
Abstract. Cyclooxygenase-2 (COX-2) increases breast
cancer cell invasion. Expression of various pro-angiogenic
and pro-invasive factors has been correlated with high
expression of COX-2. However, whether these factors are
essential to COX-2-mediated breast cancer invasion, and the
mechanisms by which COX-2 increases the expression of these
factors are unknown. Our microarray results indicate that
higher COX-2 expression was associated with increased levels
of interleukin-8 (IL-8), a key factor in breast cancer invasion
and metastasis. COX-2 overexpressing cells (MCF-7/COX-2),
generated by transfecting COX-2-encoding plasmids into the
poorly invasive MCF-7 breast cancer cells, were more invasive
and produced higher IL-8 levels than the parental cells. To
investigate the role of IL-8 in COX-2-mediated invasion,
MCF-7 parental cells were incubated with IL-8. Exogenous
IL-8 increased the invasiveness of MCF-7 cells. IL-8 is one
pathway by which COX-2 mediates breast cancer invasion.

Protein kinase A (PKA) and protein kinase C (PKC) are
activated by COX-2 and are involved in IL-8 regulation.
Inhibition of PKC, not PKA, decreased IL-8 production and
invasion in MCF-7/COX-2 cells. Activation of PKC, not PKA,
increased IL-8 production and invasion in MCF-7 cells. Thus,
the invasive effects of COX-2 are mediated by PKC, not PKA.
Activity of the urokinase-type plasminogen activator (uPA)
was increased in MCF-7 cells by COX-2 overexpression or
by the addition of a PKC activator or by IL-8. Inhibition of
PKC decreased uPA activity in MCF-7/COX-2 cells.
Furthermore, inhibition of uPA activity decreased the
invasiveness of MCF-7/COX-2 cells, indicating that uPA was
essential to COX-2-mediated invasion. Herein we demonstrate
for the first time a detailed mechanism by which COX-2
increases breast cancer invasion: the PKC/IL-8/uPA pathway.

Introduction

A number of studies have shown high levels of the cyclo-
oxygenase-2 (COX-2) protein in solid tumors (1-3). In breast
cancer, COX-2 expression is a predictor of poor disease-free
and overall survival (4-6) and has been implicated as a marker
of high metastatic potential. COX-2 expression is higher in
metastatic tumors (7) and is associated with lymph node and
distant metastasis (8-10). COX-2 increases the invasion of
breast cancer cells in vitro (11-13) and in vivo (14-18).

Despite the wealth of evidence indicating the role of COX-2
in breast cancer invasion and metastasis, the mechanisms
involved are not well defined. High levels of COX-2 have been
correlated with increased expression of vascular endothelial
growth factor (12), pro-urokinase type plasminogen activator
(pro-uPA; 13), interleukin-11 (17), and interleukin-8 (IL-8; 18)
in breast cancer cells. However, whether these factors are
essential to COX-2-mediated breast cancer invasion, and the
mechanisms by which COX-2 increases the expression of
these factors are not known. In this study, we investigated the
pathways used by COX-2 to increase the invasion of breast
cancer cells. Our unpublished microarray results indicate that
higher COX-2 expression was associated with increased IL-8
levels. Given the association of IL-8 with increased breast
cancer metastasis (19,20), we focused our study on the role of
IL-8 in COX-2-mediated invasion and the mechanisms by
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which COX-2 increases IL-8 expression in breast cancer
cells. We show that COX-2 uses protein kinase C (PKC) to
increase the production of IL-8. COX-2 uses IL-8 to activate
uPA, resulting in increased invasion of breast cancer cells. This
study demonstrates for the first time that COX-2 uses the
PKC/IL-8/uPA pathway to increase invasion of breast cancer
cells.

Materials and methods

Reagents. Matrigel was purchased from BD Biosciences
(Bedford, MA). Hema-3 was purchased from Fisher Scientific
(Middleton, VA). Non-reducing sample buffer, 10X zymogram
renaturing buffer, 10X zymogram development buffer,
Coomassie Blue-R250, and Coomassie Blue destaining
solution were purchased from Bio-Rad Laboratories (Hercules,
CA). Amiloride was purchased from Sigma-Aldrich Chemical
Co. (St. Louis, MO). Phorbol myristate acetate (PMA),
forskolin, GÖ6976, and PKA inhibitor 6-22 amide were
purchased from EMD Biosciences (La Jolla, CA). IL-8 was
purchased from Pepro Tech (Rocky Hill, NJ).

