used (Table I). For the PCA/Varimax
analysis (VrPCA), a subset of 35 patients for whom complete
clinical follow-up data and adequate sampling for p73 isoform
measurements were available, were used. A scheme of the
5 isoforms (TAp73, ANp73, AN'p73, Ex2p73 and Ex2/3p73)
is shown in Fig. 2A. For p73 expression analysis, RNA
extraction, cDNA synthesis, real-time RT-PCR experiments
and raw data analyses were performed as previously described
(29). p53 status was determined by immunostaining with DO-1
monoclonal antibody (Calbiochem) on paraffin tissue sections
from the same tumor mass that was used for RNA extraction,
as described (31). Tumors were scored as mutant if they
showed >10% strongly positive tumor cell nuclei. In ovarian,
endometrial and primary peritoneal carcinoma, a statistically
significant association between p53 immunostaining and p53
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Table I. Clinicopathological correlations of 43 patients from
this study.

n %
Diagnosis Primary ovarian cancer 32 68.0
Primary peritoneal cancer 8 17.0
Ovarian borderline tumor 4 8.0
Endometrial cancer 3 6.0
Total 47 100.0
FIGO stage I 6 14.0
1I 4 9.0
111 23 530
v 10 230
Total 43 100.0
Grading 1 3 70
2 3 7.0
3 37 86.0
Total 43 100.0
Cell type Serous 27 62.8
Endometrioid 4 93
Clear cell 4 93
Sarcoma 1 23
Anaplastic 1 23
Mixed 6 14.0
Total 43 100.0

The 4 ovarian borderline tumors were excluded from stage, grade
and cell type classification.

mutations [i.e. p=0.0002 (32)], and a correlation between p53
mutations as well as p53 overexpression to shorter patient
survival is well supported by many studies [e.g. (32-36)].

Clinical data. Ovarian cancer patients underwent total
hysterectomy (TH) with bilateral salpingo-oophorectomy
(BSO) and tumor debulking, followed by 6 cycles of Taxol/
Carboplatin. Borderline tumors were treated with TH/BSO
only. The 3 endometrial cancer patients underwent TH/BSO.
The median age at diagnosis was 61 years (range 38-87).
Table I lists the clinicopathological characteristics of our
patient cohort. For follow-up, a combination of physical exam,
CA125 serum levels and imaging was used to determine
status. Continuous increase in CA125 levels was considered
a chemical recurrence. For survival analysis, all cancers (except
4 borderline tumors) of stages I and II were combined into
the early stage group (10/43; 23%) and stages III and IV
were combined into the advanced stage group (33/43; 77%).
To classify tumor grade, the widely used system based on
architectural and nuclear grade and mitotic activity was applied.
Grades 1 and 2 were pooled into one group and compared to
grade 3 tumors.
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The median time of follow-up was 839 days (range 34-
2724 days). Patients were classified into 3 follow-up groups,
i.e. free of disease (group I, 43%; 20/46 patients), alive with
disease (group II, 22%; 10/46 patients) and dead of disease
(group 111, 35%; 16/46 patients). For our prognostic model,
group I was the good prognostic group. Groups II and III
were pooled and represented the bad prognostic group. The
median time of follow-up was 650 days for group I, and 757
days for pooled groups II and III (range 34-2724 days). For
validation of our patient cohort, survival probabilities were
also calculated by the product limit method of Kaplan-Meier.
Differences between groups were tested using the log-rank
test. The results were analyzed for end points of recurrence-
free and overall survival. Overall survival was defined as the
time between date of surgery and death. Live patients were
censored at the last date they were known to be alive. In
summary, data for 35 patients were useable for final analysis.
(Of the initially 47 patients with clinicopathological data,
43 patients were classified according to FIGO stages, while
4 patients had borderline tumors. One of the 47 patients was
lost to follow-up. Of the remaining 46 patients, the complete
set of p73 isoforms and p53 mutational status could be
determined in a total of 35 patients). Recurrence-free survival
was calculated from the date of surgery until the date when
progressive disease, relapse or death was reported, whichever
occurred first. Patients who had not experienced any un-
favourable event were censored at the last date they were
known to be alive.

Statistical analyses. Descriptive statistics were used to obtain
frequency tables for all categorical variables. Means and
standard deviations were calculated for continuous variables.
Since some normal tissues lacked detectable p73 isoform
expression (especially AN'p73), which precluded the
calculation of a meaningful tumor/normal ratio, we expressed
the amount of p73 isoform up-regulation as the difference
between the two values (5 = tumor-normal absolute copy
numbers for each isoform). These values were age-corrected
for 8TAp73, 8ANpP73 and dAN'p73, and now called &" (see
Results).

As the data distribution was non-Gaussian, non-parametric
tests were applied for further analyses. The Mann-Whitney
U-test was used when comparing continuous variables between
two different groups, while the Kruskal-Wallis test was used
when analysing variables with more than two categories. To
analyze the difference of p73 isoform levels between tumor
and normal tissue, the Wilcoxon test was applied. P-values
<0.05 were considered statistically significant.

