
Abstract. Lung cancer is the leading cause of cancer mortality
in the United States. Despite advances made over the past
decades, the overall survival of patients with lung cancer
remains dismal. Here we report novel G-quartet oligodeoxy-
nucleotides (GQ-ODN) that were designed to selectively target
signal transducer and activator of transcription 3 (Stat3), in
the treatment of human non-small cell lung cancer (NSCLC).
The objective of this study was to evaluate the effects of two
novel GQ-ODN STAT3 inhibitors, T40214 and T40231, on
NSCLC bearing nude mice. NSCLC bearing nude mice were
assigned to 5 groups, which were treated by vehicle, control
ODN, T40214, T40231, and Paclitaxel, respectively. Tumors
were measured, isolated and analyzed using Western blotting,
immuno-histochemistry, RPA and TUNEL. Results show
that GQ-ODN T40214 and T40231 significantly suppress
the growth of NSCLC tumors in nude mice by selectively
inhibiting the activation of Stat3 and its downstream proteins
Bcl-2, Bcl-xL, Mcl-1, survivin, VEGF, Cyclin D1 and c-myc;
thereby, promoting apoptosis and reducing angiogenesis and
cell proliferation. These findings validate Stat3 as an important
molecular target for NSCLC therapy and demonstrate the
efficacy of GQ-ODN in inhibiting Stat3 phosphorylation. 

Introduction

Lung cancer is one of the most prevalent cancers and a
leading cause of cancer mortality worldwide. In the United
States, approximately 170,000 people are diagnosed with
lung cancer each year (1,2); approximately 85% of those
diagnosed die of the disease. The number of lung cancer
deaths exceeds those due to breast, prostate, and colon
cancers combined (3). Lung cancer has two major subtypes

based on histology, i.e. small cell lung cancer (SCLC) and
non-small cell lung cancer (NSCLC) which account for 85%
of all lung cancers. More than 60% of all NSCLC patients
have advanced or metastatic tumors at the time of diagnosis
and are not suitable for surgery (3). Despite advances made
in treating the disease over the past two decades, the overall
survival of patients with NSCLC remains extremely poor (4).
Therefore, innovative treatment approaches that employ new
agents targeting novel molecules are urgently needed. In this
regard, Stat3, a critical mediator of oncogenic signaling that
is highly activated in a wide variety of human tumors (5),
may hold promise. 

Signal transducer and activator of transcription (STAT)
proteins were discovered as latent cytoplasmic transcription
factors (6). Seven known mammalian STAT proteins (i.e.,
Stat1, 2, 3, 4, 5a, 5b, and 6) are involved in immune response,
inflammation, proliferation, differentiation, development, cell
survival, and apoptosis (5). These proteins contain several
domains: a tetramerization domain, a coil-coil domain, a
DNA-binding domain, a linker domain, an Src-homology 2
(SH2) domain, a critical tyrosine residing near the C-terminal
end, and a C-terminal transactivation domain (7,8). STAT
proteins are activated in response to the binding of a number
of ligands, including cytokines (e.g., IL-6) and growth factors
(e.g., EGF), to their cognate cell surface receptors, and are
recruited to specific phosphotyrosine residues within receptor
complexes through their SH2 domains; they subsequently
become phosphorylated on the tyrosine residue within their
C-terminus and dimerize through reciprocal interactions
between the SH2 domain of one monomer and the phosphoryl-
ated tyrosine of the other. The activated dimers translocate
to the nucleus, where they bind to DNA-response elements
in the promoters of target genes and activate specific gene
expression programs (9). 