Cell lines. The MCF-7 human breast cancer cell line was
obtained from American Type Cell Culture (Manassas, VA).
MCF-7/COX-2 cells were generated by stably transfecting
plasmids encoding the COX-2 gene into estrogen receptor
(ER)-positive MCF-7 cells as previously described (21). The
pSG5-COX-2 plasmid, which contains a full-length human
COX-2 cDNA in the pSG expression vector (22), was used
for COX-2 transfection. MCF-7/COX-2 cells were obtained
from individual colonies, and continuously cultured in DMEM/
F12 medium containing 5% FBS and 500 μg/ml G418. To
ensure that MCF-7/COX-2 cells express high levels of COX-2
protein, Western blots using a mouse monoclonal COX-2
antibody (Cayman Chemical, Ann Arbor, MI) were performed
(21). We selected clones 8, 12, and 13 that we had previously
reported expressed higher levels of COX-2 than the parental
MCF-7 cells (21). IL-8 levels and uPA activity were deter-
mined in these three clones, but clone 12 was used for all other
experiments.

Collection of conditioned medium supernatants. MCF-7 and
MCF-7/COX-2 cells (4x105) were plated in T25 flasks in
DMEM/F12 medium supplemented with 5% FBS. The next
day, MCF-7/COX-2 cells were treated with 6-22 amide (25,
50 nM) or GÖ6976 (25, 50 nM) and MCF-7 cells were treated
with forskolin (1 μM) or PMA (0.1 μM). The following day,
the medium in all flasks was changed to serum-free medium.
After 24 h, the medium was recovered, centrifuged for 5 min,
and concentrated using spin columns with 10-kDa cutoff filters
(Millipore, Bedford, MA). These supernatants were used to
determine the effects of COX-2 overexpression and the effects
of chemical treatments on IL-8 concentrations, matrix metallo-
protease (MMP) activities, and uPA activities.

Enzyme-linked immunosorbent assay for human IL-8. IL-8
concentrations in the concentrated supernatants were deter-
mined using a commercial enzyme-linked immunosorbent
assay (ELISA) kit (R&D Systems, Minneapolis, MN). IL-8
concentrations were normalized to cell number and expressed

as pg/ml/106 cells. The experiments were performed in
triplicate and repeated twice.

Zymographic analysis of MMP activity. The activity of MMP-2
and MMP-9 in the concentrated supernatants was determined
by gelatin zymography as described (23). Concentrated
medium (20 μl) was mixed (1:1) with non-reducing sample
buffer and applied to a gelatin zymogram gel (Bio-Rad
Laboratories). The gel was incubated in renaturing buffer
followed by an overnight incubation in development buffer at
37˚C. The gel was stained with Coomassie Blue-R250 and
then destained. Gelatinase activities were visible as clear
bands against the dark blue background, indicating proteo-
lysis of the substrate protein.

uPA activity assay. The concentrated supernatants were
analyzed for uPA activity using a commercial kit (Chemicon,
Temecula, CA). uPA activity was expressed as the number of
units/106 cells. One unit is defined as the amount of enzyme
equal to an international standard as tested by the fibrinolytic
method of Johnson et al (24). The assay was performed in
triplicate and repeated twice.

Matrigel invasion assay. The invasiveness of breast cancer
cells was determined in vitro by using the Matrigel invasion
assay (23). Briefly, six-well plate transwell inserts with 8-μm
pore size polycarbonate filters (Fisher Scientific) were coated
with the artificial basement membrane Matrigel in cold
serum-free DMEM/F12 at a final concentration of 0.7 mg/ml
and placed at room temperature for 40 min. MCF-7 and
MCF-7/COX-2 cells were trypsinized, resuspended in serum-
supplemented medium, and counted. Cells were then washed
3 times with serum-free medium. Cells (4x105 in 500 μl) were
added into each transwell insert. MCF-7/COX-2 cells were
incubated in the absence or presence of the PKA inhibitor
6-22 amide, the PKC inhibitor GÖ6976, or the uPA inhibitor
amiloride. MCF-7 cells were incubated in the absence or
presence of the PKA activator forskolin or the PKC activator
PMA. MCF-7 cells were pretreated with IL-8 (100 ng/ml) for
24 h. Pretreated cells were harvested and washed as described
above and then added into transwell inserts at a density of
4x105 in 500 μl in the presence of IL-8 (100 ng/ml). The lower
chambers of the inserts were filled with 2 ml of DMEM/F12
medium supplemented with 5% FBS. After a 72-h incubation,
non-invading cells on the upper surface of the filter were
removed with cotton swabs. Cells that had passed through
the pores onto the lower side of the filter were fixed, stained
with Hema-3, and photographed. The invaded cells for each
filter were counted in five fields under a light microscope at
x40 magnification. The invasive ability of the cells was
expressed as the mean number of cells that had invaded to
the lower side of the filter. The experiments were performed
in triplicate and repeated twice.