To correlate clinical outcome with p73 isoform levels, we
constructed a data matrix where each of the 35 patients (row)
was characterized by six molecular variables (columns): §"TA,
8"AN, 8"AN'p73, normalized 8Ex2, 8Ex2/3 p73 and binary
encoded p53 status (0 wt, 1 mutated). This 35x6 matrix was
then used as input into a principal component analysis (PCA)
(37), followed by Varimax rotation (38) of the principal
component solution. We applied PCA and Varimax algorithm
(VrPCA), implemented in the SPSS software (SPSS Inc.,
v. 11.0), which resulted in five principal components (c1-5)
for each of the 35 patients. These new, transformed charac-
teristics were then used in the development of a model
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Figure 1. Flow-diagram of steps used for the PCA-based prognostic model.

predicting prognostic categories. Our prognostic model was
based upon a support vector machine (SVM) algorithm,
implemented in the Weka v. 3.4 software (39). To obtain
the best predictive model, we systematically performed a
complete 35-fold leave-one-out testing on each of the possible
combinations of PCA weights (see below) among the five
principal components. For example, first, PCA weights of
only one of the five components for each patient were tested,
then all possible paired combinations of components, then all
possible triplet combinations etc., until the best predictive
combination was found. This turned out to be the combination
of components 1, 3 and 5 (see Results). Fig. 1 summarizes
these steps in a flow diagram.

Results

Clinicopathological correlations. To validate the reliability of
the survival data of our cohort, we first analyzed the prognostic
impact of the well established clinical parameters ‘stage’ and
‘grade’ in this patient group. As expected, patients presenting
with stages I or II had a significantly longer relapse-free
survival (median 1331 vs. 677 days; p=0.0024) and a trend
towards longer overall survival (median 1340 vs. 1009 days;
p=0.083) than patients with stages IIT or IV (Fig. 8 and data not
shown). Conversely, patients with well (grade 1) or moderately
(grade 2) differentiated tumors showed a significantly longer
relapse-free survival (p=0.0166) and a trend towards longer
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Table II. Descriptive statistics of p73 isoform expression levels and comparison between tumor/matched normal pairs by the

Wilcoxon test.

p73 isoform n Mean Median Standard Min Max Significance in
deviation Wilcoxon test (p)

TAp73 tu 36 12574.59 862.35 2452228 0 106563 0.000
norm 36 307.33 73.05 410.92 0 1552

ANp73 tu 36 267.19 21.95 804 .31 0 4603 0.025
norm 36 57.58 19.5 133.32 0 742

AN'p73 tu 36 496.73 38.25 1273.17 0 7043.5 0.000
norm 36 6.54 0 28.10 0 162.8

Ex2p73 tu 36 118.33 30.65 191.28 0 851 0.859
norm 36 103.22 40.35 169.53 0 695

Ex2/3p73 tu 36 39863.07 5873.5 86500.07 642 392911 0.987
norm 36 39440.50 4205.5 79649 .88 543.1 344335

overall survival (p=0.1058) than patients with poorly
differentiated (grade 3) tumors (Fig. 8 and data not shown).
We also found significant correlations between survival and
ECj, values of CA125 and between a poor drop of CA125
and a high ATAp73/TAp73 ratio (Figs. 9-11). No significant
correlation was found between p73 isoform levels and FIGO
stage, grade, histological type or p53 status.

Fifty percent (17/34) of the tumors harboured p53
mutations, as determined by immunoperoxidase staining. p53
mutations were more common in primary peritoneal cancers
(7/8; 88%) than in primary ovarian cancers (9/20; 45%) and
endometrial cancers (1/3; 33%), while borderline tumors were
wild-type for p53. No significant association was detectable
between p53 mutational status and tumor stage or grade.
However, patients with wild-type p53 displayed a borderline
significance towards longer relapse-free survival than patients
with p53 mutations (median 1109 vs. 670 days; p=0.0573).

TAp73, ANp73 and AN'p73 are up-regulated in tumors. In
36 patients, expression levels of all five p73 isoforms could
be determined by real-time RT-PCR in tumor and matched
normal tissues. After normalization of each sample to its own
28S rRNA transcript level, data were expressed as absolute
copy numbers per unit input of total RNA (154 ng). For
TAp73, ANp73 and AN'p73, expression was significantly
higher in tumor samples compared to their matched normal
tissues (Table IT and Fig. 2B). In contrast, Ex2p73 and Ex2/
3p73 were frequently not up-regulated, while a subgroup of
tumors exhibited up- or down-regulation, clearly distinguishing
their behavior as separate from TAp73, ANp73 and AN'p73
(Table II and Fig. 3B). This will be subsequently reflected by
their major contribution to component 1 (see below).