Stat3 has been identified as an important target for cancer
therapy, since it participates in oncogenesis through the
upregulation of genes encoding apoptosis inhibitors (Bcl-xL,
Mcl-1, and survivin), cell-cycle regulators (cyclin D1 and
c-myc), and inducers of angiogenesis (VEGF) (9). Mounting
evidence has shown that Stat3 is also constitutively activated in
many human cancers, including 82% of prostate cancers, 70%
of breast cancers, over 90% of head and neck cancers, and
more than 50% of lung cancers (10-13). These findings provide
a strong rationale for targeting Stat3 to treat human cancers. 
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Recently, we laid the groundwork to develop G-quartet
oligodeoxynucleotide (GQ-ODN), which forms G-quartet
helical DNA structures, as a potent inhibitor of Stat3 activation.
In our preliminary studies, we have: i) demonstrated that
GQ-ODN selectively inhibits Stat3 activation in cancer cells;
ii) developed a novel delivery system for GQ-ODN, to increase
drug activity in cells and in vivo; and iii) shown that GQ-ODN
T40214 and T40231 significantly suppress tumor growth and
greatly increase the survival of nude mice with tumors in
which Stat3 is activated (14-16). This report is a part of our
systematic in vivo examination, which aims to determine
whether Stat3 as an oncogenic signaling molecule will have
the same influence on tumor progression in different human
cancers and whether GQ-ODN will have a similar effect on
suppressing tumor growth in different xenografted models
under the same conditions. Here we have demonstrated that:
i) as a critical oncogenic signaling pathway, Stat3 strongly
influences the progression of NSCLC in vivo; and ii) targeting
the Stat3 molecule with GQ-ODN constitutes a novel and
potent therapeutic treatment for NSCLC. We also provide
experimental evidence for the proposed mechanism, that a
tyrosine-phosphorylated STAT dimer is quickly dephos-
phorylated when the STAT dimer is dissociated from DNA
in cells (17,18). Based on the results, we suggest that GQ-
ODN is a novel and promising class of anti-cancer drug in
the treatment of metastatic tumors. 

Materials and methods

Materials. The following polyclonal antibodies were obtained
from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA): anti-
Stat3; anti-Stat1; anti-Cyclin D1 against amino acids 1-295,
which represents full-length cyclin D1 of human origin;
anti-VEGF; anti-Bcl-xL; and anti-Bcl-2. Phospho-specific
antibodies, p-Stat1 and p-Stat3, were purchased from Cell
Signaling Technology (Beverly, MA). Goat anti-rabbit
horseradish peroxidase (HRP) conjugate was purchased
from Bio-Rad Laboratories (Hercules, CA), goat anti-mouse
HRP conjugate was purchased from BD Transduction Lab-
oratories (Lexington, KY). Penicillin, streptomycin, RPMI-
1640 medium, fetal bovine serum (FBS), and 0.4% trypan
blue vital stain were obtained from Invitrogen Corporation/
Life Technologies, Inc. (Grand Island, NY). Oligonucleotides
were synthesized by The Midland Certified Reagent Company,
Inc. (Midland, TX), dissolved in Polyethylenimine (PEI)
(Aldrich Chemical, WI) as a 1 μg/μl stock solution, and stored
at room temperature (RT). 

Cell lines and cell culture. The cell lines used in our studies
included: A549 (human non-small cell lung carcinoma); H292
(human lung epithelial cell carcinoma); and H359, H596,
H1792, and H1299 cells, which were purchased from ATCC
(Manassas, VA). These cell lines were cultured in DMEM
medium supplemented with 10% FBS, 100 units/ml penicillin,
and 100 μg/ml streptomycin. 

Western blot analysis. To determine the effect of GQ-ODN
on Stat3 phosphorylation, cytoplasmic extracts were prepared,
as previously described (14), from murine tumor tissue or
A549 lung cancer cells that had been pretreated with GQ-ODN.

Lung tumor cells (1 million cells per well in 6-well plates)
were first pre-treated with IL-6 (25 ng/ml) or EGF (25 ng/ml)
for 30 min. Cells were then washed in serum-free medium
and incubated with various concentrations (1.4-142 μM) of
GQ-ODN/PEI complexes for 24 h. Cells were lysed with cell
lysis buffer and 30 μg of whole cell protein was resolved on
10% SDS-PAGE gel, transferred to a nitrocellulose membrane,
blocked with 5% nonfat milk, and probed with specific anti-
body against Stat3 and tyrosine-phosphorylated Stat3 (p-Stat3).
Xenografted tumors were harvested at the end of treatment,
diced into small pieces, and sonicated on ice for 2 min. Tumor
tissue (100 mg) was lysed in 300 μl of lysis buffer containing
protease and phosphatase inhibitors. Tumor tissue protein
(50 μg) was resolved on SDS-PAGE and probed by specific
antibodies, as previously described. The bands were quantitated
using a Personal Densitometer Scanner (version 1.30) and
ImageQuant software (version 3.3) (GE Healthcare/Amersham
Biosciences). 