Statistical analyses. For statistical analysis of the invasion
experiments, the Shapiro-Wilk test was first performed to
assess the normality assumption of the data. Given that the data
were normally distributed, two-sample t-tests were performed
to compare the number of invading cells, IL-8 levels, and
uPA activity among the various treatments. All analyses
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were performed using SAS statistical software at an overall
significance level of 0.05.

Results

COX-2 increases the invasiveness of breast cancer cells.
COX-2 has been shown to increase the invasiveness of MCF-7
breast cancer cells in vitro (12). We have previously reported
the generation of MCF-7/COX-2 stable transfectants (21). To
confirm that COX-2 increases the invasiveness of our MCF-7
breast cancer cells, we randomly selected one clone of MCF-7/
COX-2 cells (clone 12) and compared the invasive activity
of these cells to that of the parental MCF-7 cells. MCF-7
cells displayed a low invasive capacity on Matrigel (Fig. 1A).
MCF-7/COX-2 clone 12 cells were significantly (p<0.05)
more invasive than the parental cells (Fig. 1A and B). The
number of invaded MCF-7 cells was increased 60% by COX-2
overexpression (Fig. 1B).

COX-2 uses IL-8 to increase breast cancer cell invasion. IL-8
production was determined in the concentrated supernatants
of MCF-7 and MCF-7/COX-2 clone 12 cells. IL-8 production
was increased (p<0.05) by COX-2 overexpression (Fig. 2A).
In comparison to the parental cells, MCF-7/COX-2 clone 12
had 5.6-fold higher IL-8 levels (Fig. 2A). To confirm that
COX-2 increases IL-8 production, the levels of IL-8 were
determined in two other clones of MCF-7/COX-2 cells. Higher
levels of IL-8 were also found in the other MCF-7/COX-2
clones; MCF-7/COX-2 clones 8 and 13 had 10.4- and 6.2-fold

higher levels of IL-8, respectively, than the parental MCF-7
cells (Fig. 2A). To investigate the role of IL-8 in COX-2-
mediated invasion, MCF-7 cells were incubated in the presence
or absence of IL-8 in a Matrigel invasion assay. The number
of invaded MCF-7 cells was increased (p<0.05) 58% by IL-8
treatment (Fig. 2B and C). These data indicate that at least one
pathway by which COX-2 mediates invasion is IL-8 dependent.
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Figure 1. COX-2 increased the invasiveness of MCF-7 breast cancer cells.
(A) MCF-7 and MCF-7/COX-2 clone 12 cells were added into Matrigel-
coated transwell inserts. After 72 h, cells that passed through the pores onto
the lower side of the filter were fixed, stained, and photographed. (B) The
invaded cells for each filter were counted in five fields. The invasive ability
of the cells was expressed as the mean number of cells that invaded to the
lower side of the filter. Values shown are the means ± SD of experiments
performed in triplicate. *p<0.05 compared to MCF-7 cells.