Tumor-associated TAp73, ANp73 and AN'p73 up-regulation
is age-dependent. The calculated raw differences were plotted
as a function of patient age for each isoform (Fig. 3). The

analysis of these plots revealed that the maximum ranges of
TAp73, ANp73 and AN'p73, but not of Ex2p73 and Ex2/
3p73, systematically decreased with increasing patient age,
thus were age-dependent (Fig. 3A left panels, and 3B). This
resulted in large range variances in the younger age groups in
contrast to a compressed-appearing variance for the older age
groups, which distorted comparisons between age groups.
Importantly, however, within each age group, the relative
variance in relation to its own mean was comparable, which
justified the following age adjustments for values. In order to
render relative variances of different age groups comparable
with each other, we divided patients into age groups of 10 years
starting from age 35, and selected the maximum 8X expression
for each age group (X = TAp73, ANp73, AN'p73). These
maximum values were then least-square fitted by the sigmoidal
function:

max

#lage)= —==—
(1+(%) J
tl/2
t,, is the age at which the range of the observed ¢ values is
one half of the maximum range observed within the patient
cohort. k is the slope, i.e. the rate at which ¢ range decreases
with age. The choice of sigmoidal functions for age correction
was empirical but is the most natural choice for a correction
function (Fig. 3A). It avoids problems with unrealistic infinity
values for limits, as would be seen e.g. with linear or quadratic
functions. Thus, for every age group, there is a maximum
range of expression levels that decreases sigmoidally with
the age. We approximate this maximum range of isoform
expression by the maximum experimentally observed
expression level for every age group. As validation serves the
fact that these maximum levels can be fitted by a smooth
function. If this approximation of the range were vastly
incorrect, we could not define these smooth functional
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Figure 2. A, The complete set of NH,-terminal transcripts encoding TAp73 and ATAp73 isoforms. Left, gene architecture of the NH, terminus of 7P73. The
various isoforms are indicated. Arrows indicate transcriptional start sites. Right, positions of reverse transcription (RT)-PCR primers for the various p73
isoforms used in this study. White, untranslated sequences; yellow, transactivation domain; red, exon 3' derived coding sequences; blue, DNA-binding
domain; green, translated (but non-productive sequence) of AN'p73 that undergoes a premature stop in the 5' untranslated region of exon 3'. The star indicates
the used second translational start site in AN'p73. In ANp73, Ex2p73, and Ex2/3p73 translational start sites are indicated by color borders. B, TAp73, ANp73
and AN'p73 are up-regulated in tumors compared to their matched normal tissue. Boxplots comparing expression levels of TAp73, ANp73 and AN'p73
between tumors and matched normal tissues. The line within the boxes indicates the median. The upper edge of the boxes represents the 75th percentile, the
lower edge the 25th percentile. Whiskers demarcate the 10th and 90th percentile. The range is shown as a vertical line. Outliers (defined as 1.5-fold above or

below the 75th and 25th percentile values) are not shown.

boundaries from our experimental data. Thus, the result of
this age correction is that these maximum expression ranges
are brought to equal footing for all age groups in the study.
This then allows to compare the individual expression levels
and is equivalent to using relative expression levels for each
age group (calculated as percentage of the maximal expression
level observed experimentally for each age group). All p73
isoforms follow the same sigmoidal function (Fig. 3A and
data not shown). No correlation existed between age and the
length of overall survival. The raw 86X values were then
converted into age-corrected & values (6"X = 6 X/¢ (age)).
This normalized the values by generating an even distribution
across ages (Fig. 3A right panels). Table III shows the
descriptive statistics for raw and age-corrected & values for
ANp73, AN'p73 and TAp73 in the entire cohort.

In contrast, Ex2p73 and Ex2/3p73 showed no systematic
tumor-associated up-regulation and no age-dependence
(Fig. 3B). Moreover, although Ex2p73 and Ex2/3p73 were

frequently not up-regulated, a subgroup of tumors exhibited
up- or down-regulation, clearly distinguishing their behavior
as separate from TAp73, ANp73 and AN'p73 (Table II and
Fig. 3B). To compensate for big variances in their raw § values
(Table II) and to bring them into the range of values comparable
to the age-corrected dTA, AN and dAN'p73, we normalized
each patient's SEx2 and 0Ex2/3p73 values by dividing with
the respective maximum § from the entire group of 35 patients
(Fig. 3B).

PCA-based prognostic modelling. We hypothesized that our
failure to observe a direct correlation between p73 expression
levels and prognosis was due to an additional hidden com-
ponent of each variable that was individual for each patient.
In order to filter out this background of individual variances
and to extract the crucial information that is disease related,
we developed the following model based on principle
component analysis with Varimax rotation (VrPCA). Fig. 4
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Figure 3. A, The § values of TAp73, ANp73 and AN'p73 levels of all 35
patients are plotted as a function of age and then least square fitted by
sigmoidal curves (left panels). After age-correction according to the
respective formula shown above each sigmoidal curve, §" values of TAp73,
ANp73 and AN'p73 display an even distribution across all ages (right
panels). B, Ex2p73 and Ex2/3p73 show no age-dependence. Moreover,
although Ex2p73 and Ex2/3p73 were frequently not up-regulated, a subgroup
of tumors exhibited up- or down-regulation, distinguishing their behavior as
separate from TAp73, ANp73 and AN'p73.

sembling a rugby ball. VIPCA helps us to identify the common,
tumor-related information shared by all 35 patients, generating
a consensus ‘rugby ball’. The shape of the individual patient
‘rugby ball’ is now defined by 3 independent axes of object
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Table III. Descriptive statistics of raw and age-corrected & values for TAp73, ANp73 and AN'p73 expression levels in the

entire cohort.