Animal/xenograft model. Athymic nude mice (Balb-nu/nu,
4 weeks old, weighing approximately 20 g) were obtained
from Charles River Laboratories, Inc. (Wilmington, MA);
2.5 million A549 NSCLC cells in 200 μl of PBS were then
injected subcutaneously into the right flank of each mouse.
After the NSCLC tumors were established (50-150 mm3), the
nude mice were randomly assigned to 5 groups of 5 (or 4):
Group 1, was treated with PEI (2.5 mg/kg) (vehicle) alone;
Group 2 was treated with paclitaxel (a conventional chemo-
therapeutic agent) at 10 mg/kg; Group 3 was treated with
GQ-ODN T40214/PEI (10 mg/kg/+2.5 mg/kg); and Group 4
was treated with GQ-ODN T40231/PEI (10 mg/kg/+2.5 mg/
kg) and Group 5 was treated with ns-ODN/PEI (10 mg/kg/
+2.5 mg/kg) (control ODN). PEI and ODNs were administered
every other day and paclitaxel was injected intraperitoneally
(IP) every 4 days. Weight and tumor size were measured every
other day. Tumor size was calculated by using the function [a
x (0.5b)2], where a equals the length and b equals the width
of tumors. 

RNase protection assay (RPA). RPA was performed, as
previously described (19,20). Briefly, for each sample prepared
from NSCLC tumor tissue, five micrograms of total RNA
were used in the RNase protection assay. Probes specific to
survivin, c-myc, and Mcl-1 mouse genes were prepared. Mouse
Angio-1, Apo-2, and CYC-1 multi-probes were obtained from
BD Biosciences/Pharmingen (San Diego, CA). An RNase
protection assay was performed using a kit (Torrey Pines
Biolabs, Inc.; Houston, TX), in accordance with the manu-
facturer's instructions. The 32P[UTP] (3000 Ci/mmol, ICN)-
labeled antisense RNA probes were synthesized using mCK5
multi-probes (BD Biosciences/Pharmingen) as templates,
through an in vitro transcription system (Promega Corporation;
Madison, WI). Antisense RNA probes were hybridized with
the RNA samples at 90˚C for 25 min. Unhybridized single-
stranded RNA was digested by ribonuclease A/T1 (Sigma-
Aldrich; St. Louis, MO) for 30 min. Double-stranded RNA
was precipitated by stop solution at -80˚C for 15-30 min, and
centrifuged at maximum speed for 30 min. The samples were
resolved by 6% sequencing gel. Subsequently, the gels were
dried and exposed to X-ray film. 
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Hematoxylin and eosin staining. Xenografted tumors were
harvested from athymic mice treated with vehicle alone (PEI),
GQ-ODN T40214, GQ-ODN T40231, and paclitaxel, fixed
(with 10% formaldehyde in paraffin), sectioned (5-μm tissue
sections) and stained with hematoxylin and eosin (H&E). 

Terminal deoxyribonucleotidyl transferase-mediated dUTP
nick end labeling (TUNEL) analysis. Tissue sections (5 μm)
were mounted on siliconized glass slides, air dried, and heated
at 45˚C overnight. After deparaffinization and rehydration,
the sections were digested with proteinase K (120 μg/ml)
for 20 min at room temperature. Following quenching of the
endogenous peroxidase activity, the sections were washed in
PBS, and subsequently incubated with equilibration buffer

for 10 min at room temperature. Sections were boiled and 50 μl
of a mix containing terminal deoxynucleotidyl transferase,
reaction buffer containing dATP, and digoxigenin-11-dUTP
was then added. The sections were covered with a plastic
coverslip, washed in stop/wash buffer for 10 min at room
temperature, and subsequently washed in PBS. The sections
were then incubated with anti-digoxigenin peroxidase for
30 min at room temperature and washed in PBS. Color
development was accomplished through immersion of the
slides in 3'3 diaminobenzidine/0.1% H2O2 for 3-7 min. Sections
were counterstained with ethyl green, washed in butanol,
cleared in xylol and mounted with permount. 