Figure 2. COX-2 used IL-8 to increase the invasiveness of MCF-7 cells. (A)
Conditioned and concentrated supernatants were collected from untreated
MCF-7 and MCF-7/COX-2 clones 12, 8, and 13 cells. IL-8 concentrations
in the concentrated supernatants were determined using an ELISA kit. IL-8
concentrations were expressed as pg/ml/106. Values shown are the means ±
SD of experiments performed in triplicate. *p<0.05 compared to MCF-7
cells (B) MCF-7 cells were pretreated with IL-8 (100 ng/ml) before being
added into Matrigel-coated transwell inserts and then incubated in the
presence of IL-8 (100 ng/ml). Untreated cells were incubated in the absence
of IL-8. After 72 h, cells that passed through the pores onto the lower side of
the filter were fixed, stained, and photographed. (C) The invaded cells for
each filter were counted in five fields. Values shown are the means ± SD of
experiments performed in triplicate. *p<0.05 compared to untreated MCF-7
cells.
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PKC activity is involved in COX-2-mediated IL-8 production
and invasion in breast cancer cells. COX-2 is known to
activate protein kinase A (PKA) and protein kinase C (PKC)
pathways (25-28), which have been reported to be involved
in IL-8 regulation (29,30). To determine whether COX-2 uses
PKA and/or PKC pathways to increase IL-8 production and
breast cancer cell invasiveness, MCF-7/COX-2 cells were
treated with the PKA inhibitor 6-22 amide or the PKC inhibitor
GÖ6976. Cell growth was not affected by 6-22 amide or
GÖ6976 at the concentrations used in these assays (data not
shown). The treatment of MCF-7/COX-2 cells with 6-22 amide
had no effect on IL-8 production (Fig. 3A). In contrast, IL-8
production by MCF-7/COX-2 cells was decreased (p<0.05) in
a dose-dependent manner by treatment with GÖ6976 (Fig. 3A).
IL-8 production was decreased 1.4- and 2.2-fold by the 25 and
50 nM concentrations of GÖ6976, respectively (Fig. 3A).

Inhibition of PKA activity with 6-22 amide had no
significant effect (p>0.05) on the invasiveness of MCF-7/
COX-2 cells (Fig. 3B and C). In contrast, inhibition of PKC
activity with GÖ6976 decreased (p<0.05) the invasiveness of
MCF-7/COX-2 cells in a dose-dependent manner (Fig. 3B
and C). The number of invaded MCF-7/COX-2 cells was
decreased (p<0.05) 47 and 88% with the 25 and 50 nM con-
centrations of GÖ6976, respectively (Fig. 3C).

The effects of the PKA activator forskolin or the PKC
activator PMA on the production of IL-8 and on the
invasiveness of MCF-7 cells were also determined. PMA and
forskolin were not cytotoxic to either cell line at the concen-
trations used (21). IL-8 production was significantly (p<0.05)
increased in PMA-treated, but not forskolin-treated, MCF-7
cells (Fig. 4A). IL-8 production was increased 90-fold in
MCF-7 cells by PMA treatment (Fig. 4A). The number of
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Figure 3. Inhibition of PKC activity decreased COX-2-mediated IL-8 production and invasion. (A) MCF-7/COX-2 clone 12 cells were treated with the PKA
inhibitor 6-22 amide or the PKC inhibitor GÖ6976. Conditioned and concentrated supernatants were collected, and IL-8 concentrations in the concentrated
supernatants were determined. IL-8 concentrations were expressed as pg/ml/106 cells. Values shown are the means ± SD of experiments performed in
triplicate. *p<0.05 compared to untreated MCF-7/COX-2 cells. (B) MCF-7/COX-2 cells were incubated for 72 h in the absence or presence of 6-22 amide or
GÖ6976 in a Matrigel invasion assay. (C) The number of invaded MCF-7/COX-2 cells was counted. Values shown are the means ± SD of experiments
performed in triplicate. *p<0.05 compared to untreated MCF-7/COX-2 cells.
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invaded MCF-7 cells was increased by 45% (p<0.05) with
PMA treatment, but was not significantly affected by the
forskolin treatment (Fig. 4B and C). These data indicate that
PKC activity is involved in COX-2-mediated IL-8 production
and subsequent invasive effects in breast cancer cells.

COX-2 does not affect MMP-2 and MMP-9 activities in breast
cancer cells. Matrix metalloproteases (MMPs), which are
involved in the degradation of the extracellular matrix and
basement membranes, are essential to the invasive process.
The gelatinases MMP-2 and MMP-9 are frequently detected
in breast cancer (31-33) and are associated with metastatic
disease (34). To determine whether COX-2 increases the
invasiveness of breast cancer cells by increasing MMP

activities, gelatin zymography was performed on MCF-7 cells,
MCF-7/COX-2 cells, MCF-7 cells treated with IL-8, and
MCF-7 cells treated with PMA. MMP-2 activity was detected
in MCF-7 cells and was unaffected by COX-2 overexpression
or the addition of IL-8 or PMA (Fig. 5A). A very low level of
MMP-9 activity was detected in MCF-7 cells and was not
altered by COX-2 overexpression or by the addition of IL-8
or PMA (data not shown). These data indicate that alterations
in MMP-2 or MMP-9 activities are not involved in COX-2-
mediated invasion of breast cancer cells.