Raw Age corrected Raw Age corrected Raw Age corrected
dTAp73 STAp73 dANp73 dANp73 SAN'p73 dAN'p73
N 36 36 36 36 36 36
Mean 12267.25 0.25 209.62 0.20 490.18 1.94
Median 735.45 0.02 5.65 0.01 34.70 0.07
SD 24389.12 041 814.15 0.77 1275.06 9.50
Minimum -206.20 -0.02 -593.00 -0.33 0.00 0.00
Maximum 106032.00 1.76 4547.00 442 7043.50 57.27
Patient 1 Patient 2 Patient N
TAp73

Figure 4. Concept of disease-related (blue ‘rugby ball’) and individual (outside of ‘rugby ball’ but within the sphere) contributions to the total information
(sphere) on a given patient. Hypothetical patients 1,2 and N are shown to demonstrate how the weights w of molecular data differ from patient to patient. This
is indicated by variable submersions of the informational concentric cones into the rugby ball. Each single informational cone represents one of the six

biomarkers that we measured. For further details see text.

symmetry, representing the 3 rotated principal components
¢y, ¢; and cs (dotted component axes in Fig. 4). Thus, ViPCA
allows us to reduce our six experimental variables (five p73
isoforms plus p53 status) to only 3 principal components (c,,
¢3, Cs; see below). Together, these 3 components are necessary
and sufficient to characterize the common, disease-related
information for all patients. For each individual patient, these
3 components are then weighted individually so that each
patient is defined by 3 specific coefficients called principal
component weights w,, w;, ws (black arrows in Fig. 4,
generated by VrPCA analysis, see below). In the VrIPCA
algorithm, the weights w are determined from the transposed
matrix of Eigenvectors of the correlation matrix of profiles in
Fig. 5SA. These coefficients determine the weight of their
respective components and thus the unique volume and form
of the informational ‘rugby ball’ for each patient. Within the

overall sphere, our molecular dataset provides a limited fraction
of the total information, represented by a set of submerged
concentric cones oriented towards the center of the sphere.
Each single informational cone represents one of the six
biomarkers that we measured. We also note that the relative
proportion of individual vs. disease-specific experimental
information differs from patient to patient. This is depicted
by the fact that the disease-related portion of the cone that is
submerged into the ‘rugby ball’ varies among patients,
depending on the volume and shape of the ‘rugby ball’ (see
overlap area between blue and rainbow colors in Fig. 4).

The scheme in Fig. 4 also demonstrates the requirements
for further data processing: first we need to find the proper
combination of experimental data that reflects the disease-
related information. Next, the ‘weights’ of these disease-
relevant contributions need to be determined individually for
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each patient. For this purpose, we characterize each patient
by an experimental profile that is individually shaped (Fig. 5).
This profile has the 6 input variables, ordered systematically
on the x-axis (Fig. 5). We then use Varimax rotated principal
component analysis to decompose the shapes of these profiles
into independent components. In a very simplified, but helpful
analogy, components are basically found by serial subtractions
of a consensus profile from individual patient profiles. (For
further explanation see Fig. 5). Thus, the main purpose of
PCA is to identify directions with large variances and to reduce
dimensionality. For a given patient, we can reconstruct the
original experimental data by multiplying the 5 principal
= s components (c;, C,, €3, C4, C5) With the patient's specific co-
Component3 -1.0 efficients w, (W, W,, W5, W,, Ws) and summing up the products.
This is proof that we are not losing any information by applying
Figure 6. The PCA/Varimax components 1,3 and 5 are capable of separating ~ the PCA/Varimax algorithm. We are only redistributing the
the 35 patients. into .two p.rognos.tic subgroups, i.e. good .outclome Vs. poor experimental input data in such a way that allows us to identify
outcome. In this 3-dimensional biomarker space, each patient is represented . - re . . . .
by a point (x=w, on C,, y=w, on Cy. z=w; on Cs). Note that the seemingly the dlsease—§p601ﬁc p?lrt \ylthm the original 1nformat10n, as well
as the relative contribution of our 6 experimental variables

overlapping position of some patients in this particular view would resolve
upon rotation of the 3D space. to the final prediction of clinical outcome.

Component 5

0.0
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Table IV. Resulting predictions made by the SVM based on
Fig. 6.