Results

Inhibition of Stat3 activation by GQ-ODN. Recently, we
have developed GQ-ODNs as a new class of Stat3 inhibitors.
We have previously reported that the leading compounds,
T40214 and T40231, selectively inhibit Stat3 activity (IC50 =
5 μM) in the cells of prostate, breast and head and neck cancers
(14,16). Here we employed Western blotting to ascertain if
GQ-ODN inhibits Stat3 phosphorylation in NSCLC cells. The
sequences and structures of GQODN T40214 and T40231
have been previously delineated (Fig. 1A) (14). PEI (poly-
ethylenimine) was used as vehicle for intracellular delivery
of ODN at the ODN/PEI ratio of 4:1. ß-actin was used as the
loading control. When compared to the tyrosine-phosphorylated
Stat3 (p-Stat3) band in lane 1, lane 2 shows that PEI alone
has no inhibitory effect on p-Stat3 in NSCLC cells. The p-Stat3
was significantly reduced when the concentration of T40214
increased (lanes 3 to 6). The IC50 of p-Stat3 dephosphorylation
for T40214 was ~5.4 μM. Along with p-Stat3, we also detected
tyrosine-phosphorylated Stat1 (p-Stat1) and Stat5 (p-Stat5)
in NSCLC cells under similar experimental conditions.
Importantly, we found that GQ-ODN T40214 does not inhibit
the activation of p-Stat1 nor p-Stat5 in NSCLC cells, showing
that GQ-ODN T40214 selectively inhibits p-Stat3 activation
(Fig. 1B). Furthermore, tyrosine-phosphorylated JAK1 (p-
JAK1) and JAK2 (p-JAK2) were also detected in NSCLC
cells; and were not found to be inhibited by GQ-ODN T40214.
This further reinforces the specificity of GQ-ODN to the
selective inhibition of Stat3 protein (Fig. 1C).

GQ-ODN suppressed the growth of NSCLC tumors. Assessing
the effectiveness of a drug in animal models is an important
step toward establishing its potential clinical utility. To this
end, we utilized nude mice xenografts as animal models of
in vivo drug testing in order to evaluate the anti-cancer potential
of GQ-ODN. First, nude mice were injected subcutaneously
with NSCLC cells (e.g., A549) in which Stat3 is constitutively
active. After tumors were established (vol. 50~150 mm3),
treatment of nude mice with NSCLC (A549) tumors was
performed by intraperitoneal (IP) injection. The nude mice
were randomly assigned to 5 groups (4 or 5 mice in each
group): Group 1 was treated with PEI alone (2.5 mg/kg);
Group 2 was treated with paclitaxel (a clinical drug) (10 mg/
kg); Groups 3 and 4 were treated with T40231/PEI and
T40214/PEI (10 mg/kg/+2.5 mg/kg), respectively; and Group 5
was treated by ns-ODN/PEI (10 mg/kg/+2.5 mg/kg). PEI and
ODNs were administered every two days; paclitaxel was
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Figure 1. (A) The structures of GQ-ODN T40214 and T40231. (B) Western
blot analysis shows the inhibition of Stat3 phosphorylation by GQ-ODNs
T40214 and T40231 in NSCLC cells (A549). Comparing with the control
band (lane 1), T40214 significantly inhibited the expression of p-Stat3 in
NSCLC cells (A549) (IC50 = 5.4 μM). p-Stat3 and T-Stat3, phosphorylated
Stat3 and total Stat3, respectively. PEI did not inhibit p-Stat3 (lane 2), and
GQ-ODN T40214 did not inhibit p-Stat1 and p-Stat5 in A549 cells. (C)
T40214 did not inhibit the expression of p-JAK1 and p-JAK2 in A549 cells.
ß actin served as the internal control. 
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injected every four days, to ensure safety of the mice from
toxicity. Results demonstrate that, over the 21-day treatment
period, i) the mean size of NSCLC tumors in the PEI- and ns-
ODN-treated mice increased from 93 to 1144 mm3 and from
53 to 1334 mm3, respectively; ii) the mean size of NSCLC
tumors in the paclitaxel-treated mice increased from 88 to
519 mm3; and iii) the mean size of NSCLC tumors in the
mice treated with T40231 and T40214 only increased from
89 to 204 mm3 and from 83 to 123 mm3, respectively (Fig. 2).
Significant differences in tumor growth were observed between
PEI-treated mice and T40214-treated (p=0.002) or T40231-
treated mice (p=0.004) and between the mice treated by
ns-ODN (a control ODN) and by T40214 (p=0.019) or by
T40231 (p=0.028) as well. 