uPA is a downstream mediator of the invasive effects of
COX-2/PKC/IL-8 pathway in breast cancer cells. Since uPA
has been implicated in breast cancer invasion and metastasis
(35-37), we determined the effect of COX-2 on this pathway.
The activity of uPA was increased (p<0.05) by COX-2 over-
expression. When compared to the parental cells, uPA activity
was increased 62% in MCF-7/COX-2 clone 12 (Fig. 5B).
MCF-7/COX-2 clones 8 (82%) and 13 (71%) also had higher
(p<0.05) uPA activity in comparison to the parental cells
(data not shown). For MCF-7/COX-2 clone 12 cells, the
addition of the PKC inhibitor GÖ6976 decreased (p<0.05)
uPA activity in a dose-dependent manner. The activity of
uPA in MCF-7/COX-2 cells was decreased (p<0.05) 36 and
55% with the 25 and 50 nM concentrations of GÖ6976,
respectively (Fig. 5B). In MCF-7 cells, the addition of the PKC
activator PMA or IL-8 increased (p<0.05) uPA activity 64 and
45%, respectively (Fig. 5B).

To further confirm the role of uPA in COX-2-mediated
invasion, MCF-7/COX-2 cells were incubated with the uPA
inhibitor amiloride in a Matrigel invasion assay. Treatment
with amiloride decreased (p<0.05) the invasiveness of MCF-7/
COX-2 cells in a dose-dependent manner (Fig. 5C and D).
The invasion of MCF-7/COX-2 cells was inhibited (p<0.05)
21, 53, and 74% with the 25, 50, and 100 μM concentrations
of amiloride, respectively (Fig. 5D). These data indicate that
uPA is an important downstream mediator of the invasive
effects of COX-2.

Discussion

COX-2 is associated with high metastatic potential in breast
tumors (7-10) and has been shown to increase invasion and
metastasis in vitro and in vivo (11-16). However, little is known
regarding the pathways involved in COX-2-mediated invasion.
In this study, we showed that transfection of COX-2 into the
poorly invasive MCF-7 breast cancer cell line (MCF-7/COX-2)
increased invasion in vitro. Prosperi et al (12) also generated
stable MCF-7/COX-2 transfectants, which were found to be
more invasive than the parental cells. COX-2-transfected
MDA-MB-231 cells were also more invasive in comparison
to the parental cells (13).

Significantly higher expression of IL-8 and its receptors
have been found in breast tumors than in benign breast tissue
(38,39). IL-8 has been implicated in promoting breast cancer
metastasis. Serum levels of IL-8 are increased in patients with
metastatic breast cancer and are associated with an accelerated
clinical course, a higher tumor load, and the presence of liver
and lymph node involvement (20). IL-8 also increases the
invasion of breast cancer cells in vitro (40,41) and has been
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Figure 4. PKC activation increased IL-8 levels and invasiveness of MCF-7
cells. (A) MCF-7 cells were treated with the PKA activator forskolin (1 μM)
or the PKC activator PMA (0.1 μM). IL-8 concentrations in the supernatants
were determined. Values shown are the means ± SD of experiments
performed in triplicate. *p<0.05 compared to untreated MCF-7 cells. (B)
MCF-7 cells were incubated for 72 h in the absence or presence of forskolin
(1 μM) or PMA (0.1 μM) in a Matrigel invasion assay. (C) The number of
invaded MCF-7 cells was counted. Values shown are the means ± SD of
experiments performed in triplicate. *p<0.05 compared to untreated MCF-7
cells.
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correlated with breast cancer metastasis to lung (42) and to
bone in vivo (18,19). In the present study, we found that COX-2
overexpression increased IL-8 production by ER-positive
MCF-7 breast cancer cells. ER is known to decrease IL-8
expresson in breast tumors and in breast cancer cell lines
(40,41). It is possible that during the transfection process,
MCF-7/COX-2 clones with aberrant ER signaling may have
been selected. To overcome this we demonstrated increased
IL-8 production in three different MCF-7/COX-2 clones.
However, we cannot rule out the possibility that the increase in
IL-8 in COX-2-transfected MCF-7 cells is not due to a loss of
ER signaling. In this regard, we have previously reported that
MCF-7/COX-2 cells were less sensitive to the selective ER
modulator tamoxifen (21). Singh et al (18) found that COX-2
expression induced IL-8 production in ER-negative breast
cancer cell lines, but not in MCF-7 cells. The difference in our
findings from that of Singh et al (18) is not clear; it may be due
to different MCF-7 cell clones used. Similar to Prosperi et al

(12), we were able to generate stable MCF-7/COX-2 trans-
fectants. However, Singh et al (18) were unable to generate
stable MCF-7/COX-2 transfectants; instead they had to use the
inducible Tet-On system to generate COX-2 transfectants in
MCF-7 cells.