Prediction of prognosis Real prognosis Sum
Good Poor

‘Good’ 14 5 19

‘Poor’ 0 16 16

Sum 14 21 35

VrPCA combines the 6 input variables into 5 principal
components. Note that each of these 5 components contains
all 6 variables, albeit weighted to different degrees, since the
PCA method is based upon the correlation matrix. The w, co-
efficients are therefore normalized before entering the SVM.
This normalization is reflected by an additional condition

6
for the w values for each patient, namely Z w; =1. This
k=1

additional equation automatically reduces the dimension of
the problem from 6 to 5, because one can calculate the sixth
w, value by knowing the five others and by using the above
normalization condition. This is also clearly shown by the
fact that the 6th component coefficients, as calculated by the
VrPCA, are negligibly small (in the order of 10 and less)
and are non-zero only due to the unavoidable rounding error
of the computational algorithm, which is due to the finite
representation of real numbers in any computer. Thus, the
full set of coefficients that completely represent the data is
used, without selection bias and the sum of the first five eigen-
values is 6. In our data set, we also found a strong linear
relation between 6" TAp73 and 8" AN'p73, which we had already
observed in our previous study (29), and between & ANp73
and &'Ex2/3p73.

Next, we subject the obtained PCA solution to Varimax
rotation. The final coefficients discussed here are generated
by Varimax rotation of the PCA solution. Varimax rotation
is one of the possible methods designed to minimize the
problems of PCA components for data interpretation that stem
from its formal mathematic derivation. Varimax rotation
removes the artificial orthogonality condition required for
PCA components and maximizes the co-linearity of the rotated
components with selected vectors of real data. The algorithm
is derived by that condition. It therefore takes the PCA solution
and transforms the orthogonal PCA coordinate system into
an alternative, non-orthogonal coordinate system. Axes in this
new rotated non-orthogonal system are maximally co-linear
with selected columns of experimental data. This therefore
provides not a perfect, but for a given case the optimal basis for
correct interpretation of the rotated components. Component
compositions are shown by pie diagrams in Fig. 5. Component
¢, mainly describes disease-correlated SEx2 and 8Ex2/3 p73
changes. However, c, only has a high weighting coefficient
for those patients who showed a significant tumor-associated
up- or down-regulation of these isoforms in their tumors.
Component c; predominantly characterizes changes in patients'
8"AN'p73, whereas c; is mostly related to the mutation status
of p53.
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Table V. Average errors for the individual rotated components.

Wi W, W;3 Wy Ws

0.004594  0.007215 0.00672  0.013689 0.007199

We next addressed the stability of data pre-processing by
VrPCA. To this end, we performed 35 independent rounds
of VrPCA processing of input data for subsets of 34 patients
each, with a different single patient systematically left out in
each round. The resulting weights W, .ou-Ws oneou fOI rotated
components were collected. We then calculated the differences
of these coefficients from the coefficients w g-Ws gy This
calculation was performed for each patient. Altogether, this
resulted in collecting 6480 differences

— 2
Awk,c - \/(Wk,z,oneour - wk.l,full) .

Fig. 7 shows the distribution of the differences Aw,; for our
data set. Since our coefficients are normalized, their values
fall between -1.0 and +1.0. As evident from the figure, 90%
of the coefficient variations lie within 2% of the values we
used in the testing. Table V summarizes the average errors
for the individual rotated components. They were calculated
by first averaging Aw,, for each component and each patient
and then by averaging them over all patients in the set.

Towards our final goal of a prognostic model, we next
used the robust algorithm of support vector machine (SVM)
(40) that was trained to predict outcomes from the calculated
patient-specific coefficients w,-ws. The definitions were out-
come I, no evidence of disease; outcome II, recurrence or
alive with disease; outcome III, death of disease. However, not
all of these weighting coefficients are required for prediction.
On the contrary, some of them have to be eliminated because
they predominantly represent the individual, non-disease
related variability of expression profiles (data not shown). To
choose the optimal combination of weights, we applied an
exhaustive feature selection approach. First, all five coefficients
were used individually as input into SVM. All models were
subjected to leave-one-out testing of the robustness of their
predictive capability. Then we tested all possible pair wise
combinations of five coefficients, followed by all possible
combinations of three, four and five coefficients. In this
empirical testing, only one combination of weights, the triplet
of components 1, 3 and 5, had the power to predict clinical
outcome in our cohort (Fig. 6). In the conceptual model of
Fig. 4, this means that only principal components 1, 3 and 5
represent the information that is disease-related and thus are
needed to predict outcome. In contrast, components 2 and 4
largely contain the individual non-disease related part of our
experimental data.

Next, it was important to examine the impact of the
observed variations on the predictions generated by the support
vector machine equations (SVME). This was tested by
analyzing the distances D;(X-Y) from the separation planes
(calculated by SVME) for variations of component weights
w; within the limits of the +Aw,;. The impact of data pre-



BECKER et al: PROGNOSTIC SIGNIFICANCE OF p73 ISOFORMS PLUS p53 STATUS

898
1200
90%
1000 {4
L 800
o
s
3 600
°
W
400
200 —
v 3%
0 Y- —
N VD e
F T F P VTP

T

T T T T T T T

T T T
PR PR PSP ES S

ve
0(} o Q7 07T 07T W

Q

_ ,‘t — )2
4 wk,l,onwu! wk,:,fidl

Figure 7. A high stability of data pre-processing by VrPCA rotation is reflected by the narrow distribution of coefficient 1-5 variations for 35 one-out VIPCA

tests.