Targets of GQODN. To determine the targets of GQ-ODN and
possible mechanism of GQ-ODN suppressing tumor growth,
we performed immunoblotting assays on tumor tissue, as
described in Materials and methods. Results demonstrate the
expression of p-Stat3 and its regulated proteins in NSCLC
tumors (Fig. 3A). An equal amount of protein from each tumor
sample was loaded, and the intensities of the bands from
mice treated with T40214/PEI (lane 2), T40231/PEI (lane 3)
or paclitaxel (lane 4), were compared with that from the PEI-
treated mice (lane 1). We found that GQ-ODN T40214 and
T40231 totally blocked expression of phosphorylated Stat3
(p-Stat3) and its downstream proteins (i.e., Bcl-2, Bcl-xL,
Mcl-1, survivin, VEGF, Cyclin D1, and c-myc) in NSCLC
tumors. However, paclitaxel did not inhibit p-Stat3, and only
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Figure 2. The photographs show nude mice with NSCLC tumors treated by
PEI alone (left panels) and by GQ-ODN T40214/PEI (right panels) over a
period of 21 days, (A) at the beginning of treatment and (B) at the end of
treatment. (C) Tumor volumes versus days of drug treatment for the five
groups of mice: i) treated by PEI alone; ii) treated by paclitaxel; iii) treated
by T40231/PEI; iv) treated by T40214/PEI; and v) treated by ns-ODN/PEI.
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partially blocked expression of Bcl-xL, Bcl-2, survivin, and
c-myc in NSCLC tumors. 

To determine whether the Stat3-regulated proteins (e.g.,
Bcl-2, Bcl-xL, Mcl-1, VEGF, and others) are inhibited by
blocking Stat3 DNA transcription or directly by GQ-ODN,
an RNase protection assay (RPA) was employed to test the

mRNA of the Stat3-regulated genes in NSCLC tumors. The
results, obtained from the tumors of two PEI-treated mice
(lanes 1 and 2) and two T40214/PEI-treated mice (lanes 3
and 4), clearly show that the level of mRNA of Mcl-1, VEGF,
bcl-x, and bcl-2 in T40214/PEI-treated tumors were much
lower than those in the PEI-treated tumors (Fig. 3B). The
mRNAs of L32 and GAP were equally loaded as controls.
The RPA data provide solid evidence that GQ-ODNs inhibit
the activation of Bcl-2, Bcl-xL, Mcl-1, survivin, VEGF, Cyclin
D1, and c-myc in NSCLC tumors through the disruption of
Stat3 transcription.

Independent of Stat3, Stat1 and Stat5 are also active in
human cancers, including NSCLC; and therefore the selective
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Figure 3. (A) Western blots obtained from NSCLC tumors demonstrate the
expression of total Stat3 (T-Stat3), phosphorylated Stat3 (p-Stat3), and its
downregulated proteins, including Bcl-2, Bcl-xL, Mcl-1, survivin, VEFG,
Cyclin D1 and c-myc. Lane 1, tumor treated by PEI alone; lane 2, tumor
treated by T40214/PEI; lane 3, tumor treated by T40231/PEI; and lane 4,
tumor treated by paclitaxel. ß actin serves as the internal control. (B) RPA
results were obtained from tumors of two PEI-treated mice (lanes 1 and 2)
and two T40214-treated mice (lanes 3 and 4). The mRNA levels of the
Stat3-regulated genes in T40214-treated tumors were much less than in the
PEI-treated control tumors, showing that Stat3-regulated transcription of
candidate genes, i.e. Mcl-1 (left), VEGF (middle), survivin (middle), Bcl-xL,
and Bcl-2 (right), was inhibited by GQ-ODNs. L32 and GAPDH represent
internal controls. (C) GQ-ODN T40214 did not inhibit p-Stat1 and p-Stat5
activation in vivo. (C) The proteins of Stat1 and Stat5 were obtained from
the same tumor samples and under the same experimental conditions as
Stat3. Comparing with proteins of total Stat1 (T-Stat1) and Stat5 (T-Stat5),
T40214 and T40231 did not inhibit p-Stat1 and p-Stat5 in NSCLC tumors.