The overexpression and increased activity of PKA and PKC
have been reported in human breast cancers and implicated
in breast tumor development and progression (43,44).
COX-2 is known to activate PKA and PKC pathways (25-28).
Furthermore, these pathways have been reported to be involved
in IL-8 regulation (29,30). In the present study, PKC, but not
PKA, activation was involved in the COX-2-mediated invasion
of MCF-7 breast cancer cells. This contrasts with COX-2-
mediated tamoxifen resistance, in which COX-2 uses both
PKA and PKC pathways (21).

MMPs and uPA have been implicated in tumor invasion
and metastasis. COX-2 has been positively correlated with
MMP-2 expression in breast tumor samples (45); however,
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Figure 5. COX-2 increased uPA, but not MMP-2 and MMP-9, activities. (A) Gelatin zymography was performed on MCF-7 cells, MCF-7/COX-2 clone 12
cells, and MCF-7 cells treated with IL-8 or PMA. MCF-7 cells were treated for 24 h with IL-8 (100 ng/ml) or PMA (0.1 μM). The medium in all flasks was
changed to serum-free medium and the flasks were incubated for 24 h. Concentrated conditioned medium (20 μl) was mixed (1:1) with non-reducing sample
buffer and applied to a gelatin substrate gel. The gel was incubated in renaturing buffer followed by an overnight incubation in development buffer at 37˚C.
Gelatinase activities were visible as clear bands against the dark blue background, indicating proteolysis of the substrate protein. (B) A commercial kit was
used to determine uPA activity in the concentrated supernatants of untreated MCF-7/COX-2 cells and GÖ6976-treated MCF-7/COX-2 cells, as well as
untreated MCF-7 cells and MCF-7 cells treated with PMA or IL-8. uPA activity was expressed as the number of units/106 cells. Values shown are the means ± SD
of experiments performed in triplicate. *p<0.05 compared to untreated MCF-7/COX-2 cells; †p<0.05 compared to untreated MCF-7 cells. (C) MCF-7/ COX-2
cells were incubated for 72 h in the absence or presence of the uPA inhibitor amiloride in a Matrigel invasion assay. (D) The number of invaded MCF-
7/COX-2 cells was counted. Values shown are the means ± SD of experiments performed in triplicate. *p<0.05 compared to untreated MCF-7/COX-2 cells.
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the association of COX-2 with MMP-2 activity was not
determined in this study. We found that COX-2 did not affect
the activity of MMP-2 or MMP-9 in MCF-7 breast cancer
cells. Similarly, Takahashi et al (46) found that COX-2 did not
increase MMP-2 activity unless the cells were treated with
concanavalin A. Concanavalin A is an inducer of membrane-
type 1 MMP that processes MMP-2 to convert it to its active
form (47).

Increased uPA activity in breast tumors has been correlated
with a high rate of relapse and shorter disease-free and overall
survival (48-51). Inhibition of uPA has been shown to suppress
the invasive and metastatic capacity of breast cancer cells
in vitro and in vivo (35-37). Activation of PKC has been
correlated with enhanced uPA activity in MCF-7 breast cancer
cells (52); however, the mechanisms by which PKC increases
uPA activity were not known. Herein we showed that COX-2
uses PKC to increase uPA activity indirectly by increasing IL-8
levels in MCF-7 breast cancer cells. The expression of pro-uPA
was significantly higher in COX-2-transfected MDA-MB-231
cells and was correlated with their greater invasiveness in
comparison to parental cells (13). While this study suggests
that more pro-uPA may be available to bind to its high-affinity
cell surface receptor, it does not demonstrate that COX-2
increases uPA enzymatic activity, or that uPA activity is vital
to COX-2-mediated invasion. We demonstrated that COX-2
overexpression increases uPA activity in breast cancer cells
and that uPA activity is essential to COX-2-mediated
invasion.

To our knowledge, we are the first to demonstrate a detailed
mechanism by which COX-2 increases the invasiveness of
breast cancer cells: the PKC/IL-8/uPA pathway.
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