processing by VrPCA was quantified by a shift of the
separating plane as defined by SVME. Throughout the space
of possible variations of +Aw,;, this resulted in a parallel shift
of the separating plane. The shift was maximal for errors
with alternating signs of correction +Aw,,, and was about 1/3
of the maximum for errors with the same signs of +Aw,,. Thus,
for the worst case scenario of +lAw,| ~0.04 with alternating
signs (Table V), the separating planes shifted by maximally
0.2 in the z-direction. As the range of distances within all
possible values of Wij coefficients is 6.0, this shift represents
a relative error of 3.3%. Since it scales linearly with +Aw,;, it
follows that for 90% of our test cases, the maximum relative
shift along the z-axis of the decision SVM planes is only 1.7%.
Moreover, this will affect only the borderline cases that lie
along the decision planes and are problematic anyway. On
the other hand, the very essence of the SVM algorithm is that
it maximizes the distances of patient coordinates from these
decision planes. Therefore, by choosing this algorithm, we
minimized the risk of these problems derived from possible
preprocessing errors. Moreover, our prediction is based upon
the sign of the distance only, not upon the sign plus numerical
value, which de facto minimizes the impact of the w, variation.
This is why we can only discuss the shift of the plane as
relevant, because only in this small region surrounding the
intersection between decision planes and coefficient planes,
can the shift of the plane result in a sign change and thus in
different outcome.

Fig. 6 shows the cohort of 35 patients placed into a 3-
dimensional space whose axes are the components c,, ¢; and
cs. When each patient is coded by outcome according to
‘good’ (free of disease, group I) and ‘bad’ (alive with disease
and dead of disease, groups II and III), these two new groups
are separated by a non-planar surface. The goal of the SVM
algorithm is to find the optimal plane that separates good
from bad outcome. The actual curved separating surface we
observed was therefore approximated by a combination of
3 planes separating group I from III, group I from II and
group II from III. In detail, we trained SVM to find a single
plane that optimally separates group I from II, another plane

that optimally separates group I from III and finally the plane
that optimally separates group II from III. ‘Optimal’ means
that the distances of all points from the separating plane are
maximal. This minimizes the risk of false classification. The
result of the training are the separating plane positions and
equations (see formulae below), which calculate the distance
D, of each of the i=1..35 patient points [w,;,w5;,Ws;] from all
three planes.

D, (I-IT) = 1.9026 w; - 0.9836 w5, - 0.6841 w; - 0.9343
D, (I-IT) = 2.4284 w,, - 2.029 wy, - 1.1743 ws, + 0.0917
D, (II-I) = 0.0121 w,, - 0.3424 wy; - 0.2288 ws, + 1.2561

The distance to the separating plane is defined as negative
for the outcome classification lying to the left of the separating
plane (e.g. I in the separating ‘I-III’ plane) and positive for
the outcome classification lying to the right of the plane (e.g.
IIT in the separating ‘I-III” plane). Thus, for a given patient, if
D(I-1IT)<0, we predict outcome I (no evidence of disease), if
D(I-IIT)>0, we predict outcome III (death of disease), etc. For
each patient, we have three D-values. The correct prediction
is further defined as the majority of classification results. For
example, for a patient with a [I, I, III] result, we predict out-
come I, because I is the majority of the outcome classifications.

To test the robustness of our prognostic model, we per-
formed leave-one-out testing. This means that one patient was
taken out of our cohort of 35 patients and a prediction for this
patient was made based upon the remaining 34 patients as
training set. This procedure was repeated for each patient,
thus 35 times. Using this method, the SVM algorithm predicted
all 14 cases of outcome I correctly, furthermore 11 of the 13
cases of outcome III were accurately classified, whereas only
2 cases were falsely classified as outcome I. SVM was not
able to predict the 8 cases of outcome II. Instead, it classified
3 cases incorrectly as outcome I and 5 cases as outcome III.
However, after we pooled patients with outcome II and III to
the ‘bad’ prognosis group, as opposed to the ‘good’ prognosis
group of outcome I, 86% of cases were correctly classified
[30 out of 35; all 14 patients (100%) of the good prognosis
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Figure 9. The CA125 time course of each patient can be characterized by
4 points: the maximum value after surgery but before the first chemotherapy
cycle, the slope defining the drop per time unit (i.e. the rate), the ECy, and
the minimum stable level after finishing the postoperative chemotherapy
regimen.

group as well as 16 of the 21 patients (76%) of the bad
prognosis group were correctly identified] (Table IV). Thus,
the specificity to detect patients with a good prognosis was
100% and the sensitivity to identify patients with bad prognosis
was 76%. The negative predictive value, i.e. the probability
that a patient with a predicted good prognosis in fact really
had a favorable outcome was 74% (14/19), whereas the positive
predictive value indicating the probability with which a patient,
for whom a bad outcome was predicted, really experienced
recurrence or death was 100% (16/16) (Table IV). On the
other hand, using p73 & values as input, we tested a broad
range of other algorithms (raw, non-VrPCA treated data,
even with and without age correction of expression levels;
see below) for predicting the known clinical outcome of our
cohort. These included Bayesian classifiers, back-propagation
neural network, clustering methods and support vector machine
algorithms from the Weka package (39). However, all these
methods failed to achieve predictive significance, whether §
values were age-corrected or not. Moreover, reducing input
by systematically selecting only data subsets also failed to
improve the predictive significance of each algorithm.