Figure 4. (A) Apoptosis of cells induced by GQ-ODN T40214 in NSCLC
tumors. TUNEL-stained slides demonstrate an absence of TUNEL-positive
cells (i.e., no cells are stained dark brown) in placebo-treated tumors (top left
panel), whereas GQ-ODN-treated tumors (top right panel) exhibited a high
number of TUNEL-positive tumor cells (photographs x400 magnification).
The ratio of apoptotic cells to total cells increased 10-fold from placebo-treated
tumor (1.9%) to T40214-treated tumor (21%). (B) Immunohistochemistry data
show that VEGF, which appears brown in the images, was highly expressed
in the tissue of NSCLC tumors treated by PEI (the cycled areas); however,
tumors treated by GQ-ODN T40214 showed no evidence of VEGF (photo-
graphs x400 magnification). (C) H&E images show that in PEI-treated tumors
(left), all NSCLC cells were intact. In contrast, in GQ-ODN-treated tumors
(right) most NSCLC cells shrunk, partially resulting in necrosis (the circled
area) (photographs x100 magnification).
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targeting of Stat3 becomes a key factor in the development of
a potent Stat3 inhibitor. Using Western blot analysis we have
shown that GQ-ODN T40214 and T40231 do not target Stat1
and Stat5. A comparison of the bands was made between
T-Stat1 (total Stat1) and p-Stat1 and between T-Stat5 (total
Stat5) and p-Stat5 of each tumor treated with PEI, T40214,
T40231 and paclitaxel, respectively. Results demonstrate an
absence of inhibition of Stat1 and Stat5 activation in GQ-ODN
T40214- and T40231-treated NSCLC tumors (Fig. 3C). These
results from tumor tissues are consistent with that obtained
from NSCLC cells. 

Tumor apoptosis and angiogenesis. We set out to determine
if suppression of tumor-growth by GQ-ODN T40214 and
T40231 was associated with an increase in apoptosis and
reduction in angiogenesis in tumors. The TUNEL assay
based on labeling the apoptotic cells with cleaved DNA
fragments at the single cell level was performed to quantify
apoptosis in tumors and light microscopy was used for data
analysis. The apoptotic tumor cells were stained dark brown
via TUNEL-positive staining, and the normal tumor cells
remained unstained. Results show significant apoptosis in
NSCLC tumors treated by GQ-ODN T40214 (Fig. 4A, right
panel), when compared with NSCLC tumors treated by PEI
alone (Fig. 4A, left panel). The analyses of the TUNEL-
positive cells among total cells indicated that the percentage
of apoptotic cells in PEI-treated tumors was 1.9% while that
in T40214-treated tumors increased to 21.1% (p<0.0002,
Wilcoxin rank sum test) (Fig. 4A, bottom panel). 

VEGF staining was performed using immunohistochemistry
with peroxidase-labeled secondary antibodies; negative controls
(first incubation step, without primary antibody) were also

included. When no staining was observed, the result was
considered negative, whereas, moderate staining in the majority
of the cells was considered positive. Slides were incubated
with a mouse anti-VEGF monoclonal antibody. VEGF was
highly expressed in the tissue of NSCLC tumors treated by
PEI alone (the cycled areas) (Fig. 4B, left panel); however,
VEGF was not observed in the tumors treated by GQ-ODN
(Fig. 4B, right panel). These observations are consistent with
the Western blotting results, which indicate that the expression
of VEGF was totally blocked in GQ-ODN-treated tumors, but
not in PEI-treated tumors. Microscopy with H&E staining
clearly showed GQ-ODN-treatment to cause tumor cell
shrinkage with chromatin condensation and partial necrosis
(Fig. 4C, right panel); in contrast, PEI-treatment did not result
in such changes in tumors (Fig. 4C, left panel). 

Discussion

Although chemotherapy provides a clinically significant benefit
for patients with advanced NSCLC, the improvement of
survival for these patients is only modest (21); thus, there is a
need to search for novel therapeutics. Haura et al showed that
p-Stat3 was highly expressed in 54% of NSCLC primary
tumors, suggesting that Stat3 is a promising molecular target
for lung cancer (22). Our results show that when GQ-ODN
was incubated with NSCLC cells for 24 h, T40214 selectively
inhibited Stat3 phosphorylation. Moreover, GQ-ODN T40214
did not inhibit the activation of JAK kinases, the upstream
proteins of STAT. In addition, our results in cell and tumor
clearly show that GQ-ODN selectively inhibits the activation
of Stat3, but not Stat1 and Stat5, both in vitro and in vivo.
The selective inhibition of Stat3 activation for GQ-ODN in vivo
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Figure 5. The complexes of p-Stat3 dimer with DNA and of p-Stat3 dimer with T40214 are demonstrated in A and B, respectively. The binding energies
between Stat3 dimer and DNA and between Stat3 dimer and T40214 were calculated as -231 kal/mol and -73 kal/mol, respectively. (A) 30 H-bonds are
formed between p-Stat3 dimer and DNA in the residues of M331 to V432 of DNA binding domains (7), and (B) seven H-bonds are formed between p-Stat3
dimer and T40214 in the residues of Q643 to N647 of SH2 domains. The residues in Stat3 forming H-bonds with DNA or T40214 are shown in stick and ball
types. DD denotes DNA binding domain and SH2 denotes SH2 domain. 
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is considered beneficial to prospective clinical studies with
regard to GQ-ODN since this selective targeting of Stat3
becomes a key factor in the development of a potent Stat3
inhibitor. Independent of Stat3, Stat1 and Stat5 are also active
in many human cancers (5). Stat5-induced cell survival
promotion has a potent oncogenic role similar to Stat3 (21).
Stat1, which acts in a pro-apoptotic and anti-proliferative
manner, seems to be a tumor suppressor whose functions
totally differ from those of Stat3 (22,23). 