A poor drop of CAI25 correlates with a high ATAp73/TAp73
ratio. For 17 of our ovarian cancer patients, CA125 serum
levels, sampled before each chemotherapy cycle were
available. This allowed us to create individual CA125 curves
(an example is shown in Fig. 9). When plotted over time,
CA125 values could be fitted into a 4-parameter sigmoidal
function (Sigmaplot v. 7.0 package, SPSS Inc.). For correlation
analyses, the ratio of 8"ATAp73 (i.e. age corrected " ANp73
plus 8"AN'p73) over 8" TAp73 was calculated for each tumor-
normal matched pair. Patients were then separated into group I
with a ratio smaller than the median and group II with a
&"ATA/8"TA ratio equal to or higher than the median.

EC;, is defined as the time required for CA125 to drop
to 50% of its initial level. A low ECy, is an established
prognostic parameter for chemoresponsiveness and favorable
outcome in ovarian cancer (41-43). We could confirm this
correlation, thus again validating our patient dataset. In our
cohort, patients with an ECs, lower than the median (51 days)
had a longer relapse-free (median 1109 vs. 443 days; p=0.0045)
and overall survival (median 1109 vs. 677 days; p=0.0499)
than patients with an ECs, equal to or higher than the median
(Fig. 10). Another important value characterizing the CA125
profile is the slope (i.e. the decrease of CA125 over time),
which is much less dependent on the starting level than the
EC;, parameter. Thus, a steep slope (i.e. a rapidly falling
CA125) mainly reflects the effect of chemotherapy and hence
also serves as a parameter to assess chemoresponsiveness. To
this end, we looked for a correlation between the CA125
slope and p73 levels in our cohort. We found a significant
association between up-regulated ATAp73 in tumors (ANp73
plus AN'p73) and a reduced CA125 slope, indicating a poor
response to chemotherapy (Fig. 11). Patients with an age-
corrected 8" ATAp73/5"TAp73 ratio higher than the median
showed a significantly lower CA125 slope in the Mann-
Whitney test (mean 3.68 vs. 14.66; p=0.027). However, when
the same ATA/TA ratio was calculated for normalized but not
age-corrected § values, a correlation was no longer detectable.
This again emphasizes the importance of age correction for
raw & values for p73 expression.

Since drug induced tumor cytotoxicity is partly mediated
by functional, pro-apoptotic TAp73 and p53, an up-regulation
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Figure 11. Boxplot comparing the CA125 slope between patients with a
high ATA/TA ratio and patients with a low ATA/TA ratio.

of ATAp73 in tumors, which inhibits TAp73 and p53, might
increase drug resistance of those tumors and therefore result
in worse responsiveness to chemotherapy. In fact, TAp73 is
induced by a variety of chemotherapeutic agents such as cis-
platin, taxol, doxorubicin and etoposide in different cancer
cell lines (2,44). Of note, blocking p73 function, either with
dominant negative ANp73, or with siRNA against TAp73 led
to chemoresistance, irrespective of p53 status (2,44). Taken
together, the significant correlation between high 8" ATAp73/
d"TAp73 expression levels and a reduced CA125 slope
indicates that up-regulation of ATAp73 isoforms in tumors
might be involved in impairing the efficacy of apoptosis
inducing anti-cancer drugs.

Discussion

In the current work, we determined expression levels of all
N-terminal p73 isoforms by real-time RT-PCR in a cohort of
35 gynecological cancers. Of note, this is the first such study
that uses matched tumor/normal tissue comparisons, which
allows to calculate up-regulation of all isoforms for each
patient. Previous studies relied on unmatched pooled normal
tissues from unrelated individuals for comparisons. Consistent
with previous studies, we found that TAp73, ANp73 and
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with a high ECs, value for CA125 compared to patients with a low value.

AN'p73 were significantly up-regulated in tumors compared
to matched normal tissues. Surprisingly, however, the range
of overexpression of TA, AN and AN'p73 in tumors was age-
dependent, with the highest values present in the youngest
age group. Such age dependence of p73 isoform expression
had not been previously reported but appears to be important,
since this isoform-specific age correction turned out to be
crucial to reveal significance in subsequent survival cor-
relations. Thus, we propose that age dependence should be
taken into account in future prognostic p73 studies. AN forms
of p73 have been shown to act in a dominant-negative manner
and hence their up-regulation in human tumors could well be
oncogenic. The significance of the often observed co-up-
regulation of TAp73 remains unclear but might be a side
effect of P1 promoter activation which generates 3 of the 4
truncated isoforms.

There is mounting evidence for a prognostic significance
of p73 expression in human cancers. Initially, a study in 193
hepatocellular carcinomas found that immunohistochemical
detectability of p73 was an independent prognostic factor
for poor outcome (28). Likewise, in colorectal and ovarian
carcinomas, immunohistochemical p73 overexpression in-
dependently predicted poor prognosis (26,27). Also, total p73
mRNA overexpression in a subgroup of 70 breast cancers
correlated with poor clinical behaviour (25). However, all these
studies analysed total p73 expression and did not discriminate
between different N-terminal p73 isoforms, despite their
different, even opposing functions.

Taking into account the opposing roles of TAp73 and
ATAp73, a few studies then investigated the prognostic role
of ANp73 as a potential predictor of poor outcome in cancer.
Until now, this analysis was restricted to classical Kaplan-
Meier survival correlations using isolated isoforms or simple
ratios of isoforms. Of note, this approach required relatively
large cohorts to detect a correlation. ANp73 up-regulation
was found to be an independent predictor of poor outcome in
51 neuroblastomas and in 132 lung cancers (23,24). In two
prior studies to the one presented here, we had also analysed
all N-terminal p73 isoforms. In the initial cohort of 100 ovarian
cancers, we found a non-significant trend for better overall
survival in patients with low expression of AN'p73/ANp73
compared to patients with high expression (29). Only a sub-
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sequent study, extended to 122 ovarian cancers, did reveal a
significant correlation. High expression levels of dominant-
negative ANp73/AN'p73 significantly correlated with chemo-
therapeutic failure (p=0.05) in all patients and correlated with
worse recurrence-free and overall survival in those patients with
P53 mutant cancers (p=0.048 and 0.005, respectively) (30).

However, within our cohort of 35 patients, we were at
first unable to detect a significant simple correlation between
one experimental parameter (such as expression of individual
isoforms like AN'p73/ANp73) or ratios thereof and clinical
outcome. Therefore, we applied the combinatorial approach of
principal component analysis to comprehensively capture all
molecular variables measured. Selected principal components
were then used to train a support vector machine algorithm to
predict clinical outcome. The reliability of PCA and SVM as
powerful statistical tools in predicting clinical outcome of
tumors has been previously demonstrated in microarray-
based gene expression profiling (45). In a study on neuro-
blastoma patients, Wei et al used PCA to reduce the dimension-
ality of the cDNA microarray data initially containing 37,920
clones to the top 10 principal components. These top com-
ponents were then used as input into an artificial neural
network. Subsequent prognosis prediction, based on one-out
testing, achieved 88% accuracy in discriminating between
neuroblastoma patients with good vs. poor prognosis (45).
Likewise, Williams et al analyzed 27 samples of Wilms tumor
by cDNA microarrays and applied a SVM algorithm with
leave-one-out testing to identify those genes whose expression
is predictive of relapse (46). Thus, we applied a combination
of established, reliable statistical methods for our predictive
model. Overall, we used 6 molecular variables (p73 isoform
levels plus p53 status) as input into the PCA/Varimax algorithm
to test whether they could serve as combinatorial biomarkers
for predicting outcome in this cohort. Of the resulting 5
principal components for each patient, only 3 weighted
components (c,, c;, Cs), representing the prognostically
relevant part of our experimental data set, were used to train
the SVM on our cohort of 35 patients. This allowed us to
correctly predict the clinical outcome of 30 out of the 35
patients (leave-one-out testing).

This model allows a context-related view of the prognostic
value of an individual variable. This is important because we
show that the predictive meaning of any one particular bio-
marker, e.g. the expression level of a specific p73 iso-
form, might change depending on the context of the other
5 molecular variables. On the one hand, the principal com-
ponents of all patients share the same composition, which
reflects the disease-related, common variance of experimental
variables in our cohort. On the other hand, these components
differ in their respective weights from patient to patient, thus
individualizing the prediction. Hence, for some patients,
component 3, of which 8"AN' is the main contributor, might
have the utmost weight in predicting survival, while the other
components are much less important. However, for other
patients, component 3 might only be of minor importance
compared to the other components. Of note, this does not
mean that any of the 6 molecular variables is completely
unnecessary for survival prediction of a given patient, since
all principal components contain all 6 variables, only in
different proportions.
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This method also considers the individual patient's response
to the disease according to the particular combination of
genetic and environmental factors. We do not exclude the
possibility that other oncogenic factors, which we did not
analyse here also contributed to the disease, but we find that
p73 isoform and p53 variables are sufficient for prognostic
purposes. Thus, this method is open to future expansions that
incorporate other molecular markers.

Our model draws its statistical power from exploiting the
predictive information contained in combining all measured
parameters, thus creating a unique experimental profile for each
patient. In contrast to a single parameter, this combinatorial
concept might also better reflect the frequent co-up-regulation
of p73 isoforms and the complex network of interrelation-
ships between different p53 family members. In sum, we
have shown that in this cohort of cancer patients clinical
outcome did not correlate with a single molecular p73/p53
parameter. However, with the proper selection of mathematical
tools, we were able to integrate p73 isoform expression profiles
and p53 status into useful prognostic biomarkers with the
power to differentiate patients with good vs. poor prognosis.
A prognostic classification based on this integrative system
might be of use in the clinic to help identify patients who
might benefit from more aggressive adjuvant chemotherapy.
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