In our previous studies (14,16), we demonstrated that
GQ-ODN predominantly interacts with the p-Stat3 dimer in
the range of amino acid residues 638 to 652, within the SH2
domains. The selective inhibition of p-Stat3 activity by GQ-
ODN is based upon a few critical residues that form a local
structure different from that of p-Stat1 dimer. In the p-Stat3
dimer, the paired residues of Q643 and N646 repel one another
to form a channel conformation, in which GQ-ODN is held by
seven H-bonds. However, the corresponding paired-residues
of Stat1 dimer, K637 and S640, lock the dimer together;
thereby, blocking the interaction of GQ-ODN with Stat1.
Destabilizing the complex between p-Stat3 dimer and DNA
is a critical step for the dephosphorylation of p-Stat3 by GQ-
ODN. GQ-ODN T40214 promotes p-Stat3 dephosphorylation
by blocking DNA binding to p-Stat3 dimer and forming an
unstable complex between GQ-ODN T40214 and p-Stat3
dimer (3D model shown in Fig. 5). This unstable complex will
dephosphorylate faster than the DNA complex. Computational
energy calculation supported this hypothesis. The binding
energy for the complexes DNA/p-Stat3 dimer and GQ-ODN
T40214/p-Stat3 dimer are -213 kcal/mol and -73 kcal/mol,
respectively. This selective inhibition of Stat3 phosphorylation
observed in GQ-ODN-treated tumors (Fig. 3) is one of the
greatest advantages of GQ-ODN as an anti-cancer drug.

We have demonstrated that T40214 and its analog T40231
totally blocked p-Stat3 and its downstream target proteins,
including anti-apoptotic proteins: Bcl-2, Bcl-xL, Mcl-1, and
survivin; inducer of angiogenesis, VEGF; and the proteins
for cell proliferation: Cyclin D1, and c-myc in tumor tissue
(Fig. 3A). Additionally, we also have demonstrated that GQ-
ODN also blocks the transcription of Stat3-regulated genes:
Bcl-2, Bcl-xL, Mcl-1, survivin, and VEGF in tumor tissue
(Fig. 3B). To our knowledge, this is the first report to provide
in vivo evidence of the relationship between Stat3 and its
regulated genes and proteins, although it has been observed
in cell culture previously (5). The inhibition of Stat3 protein
induced a tremendous increase in apoptosis (Fig. 4A) and a
concomitant decrease in angiogenesis (Fig. 4B) and cell
proliferation in tumors, all of which strongly deter tumor
growth. Consequently, the inhibition of Stat3 activation, which
significantly promotes apoptosis and reduces angiogenesis
and cell proliferation, strongly suppressed tumor growth.

Molecules of JAK/STAT signaling pathways, in particular
Stat3, have been validated to be potential targets for cancer
therapy and much effort has been made to develop novel
anticancer drugs targeting Stat3 (24-49). Our systematic in vivo
analysis (14,16) has shown that GQ-ODN as an anti-cancer
agent selectively targeted Stat3 and significantly suppressed
the tumor growth of a variety of tumors in nude mouse
xenografts: prostate cancer (p=0.001); breast cancer (p=0.001);
head and neck squamous cell carcinoma (HNSCC) (p<0.001);

and NSCLC (p=0.002). This demonstrates that GQ-ODN has
the capacity to be a potent Stat3 inhibitor, and represents a
novel and promising class of anti-cancer drug in the treatment
of metastatic human tumors.
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